
A Proof of Theorem 1

Proof. We consider the third term on the right-hand side of Equation (1). Instead of reducing the
third term 2 hf(x)� y,x� yi to 0 under the J -invariant assumption, we control this term with its
upper bound with the only assumption that E[x|y] = y. Formally, we have
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Equation (10) holds due to the zero-mean assumption, where Ex|y(xj � yj) = 0. Now we let J be a
uniformly sampled subset of the image dimensions {1, · · · ,m}, then we have the equation
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The right-hand side of the equation above can be controlled by applying Cauchy-Schwarz inequality
while the input images are normalized. We have, for all J ,
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To be more specific, Equation (14) follows since f(xJc)J does not correlate to xj due to the
independent noise assumption and j /2 Jc, and subtracting f(xJc)j from f(x)j does not change the
Covariance. Inequality (15) applies the Cauchy-Schwarz inequality. Inequality (16) holds due to
(EX)2  EX2. The derivation of Inequality (17) uses the fact that Var(xj) = 1 under normalization
and Var(xj |y)  Var(xj) = 1 for all j.
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Consequently, we can control Equation (1) as

Ex,y kf(x)� yk2 + Ex,y kx� yk2 = Ex kf(x)� xk2 + 2Ex,yhf(x)� y,x� yi (20)
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This completes the proof of Theorem 1.

B Proof of Theorem 2

Proof. We start from Equation (13) in the proof of Theorem 1. Since we have a stronger assumption
that the noise model is known to be additive with standard deviation � and zero-mean, we have
Var(xj � yj) = �2 for all j. Due to that the additive noise is orthogonal to the signal y, we futher
have the conditional variance Var(xj � yj |y) = �2. Then, similar to the proof of Theorem 1, we
have,
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Consequently, we can control Equation (1) as

Ex,y kf(x)� yk2 + Ex,y kx� yk2 = Ex kf(x)� xk2 + 2Ex,yhf(x)� y,x� yi (28)
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This completes the proof of Theorem 2.

C Dataset Constructions

RGB Natural Images. We construct the RGB natural image dataset from the ImageNet
ILSVRC2012 Validation dataset that consists of 50,000 natural images. In particular, we follow [1]
to generate noisy images by applying a combination of three types of noises to the clear images. The
noises are Poisson noise (� = 30), additive Gaussian noise (µ = 0,� = 60) and Bernoulli noise
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(p = 0.2). To be consistent to [1], we randomly crop 60,000 patches of size 128⇥ 128 from the first
20,000 images in ILSVRC2012 Val to construct the training dataset. Additional two sets of 1,000
images from ILSVRC2012 Val are used for validation and testing, respectively

Hand-written Chinese Character Images. We generate the HànZì dataset with the code provided
by [1]. The dataset is constructed with 13029 Chinese characters and consists of 78174 noisy images
of size 64 ⇥ 64, where each noisy image is generated by applying Gaussian noise (� = 0.7) and
Bernoulli noise to a clear Chinese character image. Among the 78174 noisy images, 90% are used
for training and validation, and the rest 10% are for testing.

3D Fluorescence Microscopy Data. In order to show the capability of our approach to 3D images
with inconsistent and untypical noise, we use the physically acquired 3D fluorescence microscopy
data collected from Planaria (Schmidtea mediterranea) provided by [27]. The training data, consisting
of 17005 3D patches of size 16⇥ 64⇥ 64, is a mix of noisy images at three noise levels, collected
under different conditions (C1, C2, and C3) of exposure time and laser power. The trained models are
evaluated on 20 testing images of size 96⇥ 1024⇥ 1024 at three different noise levels individually.
From condition 1 (C1) to condition 3 (C3), the noise gets stronger, and input image quality gets
worse.

Grey-scale Natural Images. We follow [10] and use the same procedure as [4, 29, 22] to construct
the BSD68 Dataset. For the training set, patches of size 180⇥ 180 are cropped from each of the 400
grey-scale version of images of range [0, 255] from [15], where each image is treated with Gaussian
noise (� = 25). The trained models are then evaluated on 68 testing images first introduced by [20].

D Implementation Details

Network Architecture. We use U-Net [19] as our neural network architecture and mainly fol-
low [10] for the basic settings. To be specific, we apply a U-Net of depth 3 with convolutions of
kernel size 3. The number of output feature maps from the initial convolution is set to 96. Batch
normalization is applied by default unless further mentioned. Compared to [10], we remove the skip
connection used in Noise2Void that add input to the network output, which contradicts the J -invariant
assumption in Noise2Self and prevents our model from learning from Linv .

Mask Strategy and Training. By default, we randomly mask 0.5% of pixels for each training
patch by saturated sampling and replace them with Gaussian noise (� = 0.2). The scalar weight �inv

in the loss is set to 2 by default unless further mentioned. We apply data augmentations, including
rotation and flipping, during the training for all datasets. For 3D images, the rotation is only applied
on width and height dimension due to the anisotropy on depth. All the input images are normalized
to satisfy the required condition in Theorem 1. We use learning rate decay during training, starting at
0.0004 and reducing the learning rate by 0.5 after each 5k iterations.

E Model Configurations

For the convolutional blind-spot neural network, we use the same network architecture and basic
settings in [12]. For all the other deep learning-based methods, we fix the neural network (U-Net)
architecture configurations and basic training settings for each dataset individually. The network and
training configuration of our method basically follows the default settings in D. Exceptions are the
scalar weights �inv in the loss for BSD68. We adjust �inv to 0.95 for the BSD68 Dataset according
to the level of invariance error L during training. We apply the basic settings, such as mask sampling
percentage, epoch numbers and batch sizes, of the two methods according to [10] for each dataset.

Besides, we skip the evaluation of some baseline methods on the Planaria dataset because they are
not applicable. Among these methods, the BM3D algorithm does not apply to 3D images, and
Noise2Noise is not applicable since no paired noisy image is available. Moreover, there is no public
3D version of the blind-spot network, which may need to deal with the anisotropy problem for the
3D images and the memory problem due to the additional branches required in a 3D setting.
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Condition 3
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Input NLM Noise2Self Ours Ground TruthNoise2True (CARE)

Figure 5: 3D Microscopy Data: Visualizations of testing results on the Planaria dataset. We compare
the denoising quality among the traditional method NLM, the supervised method CARE [27], self-
supervised baselines Noise2Self and our Noise2Same. From top to bottom, rows are reconstruction
results from different noise levels (C1, C2 and C3 individually). From the left to the right, the
columns are in the ascending order in terms of the denoising quality.

F Denoising Results on the Planaria Dataset

The visualization of the denoising results on CARE (Planaria) is shown in Figure 5. The shown
results are 2D projections from the 3D images.
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