
A Losses

Table 3 lists the losses used for training.

Table 3: Base loss functions used for experiments.

Base loss function `(h(x), y)

Zero-One l1 =

{
0, if yh(x) ≥ 0

1, if yh(x) < 0

Hinge l2 =

{
0, if yh(x) ≥ 1

max(0, 1− yh(x)), if yh(x) > 1
Norm q l3 = ‖h(x)− y‖qq
Cross-Entropy l5 = log(1 + exp(−yh(x)))

B Proof of Theorems

B.1 Proof of Theorem 2

If the loss functions `k are Mk-Lipschitz and bounded by M , then for any ε > 0 and δ > 0, with
probability at least 1− δ, the following inequality holds for ∀h ∈ H and ∀λ ∈ Λ:

Lλ(h) ≤ L̂λ(h) + 2R̂S(G, λ) +Mε+DH
p∑
k=1

λkMk

√
1

2m
log

[
|Λ|ε
δ

]
, (13)

where Λε is an minimum ε-cover of Λ.

Proof. For any λ ∈ Λ and sample S = {(x1, y1), . . . , (xm, ym)}, let Ψ(S) = suph∈H Lλ(h) −
L̂λ(h). Let S′ be a sample different from S by only one point (x′, y′), then

Ψ(S′)−Ψ(S) = sup
h∈H

[
Lλ(h)− L̂′λ(h)

]
− sup
h∈H

[
Lλ(h)− L̂λ(h)

]
≤ sup
h∈H

[
Lλ(h)− L̂′λ(h)− Lλ(h) + L̂λ(h)

]
= sup
h∈H

[
L̂λ(h)− L̂′λ(h)

]
= sup
h∈H

[ p∑
k=1

λk
1

m

m∑
i=1

`k(h(x′i), y
′
i)−

p∑
k=1

λk
1

m

m∑
i=1

`k(h(xi), yi)
]

=
1

m
sup
h∈H

p∑
k=1

λk
(
`k(h(x′i, y

′
i))− `k(h(xi), yi)

)
≤ 1

m
sup
h∈H

p∑
k=1

λkMk||[h(x′i), y
′
i]− [h(xi), yi]||

≤ 1

m
sup
h∈H

p∑
k=1

λkMkDH

≤ DH
m

p∑
k=1

λkMk.

By McDiarmid’s inequality, for any δ > 0 with probability at least 1− δ for any h ∈ H:

Lλ(h) ≤ L̂λ(h) + E
[

sup
h∈H
Lλ(h)− L̂λ(h)

]
+DH

p∑
k=1

λkMk

√
1

2m
log

1

δ
.
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The inequality above holds for a particular value of λ fixed in advance. Using the union over the
minimum ε-cover Λε, with probability at least 1− δ for any λ ∈ Λε and h ∈ H:

Lλ(h) ≤ L̂λ(h) + E
[

sup
h∈H
Lλ(h)− L̂λ(h)

]
+DH

p∑
k=1

λkMk

√
1

2m
log
|Λε|
δ
.

Using the definition of the minimum ε-cover, and also recalling that E
[

suph∈H Lλ(h)− L̂λ(h)
]
≤

R̂S(G, λ), with probability at least 1− δ for any λ ∈ Λ and h ∈ H:

Lλ(h) ≤ L̂λ(h) + E
[

sup
h∈H
Lλ(h)− L̂λ(h)

]
+Mε+DH

p∑
k=1

λkMk

√
1

2m
log
|Λε|
δ

≤ R̂S(G, λ) +Mε+DH
p∑
k=1

λkMk

√
1

2m
log
|Λε|
δ
.

B.2 Proof of Theorem 4

For L(w,λ) convex in the first argument, assume ∀w ∈ W,∀λ ∈ Λ : ‖w‖2 ≤ DW , ‖λ‖2 ≤
DΛ, ‖∇wL(w,λ)‖2 ≤ Gw, ‖∇λL(w,λ)‖2 ≤ Gλ. Let the variance of unbiased stochastic gra-
dients be bounded by σ2

w and σ2
λ respectively. If the step sizes are γw = 1√

T

2DW√
σ2
w+G2

w

and

γλ = 1√
T

2DΛ√
σ2
λ+G2

λ

, then the following convergence guarantees apply for the ALMO algorithm:

E
[

max
λ∈Λ

L(wT , λ)− min
w∈W

max
λ∈Λ

L(w,λ)

]
≤ 1√

T

(
3DW

√
σ2
w + G2

w + 3DΛ

√
σ2
λ + G2

λ

)
. (14)

Proof.

max
λ∈Λ

L(wT , λ)− min
w∈W

max
λ∈Λ

L(w,λ) = max
λ∈Λ

L(wT , λ)−max
λ∈Λ

min
w∈W

L(w,λ)

≤ max
λ∈Λ

[
L(wT , λ)− min

w∈W
L(w,λT )

]
= max

λ∈Λ,w∈W

[
L(wT , λ)− L(w,λT )

]
≤ 1

T
max

λ∈Λ,w∈W

[ T∑
t=1

L(wt, λ)− L(w,λt)

]
The last inequality follows from the convexity in w. Given the resulting inequality above, the next
step is to bound the difference L(wt, λ)−L(w,λt) for each t ∈ [1, T ], using the standard techniques
in convex optimization proofs.

L(wt,λ)− L(w,λt) = L(wt,λ)− L(wt,λt) + L(wt,λt)− L(w,λt)

≤ (λ− λt)∇λL(wt,λt) + (wt −w)∇wL(wt,λt)

≤ (λ− λt)δλL(wt,λt) + (wt −w)δwL(wt,λt)

+ (λ− λt)(∇λL(wt,λt)− δλL(wt,λt))

+ (wt −w)(∇wL(wt,λt)− δwL(wt,λt))

13



Given the bound on L(wt,λ)− L(w,λt) we can obtain the following series of inequalities:

max
λ∈Λ,w∈W

[ T∑
t=1

L(wt, λ)− L(w,λt)

]

≤ max
λ∈Λ,w∈W

T∑
t=1

(λ− λt)δλL(wt,λt) + (wt −w)δwL(wt,λt)︸ ︷︷ ︸
A

+ max
λ∈Λ,w∈W

T∑
t=1

λ(∇λL(wt,λt)− δλL(wt,λt))−w(∇wL(wt,λt)− δwL(wt,λt))︸ ︷︷ ︸
B

+

T∑
t=1

λt(∇λL(wt,λt)− δλL(wt,λt))−wt(∇wL(wt,λt)− δwL(wt,λt))︸ ︷︷ ︸
C

To complete the proof, we need to bound each of the terms A,B,C in the sum above and take
expectation. First, we show the bounds on A as follows:

E
[

max
λ∈Λ,w∈W

T∑
t=1

(λ− λt)δλL(wt,λt)

]
and

E
[

max
λ∈Λ,w∈W

T∑
t=1

(wt −w)δwL(wt,λt)

]
,

which can be obtained in a similar way. Consider the following series of inequalities:

(wt −w)δwL(wt,λt)

=
1

2γw

T∑
t=1

‖w −wt‖22 + γ2
w‖δwL(wt,λt)‖22 − ‖wt − γwδwL(wt,λt)−w‖22

≤ 1

2γw

T∑
t=1

‖w −wt‖22 + γ2
w‖δwL(wt,λt)‖22 − ‖wt+1 −w‖22

=
1

2γw
‖w1 −w‖22 − ‖wT+1 −w‖22 +

γw
2

T∑
t=1

‖δwL(wt,λt)‖22

≤ 1

2γw
‖w1 −w‖22 +

γw
2

T∑
t=1

‖δwL(wt,λt)‖22

≤ 2RW
γw

+
γw
2

T∑
t=1

‖δwL(wt,λt)‖22

≤ 2RW
γw

+
γw
2

T∑
t=1

‖δwL(wt,λt)−∇wL(wt,λt) +∇wL(wt,λt)‖22

Taking the maximum of both sides with respect to w and the expectation yields

E
[

max
λ∈Λ,w∈W

T∑
t=1

(wt −w)δwL(wt,λt)

]
≤ 1

2

(
4D2
W

γw
+ γwTσ

2
w + γwTG2

w

)
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and a repeating the same steps for λ we obtain

E
[

max
λ∈Λ,w∈W

T∑
t=1

(λ− λt)δλL(wt,λt)

]
≤ 1

2

(
4D2

Λ

γλ
+ γλTσ

2
λ + γλTG2

λ

)

Next, we bound B in the following way:

max
λ∈Λ,w∈W

T∑
t=1

λ(∇λL(wt,λt)− δλL(wt,λt)) ≤ RΛ‖
T∑
t=1

λ(∇λL(wt,λt)− δλL(wt,λt)‖2

After we take expectation of both sides, we get

E
[

max
λ∈Λ,w∈W

T∑
t=1

λ(∇λL(wt,λt)− δλL(wt,λt))

]
≤ DΛ

√
Tσλ

and in a completely similar way we can derive that

E
[

max
λ∈Λ,w∈W

T∑
t=1

w(∇wL(wt,λt)− δwL(wt,λt))

]
≤ DW

√
Tσw (15)

For the term C, it directly follows from the unbiased stochastic gradients that E[C] = 0. If we
combine the bounds on A,B,C that we derived above and let the step sizes be γw = 1√

T

2DW√
σ2
w+G2

w

and γλ = 1√
T

2DΛ√
σ2
λ+G2

λ

, we immediately obtain the final result.
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Table 4: Comparison of logistic regression models trained with individual losses for the MNIST dataset.

Model / Metric Zero-one Hinge Cross-entropy AUC

One Loss 0.0747 - - -
(std) (0.0001) - - -
Hinge - 0.0656 - -
(std) - (0.0002) - -
Uniform 0.1187 0.5550 0.0911 0.9859
(std) (0.0020) (0.0005) (0.0005) (0.0004)
ALMO 0.1030 0.9228 0.0489 0.9905
(std) (0.0020) (0.0050) (0.0005) (0.0002)
λ 0.0000 0.0478 0.8042 -

Table 5: Comparison of logistic regression models trained with individual losses for the Fashion-MNIST dataset.

Model / Metric Zero-one Hinge Cross-entropy AUC

Zero-one 0.1603 - - -
(std) (0.0005) - - -
Hinge - 0.0958 - -
(std) - (0.0006) - -
Uniform 0.1814 0.5431 0.0932 0.9786
(std) (0.0005) (0.0035) (0.0002) (0.0003)
ALMO 0.1774 0.4078 0.0683 0.9800
(std) (0.0008) (0.0011) (0.0002) (0.0001)
λ 0.0000 0.1043 0.6410 -

C Additional Experiments

In this section, we present additional baseline studies to further highlight the benefits of the proposed
ALMO algorithm. As baselines, we train with just one loss at a time and compare the ALMO
performance to this per-loss optimal performance. This experimental setup is the same as the one
detailed in the main section, but the realizations of the split of the data differs, which accounts for the
small performance differences as compared to the tables in the main section.

In these tables, the boldfaced numbers indicate the performance of a classifier trained just for that
loss. The ALMO algorithm often achieves a performance close to these values, without sacrificing
any loss significantly. The mean values of the corresponding (un-normalized) λ-s are also reported to
illustrate the weight ALMO assigns to the given loss. In a few cases, especially on the Adult dataset,
the ALMO algorithm appears to be performing even slightly better than the baseline. We attribute
this discrepancy to the non-convexity of the optimization problem and the small size of the Adult
dataset.
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Table 6: Comparison of logistic regression models trained with individual losses for the Adult dataset.

Model / Metric Zero-one Hinge Cross-entropy AUC

Zero-one 0.1849 - - -
(std) (0.0007) - - -
Hinge - 0.4146 - -
(std) - (0.0001) - -
Uniform 0.2001 0.8624 0.6320 0.8378
(std) (0.0008) (0.0067) (0.0033) (0.0004)
ALMO 0.1938 0.4085 0.4232 0.8409
(std) (0.0020) (0.0021) (0.0080) (0.0003)
λ 0.0000 0.1317 0.0000 -

Table 7: Comparison of DNN models trained with individual losses for the MNIST dataset.

Model / Metric Zero-one Hinge Cross-entropy AUC

Zero-one 0.0215 - - -
(std) (0.0022) - - -
Hinge - 0.0132 - -
(std) - (0.0002) - -
Uniform 0.0168 0.6255 0.0437 0.9984
(std) (0.0013) (0.0031) (0.0008) (0.0004)
ALMO 0.0143 0.0092 0.0397 0.9996
(std) (0.0001) (0.0001) (0.0040) (0.0001)
λ 0.0001 0.3893 0.1905 -

Table 8: Comparison of DNN models trained with individual losses for the Fashion-MNIST dataset.

Model / Metric Zero-one Hinge Cross-entropy AUC

Zero-one 0.1137 - - -
(std) (0.0010) - - -
Hinge - 0.0595 - -
(std) - (0.0016) - -
Uniform 0.1111 0.6603 0.0695 0.9889
(std) (0.0025) (0.0030) (0.0005) (0.0006)
ALMO 0.1077 0.1085 0.0374 0.9908
(std) (0.0035) (0.0030) (0.0008) (0.0005)
λ 0.0000 0.1779 0.5199 -

Table 9: Comparison of DNN models trained with individual losses for the Adult dataset.

Model / Metric Zero-one Hinge Cross-entropy AUC

Zero-one 0.1564 - - -
(std) (0.0018) - - -
Hinge - 0.5349 - -
(std) - (0.0176) - -
Uniform 0.1483 0.9123 0.6707 0.8093
(std) 0.0003 0.0001 0.0005 (0.0108)
ALMO 0.1450 0.3043 0.4437 0.8716
(std) 0.0020 0.0000 0.0000 (0.0021)
λ 0.0000 0.0000 0.0000 -
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