
We greatly appreciate the reviewers for taking a close look at the paper and the proofs, and giving a detailed feedback.1

We first address the common concerns raised.2

Dependence on d in Lemma 1: While our focus has been on the dependence of our algorithm on the number of3

plug-in calls, we understand why the reviewers would like the dependence on d to be made explicit. Below, we expand4

the statistical error term in Lemma 1 to show the dependence on d, and will include this in the paper along with the5

complete proof. This is the same dependence that the previous method of Narasimhan (2018) incurs [26].6

For a n-class problem, let ĝa, ũa = plug-in(a) as in Algorithm 1. Then with probability ≥ 1− δ over draw of N7

examples from the data distribution, we have for all a ∈ Rd:8

||C[ĝa]− ũa||2 = O

(
d

√
d log(d) + log(Nn2) + log(1/δ)

N

)
where the notation O only hides absolute constants. The proof follows from a straightforward application of a result9

from Cesa-Bianchi & Haussler (1998) to bound the growth function.10

Proof of Proposition 2: Proposition 2 is straightforward and simply follows from expanding 〈a, C[h]〉 as11

EX

[∑n
y=1 ηy(X)

∑d
i=1 aiσi(X, y, h(X))

]
. Hence the Bayes-optimal classifier h predicts for any given x, a la-12

bel ŷ that minimizes the inner term
∑n

y=1 ηy(x)
∑d

i=1 aiσi(x, y, ŷ), i.e. h(x) = argminŷ∈[n]

∑n
y=1 ηy(x)Ly,ŷ(x).13

We’ll definitely include this in the appendix.14

Reviewer 2: Lipschitzness. The fairness and coverage constraints in Section 2 are Lipschitz in the confusion matrix,15

and so are the H-mean, Q-mean and Min-max metrics. For the G-mean and KLD metrics, we can easily construct16

close-approximations that are Lipschitz. We’ll include these details in the paper, along with an example. As for the17

parameter λ, in theory it is sufficient to set it to a large-enough value as specified in Lemma 7. In practice, we set18

λ = 10, but the results were robust to changes in λ. Thanks for the suggestions to improve the writing and pointing out19

the typos!20

Reviewer 3: Limitations of a pre-fixed classifier. We agree that the performance of a plug-in classifier depends on the21

quality of the base class probability model. As an alternative, one can always train a new classifier from scratch in each22

step of Algorithm 1 to solve the linear minimization (LMO) over C (line 5). This amounts to solving a cost-sensitive23

learning problem at each step. While the modified algorithm will be computationally more expensive, it no longer24

depends on a pre-trained model. Moreover, the number of calls to the LMO routine will be similar to Theorem 1, with25

the LMO-approximation term now depending on the quality of the classifier learned at each step. We’ll include a26

discussion on this in the paper.27

Reviewer 4: Novelty. While we agree that the paper combines ideas from prior works, our main contribution is the28

re-formulation of a constrained classification problem as an optimization problem over the intersection of two sets29

C ∩ F , and the novel application of results from Gidel et al. (2018) [13] to solve the resulting optimization. This allows30

us to provide a new learning algorithm which (i) has a simpler structure than the previous algorithm, (ii) enjoys better31

convergence rate, (iii) can better handle non-smooth constraints, and (iv) is more robust to choices of hyper-parameters.32

Moreover, the proofs don’t directly follow from the previous papers for the following reasons: (i) Gidel et al. provide an33

optimization algorithm, which does not directly apply to a statistical ML setup. For example, their proofs assume an34

exact LMO, whereas we had to explicitly take into account the error due to finite sample, including in their so-called35

fundamental descent lemma. (ii) Gidel et al. only provide a bound on the duality gap for the constrained optimization36

problem; we convert this into a bound on the sub-optimality and infeasiblity of the learned classifier.37

Finally, we are able to handle a broader class of learning problems than Narasimhan (2018) [26], where the performance38

metrics can be defined by functions of more general “confusion vectors”, which can depend on the instance x in more39

intricate ways.40

Reviewer 6: Convexity. We require the objective and constraints to be convex in the confusion matrix. We don’t see41

this as a strong requirement as it is satisfied by all the example metrics in Section 2, including common fairness metrics42

such as equal opportunity and equalized odds. Yes, B(u, r) is a ball of radius r centered at u; ∆n is the n-dimensional43

simplex. We’ll make these notations clear.44
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