
Appendix
A Preliminaries for Information Bottleneck

Here we briefly review the Information Bottleneck (IB) principle and its application to representation
learning.

Given the input data D and target Y , and an stochastic encoding Z of D by P(Z|D) that satisfies the
Markov chain Z �D � Y , IB has the following objective:

min
P(Z|D)

IB�(D, Y ;Z) := [�I(Y ;Z) + �I(D;Z)] (7)

It also has an equivalent form:
max

P(Z|D):I(D;Z)Ic

I(Y ;Z) (8)

Intuitively, Eq. (7) or (8) encourages the representation Z to maximally capture the information in Y ,
while controlling the complexity of the representation in terms of I(D;Z). When increasing � from
0 to some large value, we are essentially using a straight line with slope � to sweep out the Pareto
frontier of I(Y ;Z) vs. I(X;Z) as given by Eq. (8).

! "

minimal sufficient info.
irrelevant info.

optimal #

+ overfitting

Figure 3: Information diagram for the Information Bottleneck (IB). Also plotted are the minimal
sufficient information as covered by I(D;Y) and overfitting part that occupies parts of H(D|Y).

Using the information diagram (Fig. 3), where we represent the information of D, Y as circles and
their shared part as the overlapping region of the circles, then IB encourages Z to cover as much of
the I(D;Y) as possible, and cover as little of H(D|Y) (the irrelevant information part) as possible.
An optimal representation is defined as the minimal sufficient representation [49] that only covers
I(D;Y). In practice, due to the expressiveness of the models and different choices of � in Eq. (7),
this optimal information can hardly be reached, and may only be approached. It is an interesting
future direction to study that when sweeping �, how near it is to the optimal representation on the
diagram of I(Y ;Z) vs. I(X;Z).

B Proof for Proposition 3.1

We restate Proposition 3.2: For any PDFs Q1(Yv|Z(L)
X,v

) for v 2 V and Q2(Y), we have

I(Y ;Z(L)
X

) � 1 + E
"
log

Q
v2V

Q1(Yv|Z(L)
X,v

)

Q2(Y)

#
+ EP(Y)P(Z(L)

X)

"Q
v2V

Q1(Yv|Z(L)
X,v

)

Q2(Y)

#
(9)

Proof. We use the Nguyen, Wainright & Jordan’s bound INWJ [22, 23]:

Lemma B.1. [22, 23] For any two random variables X1, X2 and any function g : g(X1, X2) 2 R,
we have

I(X1, X2) � E [g(X1, X2)]� EP(X1)P(X2) [exp(g(X1, X2)� 1)] .

We use the above lemma to (Y, Z(L)
X

) and plug in g(Y, Z(L)
X

) = 1 + log
Q

v2V Q1(Yv|Z(L)
X,v)

Q2(Y) .

13

C Proof for Proposition 3.2

We restate Proposition 3.2: For any groups of indices SX , SA ⇢ [L] such that D ?
Z

(L)
X

|{Z(l)
X

}l2SX [{Z(l)
A

}l2SA , and for any probabilistic distributions Q(Z(l)
X

), l 2 SX , and Q(Z(l)
A

),
l 2 SA,

I(D;Z(L)
X

) I(D; {Z(l)
X

}l2SX [{Z(l)
A

}l2SA)
X

l2SX

XIB(l) +
X

l2SA

AIB(l)
,where (10)

AIB(l) = E
"
log

P(Z(l)
A

|A,Z
(l�1)
X

)

Q(Z(l)
A

)

#
,XIB(l) = E

"
log

P(Z(l)
X

|Z(l�1)
X

, Z
(l)
A

)

Q(Z(l)
X

)

#
, (11)

Proof. The first inequality I(D;Z(L)
X

) I(D; {Z(l)
X

}l2SX [{Z(l)
A

}l2SA) directly results from the
data processing inequality [17] and the Markov property D ? Z

(L)
X

|{Z(l)
X

}l2SX [{Z(l)
A

}l2SA .

To prove the second inequality, we define an order “�” of random variables in {Z(l)
X

}l2SX [
{Z(l)

A
}l2SA such that 1) for two different integers l, l0, Z(l)

X
, Z

(l)
A

� Z
(l0)
X

, Z
(l0)
A

; 2) For one integer l,
Z

(l)
A

� Z
(l)
X

. Based on the order, define a sequence of sets

H
(l)
A

= {Z(l1)
X

, Z
(l2)
A

|l1 < l, l2 < l, l1 2 SX , l2 2 SA},

H
(l)
X

= {Z(l1)
X

, Z
(l2)
A

|l1 < l, l2 l, l1 2 SX , l2 2 SA}.

We may decompose I(D; {Z(l)
X

}l2SX [{Z(l)
A

}l2SA) with respect to this order

I(D; {Z(l)
X

}l2SX [{Z(l)
A

}l2SA) =
X

l2SA

I(D;Z(l)
A

|H(l)
A

) +
X

l2SX

I(D;Z(l)
X

|H(l)
X

).

Next, we bound each term in the RHS

I(D;Z(l)
A

|H(l)
A

)
1)
 I(D, Z

(l�1)
X

;Z(l)
A

|H(l)
A

)
2)
= I(Z(l�1)

X
, A;Z(l)

A
|H(l)

A
) + I(X;Z(l)

A
|H(l)

A
, A, Z

(l�1)
X

)
3)
= I(Z(l�1)

X
, A;Z(l)

A
|H(l)

A
) + 0

4)
 I(Z(l�1)

X
, A;Z(l)

A
)

5)
= AIB(l) � KL(P(Z(l)

A
)||Q(Z(l)

A
)) AIB(l)

I(D;Z(l)
X

|H(l)
X

)
1)
 I(D, Z

(l�1)
X

, Z
(l)
A

;Z(l)
X

|H(l)
X

)
2)
= I(Z(l�1)

X
, Z

(l)
A

;Z(l)
X

|H(l)
X

) + I(D;Z(l)
X

|H(l)
X

, Z
(l�1)
X

, Z
(l)
A

)
3)
= I(Z(l�1)

X
, Z

(l)
A

;Z(l)
X

|H(l)
X

) + 0
4)
 I(Z(l�1)

X
, Z

(l)
A

;Z(l)
X

)
5)
= XIB(l) � KL(P(Z(l)

X
)||Q(Z(l)

X
)) XIB(l)

where 1), 2) use the basic properties of mutual information, 3) uses X ? Z
(l)
A

|{A,Z
(l�1)
X

} and
D ? Z

(l)
X

|{Z(l�1)
A

, Z
(l�1)
X

}, 4) uses H(l)
A

? Z
(l)
A

|{Z(l�1)
X

, A} and H
(l)
X

? Z
(l)
X

|{Z(l�1)
X

, Z
(l)
A

} and
5) uses the definitions of AIB(l) and XIB(l).

D The Contrastive Loss Derived from the Variational Bound Eq. (2)

To characterize Eq. (2), We may also use a contrastive loss [22, 28] which empirically may
sometimes improve the robustness of the model. Concretely, we keep Q1(Yv|Z(L)

X,v
) as the

14

same as that to derive Eq. (6), i.e., Q1(Yv|Z(L)
X,v

) = Cat(Z(L)
X,v

Wout) and set Q2(Y) =

EP(Z(L)
X)P(Z0(L)

X)
[
Q

v2V

1
2 (Q1(Yv|Z(L)

X,v
) +Q1(Yv|Z

0(L)
X,v

))]. Here, P(Z
0(L)
X

) refers to the distribution
of the last-layer node representation after we replace A with a random graph structure A

0 2 Rn⇥n

where A0 is uniformly sampled with the constraint that A0 has the same number of edges as A. When
using this contrastive loss, we simply use the estimation of Q2(Y) based on the sampled Z

(L)
X,v

and

Z
0(L)
X,v

. Moreover, the last term of Eq. (2) is empirically closed to 1 and thus we ignore it and other
constants in Eq. (2). Overall, we have the substitution for the contrastive loss,

I(Y ;Z(L)
X

) !
X

v2V

h
log(h(Yv;Z

(L)
X,v

))� log(h(Yv;Z
(L)
X,v

) + h(Yv;Z
0(L)
X,v

))
i
, (12)

where h(Yv;ZX,v) =
exp(ZX,vWout[Yv])PK
i=1 exp(ZX,vWout[i])

.

E Permutation Invariance of GIB-Cat and GIB-Bern

Let ⇧ 2 Rn⇥n denote a permutation matrix where each row and each column contains exactly
one single 1 and the rest components are all 0’s. For any variable in GIB-Cat or GIB-Bern, we use
subscript ⇧ to denote the corresponding obtained variable after we permutate the node indices of
the input data, i.e., D = (X,A) ! ⇧(D) = (⇧X,⇧A⇧T). For example, Z(l)

X,⇧ denotes the node
representations after l layers of GIB-Cat or GIB-Bern based on the input data ⇧(D). Moreover, the
matrix ⇧ also defines a bijective mapping ⇡ : V ! V , where ⇡(v) = u iff ⇧uv = 1. We also use
“ d
=” to denote that two random variables share the same distribution.

Now, we formally restate the permutation invariant property of GIB-Cat and GIB-Bern: Suppose ⇧ 2
Rn⇥n is any permutation matrix, if the input graph-structured data becomes ⇧(D) = (⇧X,⇧A⇧T),
the corresponding node representations output by GIB-Cat or GIB-Bern satisfy Z

(L)
X,⇧

d
= ⇧Z

(L)
X

where Z
(L)
X

is the output node representations based on the original input data D = (X,A).

Proof. We use induction to prove this result. Specifically, we only need to show that for a certain
l 2 [L], if node representations Z

(l�1)
X,⇧

d
= ⇧Z

(l�1)
X

and A ! ⇧A⇧T , then the refined node

representations Z(l)
X,⇧

d
= ⇧Z(l)

X
. To prove this statement, we go through Algorithm 1 step by step.

• Step 2 implies Z̃(l�1)
X,v,⇧

d
= Z̃

(l�1)
X,⇡(v) because ⌧ is element-wise operation.

• Steps 3: For both NeighborSample (categorical and Bernoulli) by Algorithm 2/3, the
substeps 1-2 imply �

(l)
vt,⇧

d
= ⇧�(l)

⇡(v)t. Here, we use A ! ⇧A⇧T and thus Vvt ! V⇡(v)t, and

assume that �(l)
vt,⇧,�

(l)
⇡(v)t are represented as vectors in Rn⇥1 where their uth components,

�
(l)
vt,⇧,u

,�
(l)
⇡(v)t,u, are 0’s if ⇡�1(u) /2 Vvt. Substep 3, implies Z(l)

A,v,⇧
d
= ⇡(Z(l)

A,⇡(v)) where
⇡(S) = {⇡(v)|v 2 S} for some set S ✓ V .

• Step 4 implies Z̄(l)
X,v,⇧

d
= Z̄

(l)
X,⇡(v).

• Steps 5-6 imply µ
(l)
v,⇧

d
= µ

(l)
⇡(v), �

2(l)
v,⇧

d
= �

2(l)
⇡(v).

• Step 7 implies Z(l)
X,v,⇧

d
= Z

(l)
X,⇡(v).

which indicates Z(l)
X,⇧

d
= ⇧Z(l)

X
and concludes the proof.

F Summary of the Datasets

Table 4 summarizes statistics of the datasets (Cora, Pubmed, Citeseer [43]) we use, as well as the
standard train-validation-test split we use in the experiments.

15

Table 4: Summary of the datasets and splits in our experiments.

Cora Pubmed Citeseer
Nodes 2708 19717 3327
Edges 5429 44338 4732
Features/Node 1433 500 3703
Classes 7 3 6
Training Nodes 140 60 120
Validation Nodes 500 500 500
Test Nodes 1000 1000 1000

G Implementation Details for the GIB-Cat, GIB-Bern and Other Compared
Models

For all experiments and all models, the best models are selected according to the classification
accuracy on the validation set. All models are trained with a total of 2000 epochs. For all experiments,
we run it with 5 random seeds: 0, 1, 2, 3, 4 and report the average performance and standard deviation.
The models are all trained on NVIDIA GeForce RTX 2080 GPUs, together with Intel(R) Xeon(R)
Gold 6148 CPU @ 2.40GH CPUs. We use PyTorch [50] and PyTorch Geometric [51] for constructing
the GNNs and evaluation. Project website and code can be found at http://snap.stanford.edu/
gib/. In Section G.1, G.2 and G.3, we detail the hyperparameter setting for Section 5.1, and in
Section G.4 and G.5, we provide additional details for the experiments.

G.1 Implementation Details for the GIB-Cat and GIB-Bern

The architecture of GIB-Cat and GIB-Bern follows Alg. 1 (and Alg. 2 and 3 for the respective
neighbor-sampling). We follow GAT [5]’s default architecture, in which we use 8 attention heads,
nonlinear activation ⌧ as LeakyReLU, and feature dropout rate of 0.6 between layers. We follow
GAT’s default learning rate, i.e. 0.01 for Cora and Citeseer, and 5⇥10�3 for Pubmed. As stated in the
main text, the training objective is Eq. (1), substituting in Eq. (5) and (6). To allow more flexibility
(in similar spirit as �-VAE [41]), we allow the coefficient before dAIB and dXIB to be different, and
denote them as �1 and �2. In summary, the objective is written as:

L =
X

v2V

Cross-Entropy(Z(L)
X,v

Wout;Yv) + �1

X

l2SA

dAIB
(l)

+ �2

X

l2SX

dXIB
(l)

(13)

In this work, we set the index set SA = [L] = {1, 2, ...L} and SX = {L � 1}, which satisfies
Proposition 3.2. For dXIB, we use mixture of Gaussians as the variational marginal distribution
Q(ZX). For the mixture of Gaussians, we use m = 100 components with learnable weights, where
each component is a diagonal Gaussian with learnable mean and standard deviation. This flexible
variational marginal allows it to flexibly approximate the true marginal distribution P(ZX). For the
reparameterization in dAIB, we use Gumbel-softmax [24, 25] with temperature ⌧ . For GIB-Cat, the
number of neighbors k to be sampled is a hyperparameter. For GIB-Bern, we use Bernoulli(↵) as
the non-informative prior, where we fix ↵ = 0.5. To facilitate learning at the beginning, for the first
25% of the epochs we do not impose dAIB or dXIB, and gradually anneal up both �1 and �2 during the
25% - 50% epochs of training, and keep them both at their final value afterwards. For the experiment
in Section 5.1 and section 5.2, we perform hyperparameter search of �1 2 {0.1, 0.01, 0.001},
�2 2 {0.01, 0.1}, T 2 {1, 2}, ⌧ 2 {0.05, 0.1, 1}, k 2 {2, 3} for each dataset, and report the one
with higher validation F1-micro. A summary of the hyperparameter scope is in Table 5. In Table 6
and 7, we provide the hyperparameters that produce the results in Section 5.1, and in Table 8, we
provide hyperparameters that produce the results in Section 5.2.

16

http://snap.stanford.edu/gib/
http://snap.stanford.edu/gib/

Table 5: Hyperparameter scope for Section 5.1 and 5.2 for GIB-Cat and GIB-Bern.
Hyperparameters Value/Search space Type
SA [L] Fixed⇤
SX {L� 1} Fixed
Number m of mixture components for Q(ZX) 100 Fixed
�1 {0.1, 0.01, 0.001} Choice†
�2 {0.1, 0.01} Choice
⌧ {0.05,0.1,1} Choice
k {2, 3} Choice
T {1, 2} Choice
⇤Fixed: a constant value
†Choice: choose from a set of discrete values

Table 6: Hyperparameter for adversarial attack experiment for GIB-Cat and GIB-Bern.
Dataset Model �1 �2 ⌧ k T
Cora GIB-Cat 0.001 0.01 1 3 2

GIB-Bern 0.001 0.01 0.1 - 2

Pubmed GIB-Cat 0.001 0.01 1 3 2
GIB-Bern 0.001 0.01 0.1 - 2

Citeseer GIB-Cat 0.001 0.01 0.1 2 2
GIB-Bern 0.001 0.01 0.05 - 2

Table 7: Hyperparameter for adversarial attack experiment for the ablations of GIB-Cat and
GIB-Bern.

Model �1 �2 ⌧ k T
AIB-Cat - 0.01 1 3 2
AIB-Bern - 0.01 0.1 - 2
XIB 0.001 - - - 2

Table 8: Hyperparameter for feature attack experiment (Section 5.2) for GIB-Cat and GIB-Bern.
Dataset Model �1 �2 ⌧ k T
Cora GIB-Cat 0.01 0.01 0.1 2 2

AIB-Cat - 0.01 0.1 2 2
GIB-Bern 0.001 0.01 0.05 - 2
AIB-Bern - 0.01 0.05 - 2

Pubmed GIB-Cat 0.001 0.01 1 3 2
AIB-Cat - 0.01 1 3 2
GIB-Bern 0.01 0.01 0.05 - 1
AIB-Bern - 0.01 0.05 - 1

Citeseer GIB-Cat 0.001 0.01 0.1 2 2
AIB-Cat - 0.01 0.1 2 2
GIB-Bern 0.1 0.01 0.05 - 2
AIB-Bern - 0.01 0.05 - 2

G.2 Implementation Details for GCN and GAT

We follow the default setting of GCN [3] and GAT [5], as implemented in https://github.com/
rusty1s/pytorch_geometric/blob/master/examples/gcn.py and https://github.com/
rusty1s/pytorch_geometric/blob/master/examples/gat.py, respectively. Importantly, we
keep the dropout on the attention weights as the original GAT. Whenever possible, we keep the same
architecture choice between GAT and GIB-Cat (and GIB-Bern) as detailed in Section G.1, for a fair
comparison.

17

https://github.com/rusty1s/pytorch_geometric/blob/master/examples/gcn.py
https://github.com/rusty1s/pytorch_geometric/blob/master/examples/gcn.py
https://github.com/rusty1s/pytorch_geometric/blob/master/examples/gat.py
https://github.com/rusty1s/pytorch_geometric/blob/master/examples/gat.py

G.3 Implementation Details for RGCN and GCNJaccard

We used the implementation in this repository: https://github.com/DSE-MSU/DeepRobust. We
perform hyperparameter tuning for both baselines for the adversarial attack experiment in Section
5.1. We first tune the latent dimension, learning rate, weight decay for both models. Specifically,
we search within {16, 32, 64, 128} for latent dimension, {10�3, 10�2, 10�1} for learning rate, and
{10�4, 5⇥ 10�4, 10�3} for weight decay. For GCNJaccard, we additionally fine-tune the threshold
hyperparameter which is used to decide whether two neighbor nodes are still connected. We search
threshold within {0.01, 0.03, 0.05}. For RGCN, we additionally fine-tune the �1 within {10�4,
5⇥ 10�4, 10�3} and � within {0.1, 0.3, 0.5, 0.9}. Please find the best set of hyperparameters for
both models in Table 9, 10 and 11.

Table 9: Hyperparameter of baselines used on Citeseer dataset.
RGCN GCNJaccard

latent dim 64 16
learning rate 10�2 10�2

weight dacay 5⇥ 10�4 5⇥ 10�4

threshold - 5⇥ 10�2

�1 5⇥ 10�4 -
� 0.3 -

Table 10: Hyperparameter of baselines used on Cora dataset.
RGCN GCNJaccard

latent dim 64 16
learning rate 10�2 10�2

weight dacay 5⇥ 10�4 5⇥ 10�4

threshold - 5⇥ 10�2

�1 5⇥ 10�4 -
� 0.3 -

Table 11: Hyperparameter of baselines used on Pubmed dataset.
RGCN GCNJaccard

latent dim 16 16
learning rate 10�2 10�2

weight dacay 5⇥ 10�4 5⇥ 10�4

threshold - 5⇥ 10�2

�1 5⇥ 10�4 -
� 0.1 -

G.4 Additional Details for Adversarial Attack Experiment

We use the implementation of Nettack [15] in the repository https://github.com/DSE-MSU/
DeepRobust with default settings. As stated in the main text, for each dataset we select 40 nodes
in the test set to attack with 10 having the highest margin of classification, 10 having the lowest
margin of classification (but still correctly classified), and 20 random nodes. For each target node, we
independently train a different model and evaluate its performance on the target node in both evasive
and poisoning setting. Different from [15] that only keeps the largest connected component of the
graph and uses random split, to keep consistent settings across experiments, we still use the full graph
and standard split, which makes the defense even harder than that in [15]. For each dataset and each
number of perturbations (1, 2, 3, 4), we repeat the above experiment 5 times with random seeds 0,
1, 2, 3, 4, and report the average accuracy on the targeted nodes (therefore, each cell in Table 1 is
the mean and std. of the performance of 200 model instances (5 seeds ⇥ 40 targeted nodes, each
training one model instance). Across the 5 runs of the experiment, the 20 nodes with highest and
lowest margin of classification are kept the same, and the 20 random nodes are sampled randomly

18

https://github.com/DSE-MSU/DeepRobust
https://github.com/DSE-MSU/DeepRobust
https://github.com/DSE-MSU/DeepRobust

Table 12: Average classification accuracy (%) for the targeted nodes under direct attack for Cora.
Each number is the average accuracy for the 40 targeted nodes for 5 random initialization of the
experiments. Bold font denotes top two models.

Clean (%) Evasive (%) Poisoning (%)
1 2 3 4 1 2 3 4

DGI 83.2±4.82 54.5±4.81 41.5±2.24 35.5±5.42 31.0±3.79 53.5±7.42 38.5±4.18 33.0±5.42 29.0±3.79
GIB-Cat 77.6±2.84 63.0±4.81 52.5±3.54 44.5±5.70 36.5±6.75 60.0±6.37 50.0±2.50 39.5±5.42 30.0±3.95
GIB-Bern 78.4±4.07 64.0±5.18 51.5±4.54 43.0±3.26 37.5±3.95 61.5±4.18 46.0±4.18 36.5±4.18 31.5±2.85

and then fixed. We also make sure that for the same seed, different models are evaluated against the
same 40 target nodes, to eliminate fluctuation between models due to random sampling.

G.5 Additional Details for Feature Attack Experiment

As before, for each model to compare, we train 5 instances with seeds 0, 1, 2, 3, 4. After training, for
each seed and each specified feature noise ratio �, we perform 5 random node feature attacks, by
adding independent Gaussian noise � · r · ✏ to each dimension of the node feature, where r is the
mean of the maximum value of each node’s feature, and ✏ ⇠ N(0, 1). Therefore, each number in
Table 3 is the mean and std. of 25 instances (5 seeds ⇥ 5 attacks per seed).

H Training time for GIB-Cat and GIB-Bern

The training time of GIB-Cat and GIB-Bern is on the same order as GAT with the same underlying
architecture. For example, with 2 layers, GIB-Cat takes 98s (GIB-Bern takes 84s) to train 2000
epochs on a NVIDIA GeForce RTX 2080 GPU, while GAT takes 51s to train on the same device. The
similar order of training time is due to that they have similar number of parameters and complexity.
Compared to GAT, GIB-Cat and GIB-Bern introduce minimal more parameters. In this work, on the
structural side, we use the attention weights of GAT as parameters to encode structural representation,
which keeps the same number of parameters as GAT. On the feature side, we set SX = {L � 1},
which only requires to predict the diagonal variance of the Gaussian in addition to the mean, which
introduce small number of parameters. Therefore, in total, GIB-Cat and GIB-Bern have similar
complexity. The added training time is due to the sampling of edges and node features during training.
We expect that when GIB is applied to other GNNs, the augmented model has similar complexity and
training time.

I Additional experiments for Deep Graph Infomax (DGI)

Here we perform additional experiment for adversarial attacks on Cora using Nettack. The result is in
Table 12. We see that both GIB-Cat and GIB-Bern outperform DGI by a large margin.

J More Detailed Analysis of Adversarial Attack in Section 5.1

Table 13 summarizes the statistics of the target nodes and the adversarial perturbations by Nettack,
for Cora, Pubmed and Citeseer.

Table 13: Statistics of the target nodes and adversarial perturbations by Nettack in Section 5.1.
Cora Pubmed Citeseer

Fraction of degree 1 in target nodes 0.215 0.425 0.500
Fraction of degree 2 in target nodes 0.345 0.565 0.710
Fraction of degree 3 in target nodes 0.455 0.630 0.755
Fraction of degree 4 in target nodes 0.540 0.640 0.810
Fraction of structural attacks 1.000 1.000 0.991
Fraction of added-edge attack in structural attacks 0.890 0.834 0.909
Fraction of different classes in added-edge attacks 1.000 0.993 0.985

We have the following observations:

19

• Compared to Cora and Pubmed, Citeseer has much more nodes with degrees less than 1, 2,
3, 4. This explains why in general the 5 models has worse performance in Citeseer than in
Cora and Pubmed.

• Almost all attacks (� 99.1%) are structural attacks.
• Within structural attacks, most of them (� 83.4%) are via adding edges, with Citeseer

having the largest fraction.
• For the added edges, almost all of them (� 98.5%) have different classes for the end nodes.

From the above summary, we see that the target nodes in Citeseer dataset in general have fewest
degrees, which are most prone to added-edge structural attacks by connecting nodes with different
classes. This exactly satisfies the assumption of GCNJaccard [34]. GCNJaccard proceeds by deleting
edges with low feature similarity, so those added edges are not likely to enter into the model training
during poisoning attacks. This is probably the reason why in Nettack poisoning mode in Citeseer,
GCNJaccard has the best performance.

20

	Introduction
	Preliminaries and Notation
	Graph Information Bottleneck
	Deriving the Graph Information Bottleneck Principle
	Instantiating the GIB Principle

	Related Work
	Experiments
	Robustness Against Adversarial Attacks
	Only Feature Attacks

	Conclusion and Discussion
	Preliminaries for Information Bottleneck
	Proof for Proposition 3.1
	Proof for Proposition 3.2
	The Contrastive Loss Derived from the Variational Bound Eq. (2)
	Permutation Invariance of GIB-Cat and GIB-Bern
	Summary of the Datasets
	Implementation Details for the GIB-Cat, GIB-Bern and Other Compared Models
	Implementation Details for the GIB-Cat and GIB-Bern
	Implementation Details for GCN and GAT
	Implementation Details for RGCN and GCNJaccard
	Additional Details for Adversarial Attack Experiment
	Additional Details for Feature Attack Experiment

	Training time for GIB-Cat and GIB-Bern
	Additional experiments for Deep Graph Infomax (DGI)
	More Detailed Analysis of Adversarial Attack in Section 5.1

