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Abstract

Advances in the development of adversarial attacks have been fundamental to
the progress of adversarial defense research. Efficient and effective attacks are
crucial for reliable evaluation of defenses, and also for developing robust models.
Adversarial attacks are often generated by maximizing standard losses such as the
cross-entropy loss or maximum-margin loss within a constraint set using Projected
Gradient Descent (PGD). In this work, we introduce a relaxation term to the
standard loss, that finds more suitable gradient-directions, increases attack efficacy
and leads to more efficient adversarial training. We propose Guided Adversarial
Margin Attack (GAMA), which utilizes function mapping of the clean image
to guide the generation of adversaries, thereby resulting in stronger attacks. We
evaluate our attack against multiple defenses and show improved performance when
compared to existing attacks. Further, we propose Guided Adversarial Training
(GAT), which achieves state-of-the-art performance amongst single-step defenses
by utilizing the proposed relaxation term for both attack generation and training.

1 Introduction

The remarkable success of Deep Learning algorithms has led to a surge in their adoption in a multitude
of applications which influence our lives in numerous ways. This makes it imperative to understand
their failure modes and develop reliable risk mitigation strategies. One of the biggest known threats
to systems that deploy Deep Networks is their vulnerability to crafted imperceptible noise known
as adversarial attacks, as demonstrated by Szegedy et al.[30] in 2014. This finding has spurred
immense interest towards identifying methods to improve the robustness of deep neural networks
against adversarial attacks. While initial attempts of improving robustness against adversarial attacks
used just single-step adversaries for training [14], they were later shown to be ineffective against
strong multi-step attacks by Kurakin et al.[22]. Some of the defenses introduced randomised or
non-differentiable components, either in the pre-processing stage or in the network architecture, so as
to minimise the effectiveness of generated gradients. However, many such defenses [4, 35, 29, 16]
were later broken by Athalye et al.[3] using smooth approximations of the function during the
backward pass or by computing reliable gradients using expectation over the randomized components.
This game of building defenses against existing attacks, and developing attacks against the proposed
defenses has been crucial for the progress in this field. Lately, the community has also recognized
that the true testimony of a developed defense is to evaluate it against adaptive attacks which are
constructed specifically to compromise the defense at hand [6].

Multi-step adversarial training is one of the best known methods of achieving robustness to adversarial
attacks today [24, 37]. This training regime attempts to solve the minimax optimization problem of
firstly generating strong adversarial samples by maximizing a loss, and subsequently training the
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model to minimize loss on these adversarial samples. The effectiveness of the defense thus developed
depends on the strength of the attack used for training. Therefore, development of stronger attacks is
important for both evaluating existing defenses, and also for constructing adversarial samples during
adversarial training. Indeed, the study of building robust adversarial defenses and strong adversarial
attacks are closely coupled with each other today.

Adversarial attacks are constructed by maximizing standard objectives such as cross-entropy loss or
maximum-margin loss within a constraint set, as defined by the threat model. Due to the non-convex
nature of the loss function, maximization of such a loss may not effectively find the path towards
the class whose decision boundary is closest to the data point. In this work, we aid the optimization
process by utilizing the knowledge embedded in probability values corresponding to non-maximal
classes to guide the generation of adversaries. Motivated by graduated optimization methods, we
improve the optimization process by introducing an `2 relaxation term initially, and reducing the
weight of this term gradually over the course of optimization, thereby making it equivalent to the
primary objective towards the end. We demonstrate state-of-the-art results on multiple defenses and
datasets using the proposed attack. We further analyse the impact of utilizing the proposed method
to generate strong attacks for adversarial training. While use of the proposed attack for multi-step
training shows only marginal improvement, we observe significant gains by using the proposed attack
for single-step adversarial training. Single-step methods rely heavily on the initial gradient direction,
and hence the proposed attack shows significant improvement over existing methods.

Our contributions in this work can be summarized as follows:

• We propose Guided Adversarial Margin Attack (GAMA), which achieves state-of-the-art
performance across multiple defenses for a single attack and across multiple random restarts.

• We introduce a multi-targeted variant GAMA-MT, which achieves improved performance
compared to methods that utilize multiple targeted attacks to improve attack strength [15].

• We demonstrate that Projected Gradient Descent based optimization (GAMA-PGD) leads to
stronger attacks when a large number of steps (100) can be used, thereby making it suitable
for defense evaluation; whereas, Frank-Wolfe based optimization (GAMA-FW) leads to
stronger attacks when the number of steps used for attack are severely restricted (10), thereby
making it useful for adversary generation during multi-step adversarial training.

• We propose Guided Adversarial Training (GAT), which achieves state-of-the-art results
amongst existing single-step adversarial defenses. We demonstrate that the proposed defense
can scale to large network sizes and to large datasets such as ImageNet-100.

Our code and pre-trained models are available here: https://github.com/val-iisc/GAMA-GAT.

2 Preliminaries

Notation: In this paper, we consider adversarial attacks in the setting of image classification using
deep neural networks. We denote a sample image as x ∈ X , and its corresponding label as
y ∈ {1, . . . , N}, where X indicates the sample space and N denotes the number of classes. Let
fθ : X → [0, 1]N represent the deep neural network with parameters θ, that maps an input image
x to its softmax output fθ(x) =

(
f1θ (x), . . . , f

N
θ (x)

)
∈ [0, 1]N . Further, let Cθ(x) represent the

argmax over the softmax output. Thus, the network is said to successfully classify an image when
Cθ(x) = y. The cross-entropy loss for a data sample, (xi, yi) is denoted by `CE(fθ(xi), yi). We
denote an adversarially modified counterpart of a clean image x as x̃.

Adversarial Threat Model: The goal of an adversary is to alter the clean input image x such that
the attacked image x̃ is perceptually similar to x, but causes the network to misclassify. Diverse
operational frameworks have been developed to quantify perceptual similarity, and adversarial attacks
corresponding to these constraints have been studied extensively. We primarily consider the standard
setting of worst-case adversarial attacks, subject to `p-norm constraints. More precisely, we consider
adversarial threats bound in `∞ norm: x̃ ∈ {x′ : ‖x′ − x‖∞ ≤ ε}.
While evaluating the proposed defense, we consider that the adversary has full access to the model
architecture and parameters, since we consider the setting of worst-case robustness. Further, we
assume that the adversary is cognizant of the defense techniques utilised during training or evaluation.

2

https://github.com/val-iisc/GAMA-GAT


3 Related Works

3.1 Adversarial Attacks

A panoply of methods have been developed to craft adversarial perturbations under different sets of
constraints. One of the earliest attacks specific to `∞ constrained adversaries was the Fast Gradient
Sign Method (FGSM), introduced by Goodfellow et al.[14]. In this method, adversaries are generated
using a single-step first-order approximation of the cross-entropy loss by performing simple gradient
ascent. Kurakin et al.[21] introduced a significantly stronger, multi-step variant of this attack called
Iterative FGSM (I-FGSM), where gradient ascent is iteratively performed with a small step-size,
followed by re-projection to the constraint set. Madry et al.[24] developed a variant of this attack,
which involves the addition of initial random noise to the clean image, and is commonly referred to
as Projected Gradient Descent (PGD) attack.

Carlini and Wagner [5] explored the use of different surrogate loss functions and optimization
methods to craft adversarial samples with high fidelity and small distortion with respect to the original
image. The authors introduce the use of maximum margin loss for generation of stronger attacks, as
opposed to the commonly used cross-entropy loss. Our proposed attack introduces a relaxation term
in addition to the maximum margin loss in order to find more reliable gradient directions.

The Fast Adaptive Boundary (FAB) attack, introduced by Croce and Hein [9] produces minimally
distorted adversarial perturbations with respect to different norm constraints, using a linearisation of
the network followed by gradient steps which have a bias towards the original sample. While the
FAB attack is often stronger than the standard PGD attack, it is computationally more intensive for
the same number of iterations. Gowal et al.[15] introduced the Multi-Targeted attack, which cycles
over all target classes, maximising the difference of logits corresponding to the true class and the
target class. While this attack finds significantly stronger adversaries compared to PGD attack, it
relies on cycling over multiple target classes, and hence requires a large computational budget to be
effective. More recently, Croce and Hein [10] proposed AutoPGD, which is an automatised variant
of the PGD attack, that uses a step-learning rate schedule adaptively based on the past progression of
the optimization. They further introduce a new loss function, the Difference of Logits Ratio (DLR),
which is a scale invariant version of the maximum margin loss on logits, and outperforms the `∞
based Carlini and Wagner (C&W) attack [5]. Additionally, they proposed AutoAttack, an ensemble
of AutoPGD with the cross-entropy loss and the DLR loss, the FAB attack and Square attack [2], a
score-based black-box attack which performs zeroth-order optimization.

3.2 Defenses Against Adversarial Attacks

With the exception of a few defenses [8, 1], most methods used to produce robust networks include
some form of adversarial training, wherein training data samples are augmented with adversarial
samples during training. Early works proposed training on FGSM [14], or Randomised FGSM
(R-FGSM) [31] adversaries to produce robust networks. However, these models were still over-
whelmingly susceptible to multi-step attacks [22] due to the Gradient Masking effect [25]. Madry
et al.[24] proposed a min-max formulation for training adversarially robust models using empirical
risk minimisation. It was identified that strong, multi-step adversaries such as Projected Gradient
Descent (PGD), were required to sufficiently approximate the inner maximization step, so that the
subsequent adversarial training yields robust models. Following this, Zhang et al.[37] presented a
tight upper bound on the gap between natural and robust error, in order to quantify the trade-off
between accuracy and robustness. Using the theory of classification calibrated losses, they develop
TRADES, a multi-step gradient-based technique. However, methods such as TRADES and PGD-
Training are computationally intensive, as they inherently depend upon the generation of strong
adversaries through iterative attacks.

Consequently, efforts were made to develop techniques that accelerated adversarial training. Shafahi
et al.[28] proposed a variant of PGD-training, known as Adversarial Training for Free (ATF), where
the gradients accumulated in each step are used to simultaneously update the adversarial sample as
well as network parameters, enabling the generation of strong adversaries during training, without
additional computational overheads.

In order to mitigate gradient masking as seen in prior works that used single-step attacks for adversarial
training, Vivek et al.[32] proposed the use of the R-MGM regularizer. The authors minimize the
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Figure 1: Schematic diagram of loss contours (a) Untargeted loss (b) Targeted loss w.r.t. class C3 (c)
Guided loss for initial optimization (d) Path of adversary using GAMA

squared `2 norm of the difference between logits corresponding to FGSM and R-FGSM adversaries
to train adversarially robust models. In contrast to this, we introduce a regularizer to minimize the
squared `2 distance between the softmax outputs of clean and adversarial images, thereby improving
the computational efficiency. Secondly, the adversary generation process uses the proposed Guided
Adversarial Attack, thereby resulting in the use of a significantly stronger attack during training.

Contrary to prior wisdom, Wong et al.[34] (FBF), found the surprising result that R-FGSM training
could indeed be successfully utilised to produce robust models. It was shown that R-FGSM adversarial
training could be made effective with the use of small-step sizes for generation of adversaries, in
combination with other techniques such as early-stopping and cyclic learning rates. With these
techniques, they obtain better performance when compared to Adversarial Training for Free, with
further reduction in computational requirements. While our proposed defense is also based on
adversarial training with single-step adversaries, our choice of the loss function enables generation of
stronger adversaries, thereby resulting in models that are significantly more robust. Further, we note
that the acceleration techniques used in [34] can be utilized for our method as well.

4 Proposed Method

4.1 Impact of Initial Optimization Trajectory on Attack Efficacy

One of the most effective attacks known till date is the Projected Gradient Descent (PGD) attack [24],
which starts with a random initialization and moves along the gradient direction to maximize cross
entropy loss. Each iteration of PGD takes a step of a fixed size in the direction of sign of the gradient,
after which the generated perturbation is projected back to the epsilon ball. Owing to the non-convex
nature of the loss function, the initial gradient direction that maximizes cross-entropy loss may not
lead to the optimal solution. This could lead to the given data sample being correctly classified, even
if adversaries exist within an epsilon radius. This is shown in the schematic diagram of loss contours
in Fig.1(a), where the adversary moves towards class C2 based on the initial gradient direction, and
fails to find the adversary that belongs to class C3.

This is partly mitigated by the addition of initial random noise, which increases the chance of the
adversary moving towards different directions. However, this gain can be seen only when the attack
is run for multiple random restarts, thereby increasing the computational budget required for finding
an adversarial perturbation. Another existing approach that gives a better initial direction to the
adversaries is the replacement of the standard untargeted attack with a combination of multiple
targeted attacks [15]. This diversifies the initial direction of adversaries over multiple random restarts,
thereby resulting in a stronger attack. This can be seen in Fig.1(b), where the adversary is found by
minimizing a targeted loss corresponding to the class C3, which has the closest decision boundary
to the given sample. While this is a generic approach which can be used to strengthen any attack
(including GAMA), it does not scale efficiently as the number of target classes increase.

In this paper, we propose to utilize supervision from the function mapping of clean samples in order
to identify the initial direction that would lead to a stronger attack (Fig.1(c)). The proposed attack
achieves an effect similar to the multi-targeted attack without having to explicitly minimize the loss
corresponding to each class individually (Fig.1(d)). This leads to more reliable results in a single, or
very few restarts of the attack, thereby improving the scalability of the attack to datasets with larger
number of classes.
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Figure 2: Addition of decaying `2 relaxation term for function smoothing and improved optimization
(a) 1-D example showing maximization of the non-concave function, 1− x(x− 2)(x+1)(x+1) (b)
The smoothed function after addition of `2 relaxation term is 1−x(x−2)(x+1)(x+1)+λ(x+2)2.
λ is reduced from 1 to 0 over iterations. Optimization trajectory is shown using black dotted lines
and red cross marks. (c, d) Plot of the loss surface of an FGSM trained model on perturbed images of
the form x∗ = x + δ1g + δ2g

⊥, obtained by varying δ1 and δ2. Here g is the sign of the gradient
direction of the loss with respect to the clean image (x) and g⊥ is a direction orthogonal to g. Loss
functions used are: (c) Maximum-margin loss, and (d) GAMA loss as shown in Eq.1, with λ set to 25.
Addition of the relaxation term helps in smoothing the loss surface and suppressing gradient masking.

4.2 Guided Adversarial Margin Attack

Due to the inherent difficulty observed in the optimization of non-convex functions, several heuristic
methods such as Graduated Optimization have been deployed to obtain solutions that sufficiently
approximate global optima. To optimize a non-convex function, Graduated methods attempt to con-
struct a family of smooth function approximations which are more amenable to standard optimization
techniques. These function approximations are progressively refined in order to recover the original
function toward the end of optimization. Hazan et al.[17] proposed to utilise projected gradient
descent with a noisy gradient oracle, to optimize graduated function approximations obtained by local
averaging over progressively shrinking norm balls. The authors characterise a family of functions for
which their algorithm recovers approximate solutions of the global optima.

Along similar lines, we seek to introduce a relaxation term to obtain a series of smooth approximations
of the primary objective function that is used to craft adversarial perturbations. We illustrate a
simplified 1-dimensional example in Fig.2(a,b) to highlight the efficacy of graduated optimization
through function smoothing. The loss function that is maximized for the generation of the proposed
Guided Adversarial Margin Attack (GAMA) is as follows:

L = −fyθ (x̃) + max
j 6=y

f jθ (x̃) + λ · ||fθ(x̃)− fθ(x)||22 (1)

The first two terms in the loss correspond to the maximum margin loss in probability space, which is
the difference between the probability score of the true class fyθ (x), and the probability score of the
second most confident class j 6= y. The standard formulation of PGD attack maximizes cross-entropy
loss for the generation of attacks. We use maximum-margin loss here, as it is known to generate
stronger attacks when compared to cross-entropy loss [5, 15]. In addition to this, we introduce a
relaxation term corresponding to the squared `2 distance between the probability vectors fθ of the
clean image x and the perturbed image x̃. This term is weighted by a factor λ as shown in Eq.1.
Similar to graduated optimization, this weighting factor is linearly decayed to 0 over iterations, so
that this term only aids in the optimization process, and does not disturb the optimal solution of the
true maximum-margin objective. As shown in Fig.2(c,d), the `2 relaxation term indeed leads to a
smoother loss surface in an FGSM trained model.

The gradients of this `2 relaxation term are a weighted combination of the gradients of each of
the class confidence scores of the perturbed image. Each term is weighted by the difference in
corresponding class confidence scores of the perturbed image and clean image. Therefore, a direction
corresponding to the gradient of a given class confidence score is given higher importance if it has
already deviated by a large amount from the initial class confidence of the clean image. Thus, the
weighting of the current gradient direction considers the cumulative effect of the previous steps,
bringing about an advantageous effect similar to that of momentum. This helps direct the initial
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Algorithm 1 Guided Adversarial Margin Attack
1: Input: Network fθ with parameters θ, Input image x with label y, Attack Size ε, Step-size η or

Convex parameter γ, Initial Weighting factor λ0, Total Steps T , Relaxation Steps τ , Learning
Rate Schedule S = {t1, . . . , tk}, Learning Rate Drop Factor d

2: Output: Adversarial Image x̃T
3: δ = Bern(−ε, ε) // Initialise Perturbation with Bernoulli Noise
4: x̃0 = x0 = x+ δ , λ = λ0

5: for t = 0 to T − 1 do
6: L = maxj 6=y{f jθ (x̃t)} − f

y
θ (x̃t) + λ · ||fθ(x̃t)− fθ(x0)||22

7: λ = max(λ− λ0/τ, 0 )
8: if mode == PGD then
9: δ = δ + η · sign(∇δL)

10: δ = Clamp(δ,−ε, ε) // Project Back To Constraint Set
11: else if mode == FW then
12: δ = (1− γ) · δ + γ · ε · sign(∇δL)
13: end if
14: δ = Clamp(x+ δ, 0, 1)− x
15: x̃t+1 = x+ δ
16: if t ∈ S then
17: η = η/d , γ = γ/d
18: end if
19: end for

perturbation more strongly towards the class which maximizes the corresponding class confidence,
while also making the optimization more robust to spurious random deviations due to local gradients.

The algorithm for the proposed attack is presented in Algorithm-1. The attack is initialized using
random Bernoulli noise of magnitude ε. This provides a better initialization within the ε bound when
compared to Uniform or Gaussian noise, as the resultant image would be farther away from the
clean image in this case, resulting in more reliable gradients initially. Secondly, the space of all sign
gradient directions is represented completely by the vertices of the `∞ hypercube of a fixed radius
around the clean image, which is uniformly explored using Bernoulli noise initialization. The attack
is generated using an iterative process that runs over T iterations, where the current step is denoted
by t. At each step, the loss in Eq.1 is maximized to find the optimal x̃ for the given iteration. The
weighting factor λ of the `2 term in the loss function is linearly decayed to 0 over τ steps.

We propose two variants of the Guided Adversarial Margin Attack, GAMA-PGD and GAMA-
FW. GAMA-PGD uses Projected Gradient Descent for optimization, while GAMA-FW uses the
Frank-Wolfe [13] algorithm, also known as Conditional Gradient Descent. In PGD, the constrained
optimization problem is solved by first posing the same as an unconstrained optimization problem,
and further projecting the solution onto the constraint set. Gradient ascent is performed by computing
the sign of the gradient, and taking step of size η, after which the perturbation is clamped between
−ε and ε, to project to the `∞ ball. On the other hand, the Frank-Wolfe algorithm finds the optimal
solution in the constraint set by iteratively updating the current solution as a convex combination of
the present perturbation and the point within the constraint set that maximises the inner-product with
the gradient. For the setting of `∞ constraints, this point which maximises the inner-product is simply
given by epsilon times the sign of the current gradient. Since the constraint set is convex, this process
ensures that the generated solution lies within the set, and hence does not require a re-projection to
the same. This process results in a faster convergence, thereby resulting in stronger attacks when
the budget for the number of iterations is small. This makes GAMA-FW particularly useful in the
setting of adversarial training, where there is a fixed budget on the number of steps used for attack
generation. Finally the image is clamped to be in the range [0, 1]. We use an initial step size of η for
GAMA-PGD and γ for GAMA-FW, and decay this by a factor of d at intermediate steps.

4.3 Guided Adversarial Training

In this section, we discuss details on the proposed defense GAT, which utilizes single-step adversaries
generated using the proposed Guided Adversarial attack for training. As discussed in Section-4.2, the
`2 term between the probability vectors of clean and adversarial samples in Eq.1 provides reliable
gradients for the optimization, thereby yielding stronger attacks in a single run. The effectiveness and
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Table 1: Attacks (CIFAR-10): Accuracy (%) of various defenses (rows) against adversaries gener-
ated using different 100-step attacks (columns) under the `∞ bound with ε = 8/255. Architecture of
each defense is described in the column "Model". WideResNet is denoted by W (W-28-10 represents
WideResNet-28-10), ResNet-18 is denoted by RN18, Pre-Act-ResNet-18 is denoted by PA-RN18.
‡Additional data used for training, †ε = 0.031, ∗Defenses trained using single-step adversaries

Single run of the attack 5 random restarts Top 5 targets
Model PGD APGD APGD FAB GAMA GAMA APGD FAB GAMA GAMA MT GAMA

100 CE DLR PGD FW DLR PGD FW PGD-MT

Carmon et al.[7]‡ W-28-10 61.86 61.81 60.85 60.88 59.81 59.83 60.64 60.62 59.65 59.71 59.86 59.56
Sehwag et al.[27]‡ W-28-10 59.93 59.61 58.39 58.29 57.51 57.50 58.26 58.06 57.37 57.38 57.48 57.20
Wang et al.[33]‡ RN18 52.87 52.38 49.70 48.50 48.12 48.17 49.37 48.33 47.92 47.97 47.76 47.58
Wang et al.[33]‡ W-28-10 62.63 61.76 58.98 57.53 57.19 57.14 58.56 57.29 56.84 56.92 56.80 56.54
Hendrycks et al.[19]‡ W-28-10 57.58 57.20 57.25 55.55 55.24 55.19 56.96 55.40 55.11 55.08 55.06 54.92
Rice et al.[26] W-34-20 57.25 56.93 55.99 54.34 53.77 53.88 55.70 54.19 53.64 53.68 53.59 53.45
Zhang et al.[37]† W-34-10 55.60 55.30 54.18 53.92 53.29 53.38 54.04 53.82 53.17 53.22 53.32 53.09
Madry et al.[24] [12] RN-50 53.49 51.78 53.03 50.67 50.04 50.08 52.64 50.37 49.81 49.92 49.76 49.41
Wong et al.[34]∗ PA-RN18 46.42 45.96 46.95 44.51 43.85 43.90 46.64 44.03 43.65 43.69 43.65 43.33
GAT (Ours)∗ W-34-10 55.10 54.73 53.08 51.28 50.76 50.79 52.75 51.07 50.43 50.48 50.45 50.18

efficiency of the proposed attack make it suitable for use in adversarial training, to generate more
robust defenses. This attack is notably more useful for training single-step defenses, where reliance
on the initial direction is significantly higher when compared to multi-step attacks.

Initially, Bernoulli noise of magnitude α is added to the input image in order to overcome any possible
gradient masking effect in the vicinity of the data sample. Next, an attack is generated by maximizing
loss using single step optimization. We use the minimax formulation proposed by Madry et al.[24]
for adversarial training, where the maximization of a given loss is used for the generation of attacks,
and minimization of the same loss on the generated adversaries leads to improved robustness. In
order to use the same loss for both attack generation and training, we use cross-entropy loss instead
of the maximum-margin loss in Eq.1. This improves the training process, as cross-entropy loss is
known to be a better objective for training when compared to maximum-margin loss. The generated
perturbation is then projected onto the ε-ball. We introduce diversity in the generated adversaries by
setting λ to 0 in alternate iterations, only for the attack generation. These adversarial samples (x̃i)
along with the clean samples (xi) are used for adversarial training. The algorithm of the proposed
single-step defense GAT is presented in detail in Algorithm-1 of the Supplementary section.

Single-step adversarial training methods commonly suffer from gradient masking, which prevents the
generation of strong adversaries, thereby leading to weaker defenses. The proposed training regime
caters to the dual objective of minimizing loss on adversarial samples, while also explicitly enforcing
function smoothing in the vicinity of each data sample (Details in Section-1 of the Supplementary
section). The latter outcome strengthens the credibility of the linearity assumption used during
generation of single-step adversaries, thereby improving the efficacy of the same. This coupled
with the use of stronger adversaries generated using GAMA enables GAT to achieve state-of-the-art
robustness among the single-step training methods.

5 Experiments and Analysis

In this section, we present details related to the experiments conducted to validate our proposed
approach. We first present the experimental results of the proposed attack GAMA, followed by
details on evaluation of the proposed defense GAT. The primary dataset used for all our evaluations is
CIFAR-10 [20]. We also show results on MNIST [23] and ImageNet [11] for the proposed attack
GAMA in the main paper and for the proposed defense GAT in Section-6 of the Supplementary.
We use the constraint set given by the `∞ ball of radius 8/255, 8/255 and 0.3 for the CIFAR-10,
ImageNet and MNIST datasets respectively. The implementation details of the proposed attack and
defense are presented in Sections-3 and 4 of the Supplementary.

5.1 Evaluation of the proposed attack (GAMA)

The performance of various defenses against different attack methods on CIFAR-10 dataset is shown
in Table-1. We present results for both a single run of the attack (with a budget of 100 iterations),
as well as the worst-case accuracy across 5 random restarts (with an effective budget of 5×100
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Figure 3: Accuracy (%) of different attacks against multiple random restarts. Evaluations are
performed on TRADES WideResNet-34 model [37] for CIFAR-10, Madry et al.[12] ResNet-50
model for ImageNet (first 1000 samples), and TRADES SmallCNN [37] model for MNIST.

iterations). Notably, GAMA-PGD and GAMA-FW consistently outperform all other untargeted
attacks across all defenses. Further, we remark that while the FAB attack stands as the runner-up
method, it requires significantly more computation time, approximately 6 times that of GAMA-PGD
and GAMA-FW.

The Multi-Targeted attack (MT) is performed by targeting the top 5 classes excluding the correct class.
We present GAMA-MT, a multi-targeted version of the GAMA-PGD attack, where the maximum-
margin loss is replaced by the margin loss targeted towards the top 5 classes excluding the true class.
We note that the GAMA-MT attack is consistently the most effective attack across all defenses.

We further present evaluations on the TRADES WideResNet-34 model [37], PGD adversarially
trained ResNet-50 model [24] and TRADES SmallCNN model [37] on the CIFAR-10, ImageNet
(first 1000 samples) and MNIST datasets respectively against different attack methods in Fig.3. We
find that while GAMA-PGD and GAMA-FW continue to consistently achieve the strongest attacks,
they are also less sensitive to the random initialization, when compared to other attack methods for
varying number of random restarts. Thus the proposed attacks offer a more reliable bound on the
robustness of models, within a single restart or very few restarts. The proposed multi-targeted attack
GAMA-MT outperforms all other attacks significantly on ImageNet, and is marginally better than
GAMA-PGD for CIFAR-10 and MNIST.

We evaluate the proposed attack on the TRADES leaderboard models [37]. A multi-targeted version
of our attack GAMA on the WideResNet-34 CIFAR-10 model achieved the top position in the
leaderboard, with 53.01% for a 100-step attack with 20 random restarts. On the SmallCNN MNIST
model, we achieve an accuracy of 92.57% for a 100-step attack with 1000 random restarts.

Ablation Experiments: We present evaluations on the TRADES WideResNet-34 model on the
CIFAR-10 test set with several ablations of the proposed attack in Table-2 of the Supplementary
section. We first observe that the maximum-margin loss is more effective when compared to the
cross-entropy loss, for both 10 and 100 step attacks. Further, we observe that we obtain stronger
adversaries while optimizing the margin loss between predicted probability scores, as compared to
the corresponding logits. The weighting factor for the squared `2 relaxation term is linearly decreased
to 0 for the 100-step attack, while it is kept constant for the 10-step attack. From the 100-step
evaluations, we observe that the graduated optimization indeed aids in finding stronger adversaries.
Further, the addition of initial Bernoulli random noise aids in improving 100-step adversaries. We
also note that GAMA-FW achieves the strongest attack when the available budget on the number of
steps for attack is relatively small.

5.2 Evaluation of the proposed defense (GAT)

The white-box accuracy of the proposed defense GAT is compared with existing defenses in Table-2.
In addition to evaluation against standard attacks, we also report accuracy on the recently proposed
ensemble of attacks called AutoAttack [10], which has been successful in bringing down the accuracy
of many existing defenses by large margins. The existing single-step defenses are presented in the
first partition of the table and the multi-step defenses are presented in the second. The proposed
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Table 2: Defenses (CIFAR-10): Accuracy (%) of different models (rows) against various `∞ norm
bound (ε = 8/255, †ε = 0.031) white-box attacks (columns). The first partition corresponds to
single-step defenses, and the second has multi-step defenses. For the C&W attack, the mean `2 norm
required to achieve high Fooling Rate (FR) is reported. Higher the `2 norm, better is the robustness.

Clean Acc (%) on `∞ attacks C & W
Method Model Acc (%) FGSM IFGSM PGD (n-steps) GAMA AA Mean

7-step 7 20 500 PGD-100 `2

Normal RN18 92.30 15.98 0.00 0.00 0.00 0.00 0.00 0.00 0.108
FGSM-AT [14] RN18 92.89 96.94 0.82 0.38 0.00 0.00 0.00 0.00 0.078
RFGSM-AT [31] RN18 89.24 49.94 42.52 41.02 35.02 34.17 33.87 33.16 0.634
ATF [28] RN18 71.77 46.67 45.06 44.96 43.53 43.52 40.34 40.22 0.669
FBF [34] RN18 82.83 54.09 50.28 49.66 46.41 46.03 43.85 43.12 0.685
R-MGM [32] RN18 82.29 55.04 50.87 50.03 46.23 45.79 44.06 43.72 0.745
GAT (Ours) RN18 80.49 57.37 55.32 54.99 53.13 53.08 47.76 47.30 0.762
FBF [34] WRN34 82.05 53.79 49.20 49.51 46.35 45.94 43.13 43.14 0.628
GAT (Ours) WRN34 85.17 61.93 58.68 57.25 55.34 55.10 50.76 50.27 0.724

PGD-AT [24] RN18 82.67 54.60 51.15 50.38 47.35 46.96 44.94 44.57 0.697
TRADES [37] RN18 81.73 57.39 54.80 54.43 52.39 52.16 48.95 48.75 0.743
TR-GAT (Ours) RN18 81.32 57.61 55.34 55.13 53.37 53.22 49.77 49.62 0.744
TRADES [37] † WRN34 84.92 61.06 58.47 58.09 55.79 55.56 53.29 53.18 0.705
TR-GAT (Ours) WRN34 83.58 61.22 58.69 58.98 57.07 56.89 53.43 53.32 0.719

single-step defense GAT outperforms the current state-of-the-art single-step defense, FBF [34] on
both ResNet-18 [18] and WideResNet-34-10 [36] models by a significant margin. In fact, we find
that increasing model capacity does not result in an increase in robustness for FBF due to catastrophic
overfitting. However, with the proposed GAT defense, we obtain a 2.97% increase in worst-case
robust accuracy by using a larger capacity model, alongside a significant boost of 4.68% in clean
accuracy. In addition to these results, the GAT WideResNet-34-10 model is also evaluated against
other state-of-the-art attacks, including our proposed attack GAMA in Table-1. Here, GAMA also
serves as an adaptive attack to our defense, as the same loss formulation is used for both. We present
evaluations on black-box attacks, gradient-free attacks, targeted attacks, untargeted attacks with
random restarts and more adaptive attacks Section-6 of the Supplementary. We also present all the
necessary evaluations to ensure the absence of gradient masking [3] in the Supplementary material.

We further analyse the impact of using the proposed Guided Adversarial attack for adversary genera-
tion in the TRADES training algorithm. We utilize adversaries generated using GAMA-FW for this,
as this algorithm generates stronger 10-step attacks when compared to others. Using this approach,
we observe marginal improvement over TRADES accuracy. This improves further by replacing the
standard adversaries used for TRADES training with GAMA-FW samples only in alternate iterations.
We present results on the proposed 10-step defense TR-GAT using this combined approach in Table-2.

The improvement in robustness with the use of Guided Adversarial attack based adversaries during
training is significantly larger in single-step adversarial training when compared to multi-step adver-
sarial training. This is primarily because single-step adversarial training is limited by the strength of
the adversaries used during training, while the current bottleneck in multi-step adversarial training
methods is the amount of data available for training [7].

6 Conclusions

We propose Guided Adversarial Margin Attack (GAMA), which utilizes the function mapping of
clean samples to guide the generation of adversaries, resulting in a stronger attack. We introduce
an `2 relaxation term for smoothing the loss surface initially, and further reduce the weight of this
term gradually over iterations for better optimization. We demonstrate that our attack is consistently
stronger than existing attacks across multiple defenses. We further propose to use Frank-Wolfe
optimization to achieve faster convergence in attack generation, which results in significantly stronger
10-step attacks. We utilize the adversaries thus generated to achieve an improvement over the current
state-of-the-art adversarial training method TRADES. The proposed Guided Adversarial attack aids
the initial steps of optimization significantly, thereby making it suitable for single-step adversarial
training. We propose a single-step defense, Guided Adversarial Training (GAT) which uses the
proposed `2 relaxation term for both attack generation and adversarial training, thereby achieving a
significant improvement in robustness over existing single-step adversarial training methods.
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7 Broader Impact

As Deep Networks see increasing utility in everyday life, it is essential to be cognizant of their
worst-case performance and failure modes. Adversarial attacks in particular could have disastrous
consequences for safety critical applications such as autonomous navigation, surveillance systems
and medical diagnosis. In this paper, we propose a novel adversarial attack method, GAMA, that
reliably bounds the worst-case performance of Deep Networks for a relatively small computational
budget. We also introduce a complementary adversarial training mechanism, GAT, that produces
adversarially robust models while utilising only single-step adversaries that are relatively cheap to
generate. Thus, our work has immense potential to have a positive impact on society, by enabling the
deployment of adversarially robust Deep Networks that can be trained with minimal computational
overhead. During the development phase of systems that use Deep Networks, the GAMA attack can
be used to provide reliable worst-case evaluations, helping ensure that systems behave as expected
when deployed in real-world settings. On the negative side, a bad-actor could potentially use the
proposed attack to compromise Deep Learning systems. However, since the proposed method is
a white-box attack, it is applicable only when the entire network architecture and parameters are
known to the adversary, which is a relatively rare scenario as model weights are often kept highly
confidential in practice.
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