
A Other properties of differential privacy and RDP

RDP inherits and generalizes the information-theoretic properties of DP.
Lemma 15 (Selected Properties of RDP [Mironov, 2017]). IfM obey εM(·)-RDP, then

1. [Indistinguishability] For any measurable set S ⊂ Range(M), and any neighboring D,D′

e−ε(α)Pr[M(D′) ∈ S]
α
α−1 ≤ Pr[M(D) ∈ S] ≤ eε(α)Pr[M(D′) ∈ S]

α−1
α .

2. [Post-processing] For all function f , εf◦M(·) ≤ εM(·).

3. [Composition] ε(M1,M2)(·) = εM1
(·) + εM2

(·).

This composition rule, together with Lemma 3, often allows for tighter calculations of (ε, δ)-DP for
the composed mechanism than directly invoking the strong composition theorem below.
Lemma 16 (Strong composition [Kairouz et al., 2015]). For all ε, δ, δ′ ≥ 0, the (adaptive) composi-
tion of k (ε, δ)-DP mechanisms obey (ε′, δ′ + kδ)-DP for ε′ =

√
2k log(1/δ′)ε+ kε e

ε−1
eε+1 .

B Proof of Theorem 8 — RDP of the Generalized SVT for c = 1

For unbounded sequences, the output space of the algorithm is {⊥k >|k = 0, 1, ...,∞}. In the case
when kmax < +∞, the output space is {⊥k >|k = 0, 1, ..., kmax − 1} ∪ {⊥kmax}. For notation
convenience, we replace ⊥kmax with ⊥kmax >, which can be thought of fixing a dummy query at
time kmax + 1 which always outputs +∞ regardless of inputs. In both cases, we can completely
describe the output distribution the SVT with a positive random integer K. As a result, we will write
K ∼M(D) and K ∼M(D′) without loss of generality.

Also w.l.o.g., we assume thresholds Ti are all zero. There are two types of random variables in the
algorithm: the threshold noise ρ and the query noise νi to each of the i queries, {νi}k+1

i=1 . We will use
pρ(z) to denote the probability density of ρ, evaluated at z, and we will use p(νi) as the pdf of νi.

The probability of outputting o (or K = k + 1), can be written explicitly as follows:

Pr[M(D′) = o] =

∫ +∞

−∞
pρ(z)

(∏
i≤k

∫ z−qi(D′)

−∞
p(νi)dνi

)
·
∫ ∞
z+qk+1(D′)

p(νk+1)dνk+1dz.

Our goal of is to bound Eo∼M(D′)

[(
Pr[M(D)=o]
Pr[M(D′)=o]

)α]
using the RDP functions ofMρ andMν .

The key of the analysis relies on a sequence of fictitious queries q̃1, q̃2, ... which mirrors the actual
sequence of queries q1, q2, ... that are adaptively selected. These fictitious queries satisfy for all
i = 1, 2, 3, ...

q̃i(x) =

{
qi(D) +4, when x = D
qi(D

′) otherwise (4)

The following lemma establishes that we can decompose the problem into one that involves the
Renyi-divergence between a distribution induced by these fictitious queries and another distribution
induced of the actual queries.
Lemma 17. Consider Algorithm 2 with c = 1, i.e., the output sequence o ∈ {⊥k >|k = 0, 1, ...,∞},
then we have

Eo∼M(D′)

[(
Pr[M(D) = o]

Pr[M(D′) = o]

)α]
≤ Ez∼pρ


(
pρ(z −4)

pρ(z)

)α
EK∼M(D′)


(
Pr[M(D) = K|z, Q̃]

)α
(Pr[M(D′) = K|z])α

∣∣∣∣∣∣z


︸ ︷︷ ︸
denoted by (∗)


(5)

where K is a random variable, denotes the number of ⊥ plus 1 when the algorithm stops, and the
explicit conditioning on Q̃ indicates that the probability is evaluated by hypothetically running the
algorithm on the fictitious queries q̃1, q̃2, ... ∈ Q̃.
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Proof of Lemma 17. From the definition of Renyi DP, we have

Eo∼D′

[
Pr[M(D) = o]α

Pr[M(D′) = o]α

]
=

∞∑
k=0

Pr[M(D) =⊥k >]α

Pr[M(D′) =⊥k >]α−1
(6)

Without loss of generality, we will replace o with k which measures the number of ⊥s in o. By law
of total expectation, we can condition on ρ = z

Pr[M(D) = k] = Ez∼pρ [Pr[M(D) = k|z]]

=Ez∼pρ [
∏
i≤k

Pr[qi(D) + νi < z|z]Pr[qk+1(D) + νi ≥ z|z]]

=

∫ +∞

−∞
pρ(z)

(∏
i≤k

∫ z−qi(D)

−∞
p(νi)dνi

)
·
∫ ∞
z−qk+1(D)

p(νk+1)dνk+1dz

u:=z+4
↓
=

∫ +∞

−∞
pρ(u−4)

(∏
i≤k

∫ u−4−qi(D)

−∞
p(νi)dνi

)
·
∫ ∞
u−4−qk+1(D)

p(νk+1)dνk+1du

=

∫ +∞

−∞
pρ(u)

(
pρ(u−4)

pρ(u)

)(∏
i≤k

∫ u−4−qi(D)

−∞
p(νi)dνi

)
·
∫ ∞
u−4−qk+1(D)

p(νk+1)dνk+1du

=Ez∼pρ

(pρ(z −4)

pρ(z)

)(∏
i≤k

∫ z−4−qi(D)

−∞
p(νi)dνi

)
·
∫ ∞
z−4−qk+1(D)

p(νk+1)dνk+1


where in the last line, we rename the variable u back to z.

Substituting the above expression to the definition of RDP and apply Jensen’s inequality

(6) =

∞∑
k=0

Ez∼pρ
[(

pρ(z−4)
pρ(z)

)(∏
i≤k
∫ z−4−qi(D)

−∞ p(νi)dνi

)
·
∫∞
z−4−qk+1(D)

p(νk+1)dνk+1

]α
Ez∼pρ

[(∏
i≤k
∫ z−qi(D′)
−∞ p(νi)dνi

)
·
∫∞
z−−qk+1(D′)

p(νk+1)dνk+1

]α−1

≤
∞∑
k=0

Ez∼pρ

(
pρ(z−4)
pρ(z)

(
∏
i≤k
∫ z−4−qi(D)

−∞ p(νi)dνi)
∫∞
z−4−qk+1(D)

p(νk+1)dνk+1

)α
(

(
∏
i≤k
∫ z−qi(D′)
−∞ p(νi)dνi)

∫∞
z−qk+1(D′)

p(νk+1)dνk+1

)α−1
(7)

The inequality applies Jensen’s inequality to bivariate function f(x, y) = xαy1−α, which is jointly
convex onR2

+ for α ∈ (1,+∞).

Exchange the order of integral variable z and k in (7), we get

(7) =Ez∼pρ


(
pρ(z −4)

pρ(z)

)α ∞∑
k=0

(
(
∏
i≤k
∫ z−4−qi(D)

−∞ p(νi)dνi)
∫∞
z−4−qk+1(D)

p(νk+1)dνk+1

)α
(

(
∏
i≤k
∫ z−qi(D′)
−∞ p(νi)dνi)

∫∞
z−qk+1(D′)

p(νk+1)dνk+1

)α−1


=Ez∼pρ

(pρ(z −4)

pρ(z)

)α ∞∑
k=0

(∏k
i=1 Pr[qi(D) +4+ νi < z|z]Pr[qk+1(D) +4+ νk+1 ≥ z|z]

)α
(
PrM(D′)[K = k + 1|z]

)α−1


(8)

=Ez∼pρ

(pρ(z −4)

pρ(z)

)α
EK∼M(D′)


(∏K−1

i=1 Pr[q̃i(D) + νi < z|z]Pr[q̃K(D) + νK ≥ z|z]
)α

(Pr[M(D′) = K|z])α

∣∣∣∣∣∣z


=Ez∼pρ

(pρ(z −4)

pρ(z)

)α
EK∼M(D′)


(

Pr[M(D) = K|z, Q̃]
)α

(Pr[M(D′) = K|z])α

∣∣∣∣∣∣z
 (9)

12



which completes the proof.

To understand the last step: recall our definition of fictitious query q̃i, which obeys q̃i(D) = qi(D)+4
and q̃i(D̃) = qi(D̃) for all other dataset D̃ 6= D. Observe that the expression in the numerator of (8)
actually describes a valid probability distribution of K, which says the probability ofM(D) stopping
at time K = k + 1 when the sequence of input is q̃1, ..., q̃k + 1, ..., i.e.,

k∏
i=1

Pr[qi(D) + ∆ + νi < z|z]Pr[qk+1(D) + ∆ + νi ≥ z|z] = Pr
M(D)

[K = k + 1|z, q̃1, q̃2, ...].

The conditioning on the sequence of queries might appear to be new, but recall that all our probabilities
are conditioned on a sequence of queries that are chosen from Q(4) or Q+(4) to begin with. They
are just not written out explicitly. This is an instance, where we actually need to condition on a
different set of queries to formally write down this valid probability distribution above.

Remark. The lemma de-convolves the moment of interests into the mixture of conditional moments
of another two distributions that can be written down explicitly. The proof is delicate but informative,
as it explicitly leveraging the fact thatMν is a noise-adding mechanism, so as to argue the implication
of the randomization for a different query q̃i than the one that it seems to be intending for according
to the algorithm qi. There are several other novel components. We encourage readers to check it out
in details.

A remarkable consequence of this lemma is that we can essentially cancel all factors concerning ⊥s.

(∗) =EK∼M(D′)


(∏K−1

i=1 Pr[qi(D) +4+ νi < z|z]Pr[qK(D) +4+ νi ≥ z|z]
)α

(∏K−1
i=1 Pr[qi(D′) + νi < z|z]Pr[qK(D′) + νi ≥ z|z]

)α
∣∣∣∣∣∣z


≤EK∼M(D′)

[
(Pr[qK(D) +4+ νi ≥ z|z])α

(Pr[qK(D′) + νi ≥ z|z])α
∣∣∣∣z] (10)

The inequality in the last line uses the fact that qi has a global sensitivity of4, which implies that
Pr[qi(D) +4+ νi < z|z] ≤ Pr[qi(D

′) + νi < z|z. for all i.

Further observe that q̃K has a sensitivity of 24 since qK has sensitivity4. By the property of the
noise-adding mechanism Mν , it obeys εν(α)-RDP for all queries having having sensitivity 24.
Therefore, if εν(∞) < +∞, then we can bound (10) with eαεν(∞). In fact, this bound can be
improved slightly if we directly work with (5), which we state as a lemma.
Lemma 18. If εν(∞) < +∞, then the expression (∗) in (5) obeys (∗) ≤ e(α−1)εν(∞).

Proof. We use a trick due to [Bun and Steinke, 2016] with some modifications.

First, check that by our trivial bounds

0 ≤ Pr[M(D) = K|z, Q̃]

Pr[M(D′) = K|z]
≤ eε

Define random function A(K) supported on {0, eε} such that E[A(K)|K] = Pr[M(D)=K|z,Q̃]
Pr[M(D′)=K|z] .

Note that when α = 1

Pr[A(K) = eε] · eε = EK [E[A(K)|K]] = EK∼M(D′)

[
Pr[M(D) = K|z, Q̃]

Pr[M(D′) = K|z]

]
= 1.

The first moment is equal to 1 critically relies on our construction where the numerator in the
expectation of (∗) is the αth power of a valid probability distributions.

This implies that Pr[A(K) = eε] = e−ε, therefore

(∗) = EK [E[A(K)|K]α]

Jensen
↓

≤ E[E[A(K)α|K]] = E[A(K)α] = Pr[A(K) = eε] · eαε = e(α−1)ε,

which completes the proof.

Now we are ready to prove the three claims of Theorem 8.
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The claim (3): Substitute the the above bound into Lemma 17, we get:

Eo∼M(D′)

[(
Pr[M(D) = o]

Pr[M(D′) = o]

)α]
Lemma 17 and 18

↓

≤Ez∼pρ
[(

pρ(z −4)

pρ(z)

)α]
e(α−1)εν(∞) ≤ e(α−1)ερ(α)e(α−1)εν(∞).

where the second inequality in the last line uses the definition of RDP ofMρ, for a trivial query
q(D) = −∆, q(D′) = 0. (3) follows by simply taking log(·)/(α− 1) on both sides.

The claim (1) and (2): To get the other two bounds, we need an alternative analysis of (∗∗). To
avoid crowded notations, we drop the conditioning on z from Pr[·|ρ = z]. By the definition of
expectation,

(∗) ≤ (10) =

∞∑
k=0

k∏
i=0

Pr[qi(D
′) + νi < z]Pr[qk+1(D′) + νk+1 ≥ z]

Pr[q̃k+1(D) + νk+1 ≥ z]α

Pr[q̃k+1(D′) + νk+1 ≥ z]α

q̃=q onD′
↓
=

∞∑
k=0

k∏
i=0

Pr[qi(D
′) + νi < z]

Pr[q̃k+1(D) + νk+1 ≥ z]α

Pr[q̃k+1(D′) + νk+1 ≥ z]α−1

Lemma 15
↓

≤

( ∞∑
k=0

k∏
i=0

Pr[q̃i(D
′) + νi < z]

)
· eε(α)(α−1). (11)

In the last line, we applied the “indistinguishability” property of an RDP mechanism in Lemma 15
for the particular event S = x ∈ R|x ≥ z, for the random-variableM(D, q̃k+1) andM(D′, q̃k+1)
in the numerator and denominator respectively.

The issue is how to proceed.
∑∞
k=0

∏k
i=0 Pr[q̃i(D

′) + νi < z] does not sum to 1 because∏k
i=0 Pr[q̃i(D

′) + νi < z] is not a probability distribution of k. The saving grace is the following
alternative definition of expectation.
Lemma 19. For a non-negative random variable X , E[X] =

∫∞
0

Pr[X > x]dx.

Recall that K is the first index of >, we can rewrite
∏k
i=0 Pr[q̃i(D

′) + νi < z] as PrD′ [K > k|z].
Thus

∞∑
k=0

k∏
i=0

Pr[q̃i(D
′) + νi < z] =

∞∑
k=0

PrD′ [K > k|z] = E[K|z] (12)

It follows that

Eo∼M(D′)

[(
Pr[M(D) = o]

Pr[M(D′) = o]

)α]
≤ Ez∼pρ

[(
pρ(z −4)

pρ(z)

)α
E[K|z]

]
eεν(α)(α−1)

Claim (1) uses E[K|z] ≤ kmax + 1. By using a different Holder’s inequality with conjugate pair γ
and γ∗ := γ/(γ − 1), we obtain

Eo∼M(D′)

[(
Pr[M(D) = o]

Pr[M(D′) = o]

)α]
≤ Ez∼pρ

[(
pρ(z −4)

pρ(z)

)γ∗α]1/γ∗
·
(
Ez∼pρ

[
E[K|z]γ

])1/γ

·eεν(α)(α−1)

(2) follows by taking log(·)/(α−1) on both sides and applying the definition of RDP. This completes
the proof of Theorem 8.

C Other proofs of technical results

Proposition 20 (Restatement of Proposition 10 with mroe details). Let Algorithm 2 be instantiated
withQ+(4),Mρ andMν be Gaussian mechanism with parameter σ1 and σ2. Then for all T < +∞
and γ > 1 such that σ2 >

√
γσ1, Algorithm 2 with c = 1 halts with K rounds satisfying

Eρ[E[K|ρ = z]γ ] ≤
∫ ∞
−∞

1

σ1
φ(z/σ1)

(
Φ((T + z)/σ2)

1− Φ((T + z)/σ2)

)γ
dz < +∞, (13)
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where φ(x) = e−x
2

√
2π

and Φ(x) =
∫ x
−∞ φ(x)dx are the pdf and CDF of the standard normal distribu-

tion. If σ2 ≥
√
γ + 1σ1, then a more interpretable bound of the above is

E[E[K|ρ = z]γ ] ≤ 1 + (cγ
√

2πmax{T (1 + γ)

σ1
, 1})γ(1 + γ)1/2e

γT2

2σ21

where cγ is a universal constant that comes from the moments bounds and depends only on γ. For

the special case when γ = 2, and σ2 =
√

3σ1, we get E[E[K|ρ = z]2] ≤ 1 + 2
√

3π(1 + 9T 2

σ2
1

)e
T2

σ21 .

Proof of Proposition 20. Consider the case when all queries are non-negative, and the threshold T is
given, then the datasets that maximizes all moments of K|ρ = z for all z are given by fi(D) = 0 for
all i. Notice that K|ρ = z follows a Negative Binomial Distribution, thus

E[K|z] =
Fv[T + z]

1− Fv[T + z]
,

where Fv is the cumulative density function (CDF) of the noise v. The moments of E[K|z], when
exists, can be computed by numerical integration. When z ∼ N (0, σ2

1) and v ∼ N (0, σ2
2) for

σ2 > σ1
√
γ, we can work out bounds of the γth moments of E[K|z].

Let φ be the standard normal density function and Φ be the CDF. There is a lower bound of the
Gaussian tail for all x > 0

1− Φ(x) ≥ x

x2 + 1
φ(x)

Thus for y ≥ −T + σ2, we have

E [E[K|z]γ ] =

∫ ∞
−∞

1

σ1
φ(z/σ1)

(
Φ((T + z)/σ2)

1− Φ((T + z)/σ2)

)γ
dz

=

∫ y

−∞

1

σ1
φ(z/σ1)

(
Φ((T + z)/σ2)

1− Φ((T + z)/σ2)

)γ
dz +

∫ ∞
y

1

σ1
φ(z/σ1)

(
Φ((T + z)/σ2)

1− Φ((T + z)/σ2)

)γ
dz

≤
∫ y

−∞

1

σ1
φ(z/σ1)dz +

∫ ∞
y

1

σ1
φ(z/σ1)

 (T+z)2

σ2
2

+ 1

(T+z)
σ2

φ((T + z)/σ2)

γ

dz

T+y≥σ2
↓

≤Φ(y/σ1) +

∫ ∞
y

1√
2πσ1

e
− z2

2σ21 (2π)γ/2e
γ(T+z)2

2σ22 2γ
(T + z)γ

σγ2
dz

u:=z+T, σ̃:=( 1

σ21
− γ

σ22
)−1/2

↓
=Φ(y/σ1) + (2π)

γ
2
σ̃

σ1

∫ ∞
T+y

uγ

σγ2

1√
2πσ̃

e
− u2

2σ̃2
+ 2uT

2σ21
− T2

2σ21 du

=Φ(y/σ1) + (2π)
γ
2
σ̃

σ1
e
− T2

2σ21
+T2σ̃2

2σ41

∫ ∞
T+y

uγ

σγ2

1√
2πσ̃

e−
(u−T σ̃

2

σ21

)2

2σ̃2 du

take |·| and relax the range of integral
↓

≤Φ(y/σ1) + (2π)
γ
2
σ̃

σ1
e

γT2

2(σ22−γσ
2
1)EX∼N (Tσ̃

σ21
,1)[|X|γ ]

where EX∼N (Tσ̃
σ21
,1)[|X|γ ] is the mth non-central moments which is on the order of max{T σ̃

σ2
1
, 1}γ —

and can be evaluated in a closed-form. Finally, we can simply take y −T + σ2.

Now, suppose we take σ2 =
√

1 + γσ1, then we get σ̃ = σ2. The above bound simplifies to:

E[E[K|z]γ ] ≤ 1 + (cγ
√

2πmax{T (1 + γ)

σ1
, 1})γ(1 + γ)1/2e

γT2

2σ21

where cγ is a universal constant that comes from the moments bounds and depends only on γ. If
γ = 2 and σ2 =

√
3σ1, then σ̃ = σ2, and

E[E[K|z]2] ≤ 1 + 2
√

3π(1 +
9T 2

σ2
1

)e
T2

σ21 .
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C.1 RDP analysis with c ≥ 1, proof of Theorem 11

Theorem 21 (Restatement of Theorem 11, RDP for length-capped SVT with c > 1). The generalized
SVT with cut-off parameter c > 1 and a maximum length is kmax obeys that

Dα(M(D)‖M(D′)) ≤ ερ(α) + cεν(α) +
log
∑c
k=0

(
kmax

k

)
α− 1

.

*After a careful revision, we found there is a minor typo in the statement of Theorem 11 (the 1/(α−1)
term shouldn’t be there) we provide the correct version above.

The proof follows a similar sequence of arguments to that we presented for c = 1.

When c > 1, the output space of the algorithm is S = {>,⊥}`, ` = 0, 1, ..., kmaxwith the additional
restriction that the number of >s are smaller than c. Denote I⊥ := {i : oi =⊥} and I> := {j : oj =
>}. Then we can write the probability of outputting o as following:

Pr[M(D) = o] =

∫ +∞

−∞
pρ(z)

( ∏
i∈I⊥

∫ z−qi(D)

−∞
p(νi)dνi

)( ∏
j∈I>

∫ ∞
z+qj(D)

p(νj)dνj

)
dz

Similarly, we have

Eo
[(

Pr[M(D) = o]

Pr[M(D′) = o]

)α]
=
∑
o∈S

Pr[M(D′) = o]

(
Pr[M(D) = o]

Pr[M(D′) = o]

)α
(∗)

Apply the same logic from the proof for c = 1, we can upper bound Pr[M(D) = o] in the following

Pr[M(D) = o] ≤ Ez∼pρ
(
pρ(z −4)

pρ(z)

∏
i∈I⊥

∫ z−qi(D′)

−∞
p(νi)dνi

)( ∏
j∈I>

∫ ∞
z+4+qj(D)

p(νj)dνj

)
(14)

Then apply Jensen’ inequality to Pr[M(D)=o]α

Pr[M(D′)=o]α−1 , we have

(14) ≤
∑
o∈S

Ez∼pρ

(
pρ(z−4)
pρ(z)

∏
i∈I⊥

∫ z−qi(D′)
−∞ p(νi)dνi

)α(∏
j∈I>

∫∞
z+4+qj(D)

p(νj)dνj

)α
(∏

i∈I⊥

∫ z−qi(D′)
−∞ p(νi)dνi

)α−1(∏
j∈I>

∫∞
z+qj(D′)

p(νj)dνj

)α−1
(15)

Exchange the order of integral in z and o, we get

(15) = Ez∼pρ
(
pρ(z −4)

pρ(z)

)α∑
o∈S

Pr[
∏
i∈I⊥

qi(D
′) + νi < z]︸ ︷︷ ︸

denote by(∗∗)

·

(∏
j∈I> Pr[qj(D) + νj +4 ≥ z]

)α
(∏

j∈I> Pr[qj(D′) + νj ≥ z]
)α−1

In the case of length-capped SVT, the algorithm stops whenever |o| ≥ kmax or |I>| ≥ c. By the fact
that probabilities ≤ 1, we use the following crude bound∑

o∈S
Pr[

∏
i∈I⊥

qi(D
′) + νi < z] ≤

∑
o∈S

1 = |S|,

i.e., the cardinality of the output space, which is bounded from above by
∑c
k=0

(
kmax

k

)
.

Moreover, we can bound the Ez∼pρ
(
pρ(z−4)
pρ(z)

)α
term with e(α−1)ερ(α) using the definition of RDP

(with a trivial query that outputs 0 and4 for D and D′ as we constructed before). Therefore, (∗∗) is
bounded by e(α−1)ερ(α) ·

∑c
k=0

(
kmax

k

)
.
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For the second part
(
∏
j∈I>

Pr[qj(D)+νj+4≥z])α

(
∏
j∈I>

Pr[qj(D′)+νj≥z])α−1 , we apply the same trick of defining a sequence of

fictitious queries q̃1, ..., q̃kmax
as in 4. For each j ∈ I>, Pr[q̃j(D)+νj+4≥z]

Pr[q̃j(D′)+νj≥z])α−1 ≤ eεν(α)(α−1) using
the “indistinguishability" property of an RDP mechanism defined in Lemma 15. Since |I>| ≤ c, the
second part is bounded by ecεν(α)(α−1).

D Different ways of doing composition

There are several different ways of achieving strong composition for SVT.

D.1 RDP Composition of generalized SVT with c = 1

In the case when a finite kmax is enforced, SVT is able to process up to ckmax queries, and has a total
RDP bound of c times

ε(α) ≤ cερ(α) + cεν(α) +
c log(1 + kmax)

α− 1
.

Corollary 22 ((ε, δ)-DP of Gaussian SVT with c ≥ 1 with RDP composition). When both noise are
Gaussian we get an overall (ε, δ)-DP with

ε(δ) ≤ c∆2

2σ2
1

+
2c∆2

σ2
2

+ 2

√
c(

∆2

2σ2
1

+
2∆2

σ2
2

)(log(δ−1) + c log((1 + kmax)))

The results recover the strong composition that gives an (O(

√
c log(1/δ)4

σ1
), δ)-DP guarantee up to

c = O(
√
σ2
1/42), provided that δ ≤ (kmax)−c. In the case of nonnegative query case, we may

obtain a similar bound for each valid γ which requires only δ ≤ (O(T
2

σ2
1

))−c. For larger c or large δ,
the privacy losses increase linearly with c.

D.2 Directly use the RDP of generalized SVT with c > 1

We discussed this in the remark underneath Theorem 11, which says that we obtain (ε, δ)-DP with

ε(δ) ≤ ∆2

2σ2
1

+
2c∆2

σ2
2

+

√
2

(
∆2

2σ2
1

+
2c∆2

σ2
2

)(
log(δ−1) + log c

(
kmax

c

))

The story is similar to the case for c = 1, we get the O(
√
c)-type strong composition when δ ∝ k−cmax,

and O(c)-type composition when δ < k−1max.

D.3 Hybrid composition based on both RDP and KOV-composition

The restriction on small δ is quite limiting, which motivated us to consider the hybrid scheme for
composition as in the Stagewise generalized SVT (Algorithm 3) which chooses c′ according to the
pre-specified δ. This essentially allows us to replace c with log(c/δ) as in Theorem 12.

E Connections of Noisy Screening and its Data-Dependent Privacy Bound

NoisyScreening and its data-dependent privacy loss computation is an alternative way of viewing
the problem that SVT addresses. Similar to SVT, given a threshold, noisy screening output ⊥ if
qt(D) +N (0, σ2) ≥ T and > otherwise. Notice that this is a fixed algorithm that obeys (α, αk4

2

σ2 )-
RDP when running for k iterations by the post-processing property and composition of Gaussian
mechanisms. However, when |qt(D)− T | is large, then the post-processing of the output of Gaussian
mechanism actually amplifies the privacy guarantee due to the overwhelming probability of outputting
either ⊥ or > on D and all neighboring dataset D′ to D, (see details in [Papernot et al., 2018,
Theorem 6]).
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The data-dependent analysis of Noisy screening behaves like SVT as it pays a privacy loss only when
the query qt(D) is close to the threshold T . The notion of privacy loss that is achieved by noisy-
screening has a similar notion of DP but it is data-dependent therefore the value itself is considered
private information. Part of our motivation in this work is to investigate whether we can obtain
formally differentially private methods that replicates the practical performance of data-dependent
privacy analysis for noisy screening while satisfying a pre-specified privacy budget.

F Applications

F.1 Adaptive data analysis

The Private-Guess-and-Check algorithm is an application of sparse vector technique that assumes
that the analyst sends a “guess” with each query. The curator will then check if the guess is sufficiently
accurate by SVT and return the “guess” without tapping into the data and move to the next round
and only release something from the data using, e.g., Gaussian mechanism if the “guess” fails to be
accurate. In this way, SVT will allow us to answer exponentially more queries while paying a privacy
loss that essentially depends only on the number of “incorrect” guesses.
Example 23. “Reuseable-Holdout” is one way to generate these guesses in the context of adaptive
data analysis. In the original version, the algorithm split the dataset into c+1 folds and use each fold
to answer only one “bad” query. A better version splits the dataset into just two, and then give one of
the fold to the analyst for exploratory data analysis and for coming up with queries and guesses, then
answer those queries using private-guess-and-check.
Example 24. “Private-Multiplicative-weight” [Hardt and Rothblum, 2010] is a classical DP
algorithm that can be thought of as another instantiation of the Private-Guess-and-Check. It aims
at iteratively refine a vector of weights on all possible datasets (each one of them is an expert) using
the Hedge algorithm from online learning to produce “guesses” in the form of an exponentially
weighted averages. The algorithm using SVT such that it only releases the private answers to the
queries if the answer is sufficiently different from the “guess”. The regret bound of the Hedge
algorithm yields a bound of c that implies a bound on the wrong “guesses”, which then allows
answering exponentially many queries accurately.
Lemma 25 (Theorem 3.5 [Jung et al., 2020] ). Suppose M is (ε, δ)-differentially private and
(α, β)-accurate with respect to samples. Then for any analyst A that chooses a sequence of queries
adaptively, we have that

Pr
Data∼D

(f̂I ,I)∼Interaction(A,M|Data)

[
max
i∈I

∣∣∣f̂i − EData’∼D [fi(Data′)]
∣∣∣ ≥ α+ (eε − 1) + v1 + 2v2

]
≤ β

v1
+
δ

v2
.

Proof of Theorem 14. Let the threshold that we use T =
σ
√

2 log(k/δ)

n , then it is clear that

the answers are
(
σ
√

2 log(k/δ), δ
)

-sample-accurate using the concentration bound of Gaussian
noise. Now by the composition of c-Gaussian mechanisms and the Gaussian-SVT with param-
eter c = 1, k, σ,4 = 1/n, the whole procedure is

(
O(
√

c
n2σ2 log(1/δ)2), δ

)
-DP. By choosing

σ � c1/4n−1/2 log(k/δ)1/4, and then pick v1 = v2 = O(c1/4n−1/2 log(k/δ)3/4), then we obtain
the high-probability generalization bound for adaptive queries as claimed.

Remark. In comparison, if we use Laplace mechanism-based SVT for the same problem, the answers
will only be (log(k/δ)/(nε), δ)-sample-accurate, due to the perturbation of the threshold. It will
be (O(ε

√
c log(1/δ)), δ)-DP. By choosing ε appropriately to balance the two terms, we get that the

standard SVT also achieves the same bound of O(c1/4 log(k/δ)3/4n−1/2).

F.2 Model-agnostic private learning

Model-agnostic private learning is another cute application of the sparse-vector technique. In this
problem, the learner has access to a private labeled dataset and a public unlabeled dataset. The
algorithm leverages a blackbox learner, e.g., a deep learning algorithm, by training one classifier on
each randomly split of the private dataset. Then it privately labels the public dataset by privately
releasing the majority-votes of these classifiers’ predictions.
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This scheme has been shown to be practical [Papernot et al., 2017, 2018] by combining simple
Gaussian mechanism for differential privacy with semi-supervised learning approaches. Bassily et al.
[2018] substantially improves the algorithm by showing that, under a PAC-learning framework, that
one can privately release the labels for all public data points, while spending the privacy budget only
for those data points where the voters are labeling incorrectly (or labeling inconsistently, to be more
general).

SVT is applied to test whether each query has received an overwhelming majority from the voters by
testing if distance-to-stability is sufficiently large. If so, the exact answer f(D) is released with ⊥
and if not, only > is released. Interestingly, this approach has a privacy loss that depends only on the
number of >s and it can be thought of as a composition of the SVT with the (0, δ)-DP part of the
event from the “Stability”-based argument.

While this approach provides a substantial benefit in theory, it has been observed in practice that
it is often outperformed by simple Gaussian mechanism in practice, since the latter uses a more-
concentrated noise and also a much tighter composition.

In the experiment section, we demonstrate that the story is now different when Gaussian SVT is used
as a drop-in replacement.

G More details about the experiments

G.1 Calibrating noise to privacy

In this section, given a predetermined privacy budget (ε, δ) and the cut-off c, we evaluate SVT
variants by comparing how many queries each SVT algorithm. Suppose we have an infinite sequence
of queries with ground truth at 0 (null-hypothesis) and a fixed margin/ threshold. For each of the
SVT-like algorithm, we calibrate the noise (or the length for Gaussian-based SVT) according to the
privacy budget.

We estimate the length of answered queries with Negative Binomial Distribution. For example, in the
case of Gaussian-SVT, when z ∼ N (0, σ2

1) and ν ∼ N (0, σ2
2), denote K as the number of queries

answered when hits c. Notice that K|ρ = z follows a Negative Binomial Distribution, E[K|z] can be
estimated with cFν [T+z]

1−Fν [T+z] , where Fν is the CDF of the noise ν and queries are all zeros. Then by law
of expectation, we can estimate E[K] with

1

N

N∑
i=1

c · Fν [T + zi]

1− Fν [T + zi]

N is the number of trails and we sample zi ∼ N (0, σ2
1) in each trail. We set N = 105 in our

experiment.

We present our results in Figure 1, where the predefined privacy budget ε is varied at the x-axis.
Regarding the choice of kmax, noting setting kmax too large would lead the algorithm to hit > far
before it reaches kmax limit. Hence we set kmax individually for each algorithm with each ε budget.
For example, we set kmax ≈ 50 · 24ε for Gaussian-SVT with T = 100 and kmax ≈ 20 · 105ε with
T = 700 such that kmax ≈ 1/(1− Fν [T + zi]). The curves are unsmooth for some algorithms (e.g.,
Gaussian-SVT), since they would start a new subroutine when kmax is achieved even before hitting
>. The left part is the low margin regime (T = 100) and δ is set to be 10−6. The purple line is the
stage-wise generalized SVT, which can answer the largest number of queries across two regimes,
especially in the high-margin regime. This is expected since when the margin T is sufficiently high,
the false positives will fall into the area of tails bound in either Laplace or Gaussian distribution. As
discussed earlier, the Laplace distribution used in the SVT is heavy-tailed distribution, which would
trigger the c false positives sooner.

G.2 Privacy cost for answering a full sequence

In this section, we evaluate SVT variants by comparing the composed privacy loss for finishing a
fixed length sequence of queries.

Given a fixed sequence of |Q| = 105 queries with ground truth at 0, we fix the margin with T = 1000
for all algorithms, and align the standard deviation of Laplace noise and Gaussian noise, which is used

19



100 101 102 103 104 105

Iterations

10 1

100

101 Laplace-SVT (Pure-DP from Lyu et al., 2017)
Laplace-SVT (via RDP)
Gaussian-SVT c>1 (RDP by Theorem 11)
Gaussian-SVT c=1 (RDP by Theorem 8)
Gaussian Mechanism
Noisy Screening (data-dependent RDP)
Stage-wise generalized SVT

(a) Exp 2: Synthetic null sequence with aligned vari-
ance of noise

10 10 10 8 10 6 10 4 10 2

Tail bound 

10 3

10 2

10 1

100

101

102

Laplace-SVT (Pure-DP)
Laplace-SVT (via RDP)
Gaussian-SVT c>1 (RDP by Theorem 11)
Gaussian-SVT c=1 (RDP by Theorem 8)
Gaussian Mechanism
Noisy Screening (data-dependent RDP)
Stage-wise generalized SVT

(b) Exp 2: Synthetic null sequence with aligned tail
bound

Figure 3: Total composed privacy loss a the algorithm progressed for δ = 10−6. On the left, we
fix the margin T = 1000 and σ1 = 210 and align the variance of noise to perturb the queries. On
the right, we align the tail bound for all algorithms by varying the noise scale with a fixed threshold
T = 1500.

to perturb the query, i.e., σ2 =
√

2λ2 = 240. In Figure 3(a), the black-dash line describes the privacy
cost of the Gaussian mechanism, serving as our baseline. Notably, with the same level noise to perturb
queries, the Gaussian Mechanism’s global sensitivity is the half of that in Gaussian-SVT. The brown
line reports the privacy cost of data-dependent noisy screening before applying smooth-sensitivity
analysis, which itself is considered private information. When the #iteration is small, all SVT-based
algorithms have a flat region due to the number of > is zero.

We now evaluate SVT variants with an aligned tail bound. As shown in Figure 3(b), we fix the margin
T = 1500 and vary γ at the x-axis. For each γ, we choose the noise ν for each algorithm adaptively,
such that the false positive rate is γ. For example, In the case of all Gaussian-based algorithms, the
σ2 is set such that Fν [T ] = 1− γ, where ν is drawn from N (0, σ2

2) and Fν is the CDF of the noise
ν. We see that Gaussian-SVT and Laplace-SVT perform similarly as their tail bounds are aligned
and the stage-wise generalized SVT has the least privacy cost as it enjoys a sharper composition. The
big gap between SVT-based algorithms and the Noisy Screening is due to the numerical issues in
the calculation of the survival function: as γ is small, e.g., γ < 10−6, the scipy-based calculation
in python will output 0 for Pr[qt(D) +N (0, σ2

2) ≥ T ], which implied no false positive is detected.
However, for all SVT-based algorithms, we enforce the false-positive c to be at least 1, which can
potentially yield a significant gap when γ is small.

Aligned variance or aligned FPR Note that there are two undetermined parameters (σ2, λ2) for
SVT variants if we compare the privacy cost of answering a full sequence with a fixed margin of
T . To build a meaningful connection between Laplace variants and Gaussian variants, we consider
two types of alignments — variance of noise and FPR. There are other choices of alignments (e.g.,
mean, the third moment). Our consideration of the choice is to investigate the regions where Gaussian
variants are advantageous. More specifically, with an aligned variance, we can observe the advantage
of Gaussian SVT due to a thinner tail bound while this advantage disappears when we align the tail
bound (FPR).

G.3 Evaluation with real life data

In the application of model agnostic learning, Noisy screening is applied to test whether each query
has received an overwhelming majority from the voters. We instantiate the task with the Private-kNN
framework Zhu et al. [2020] using the CIFAR-10 dataset. The training set of CIFAR-10 is simulated
as the private domain, and a sequence of queries are drawn from the public domain (testing set); for
each query, we pick the top K = 300 closest neighbors from the private domain and output > if the
plurality of neighbors is above a predetermined threshold.
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In the privacy-preserving screening, we set the threshold T = 210 and fix the Gaussian noise σ2 = 80
to perturb query for each algorithm. For Gaussian-SVT, we set σ1 = 40 to perturb the threshold. The
error bars are computed based on 10 independent run and has a correct 95% coverage.

G.4 Adaptive data analysis

“Reuseable-Holdout” is one application of SVT in the context of adaptive data analysis. We instantiate
the task using the experimental setups from Dwork et al. [2015a]. In this experiment, the analyst is
given a d-dimensional labeled data S of size 2n, where each attribute is drawn independently from
the normal distribution N (0, 1). The analyst splits S randomly into a training set St and a holdout
set Sh of equal size. The labels y ∈ {−1, 1} are generated uniformly at random, so the data point
and its label are not correlated. The goal of the analyst is to select variables to be included in the
classifier. The analyst picks k variables (k < d) with the label’s largest absolute correlations with
the training set. Then she verifies the correlations on the holdout set and selects only those variables
whose correlation agrees in sign with the correlation on the training set, and the correlations are
greater than a predefined threshold T . Then the analyst generates a linear threshold classifier using
the selected variables and tests it on the holdout set. Full details can be found in the supplementary
materials of Dwork et al. [2015a]. We set n = 10000, d = 10000 and varied the number of selected
variables k. After a careful inspectation of their code, we find that they use the Gaussian mechanism
to select variables, rather than the Laplace-based SVT that they analyze. Note that this is also one
motivation of this work — to find SVTs with thin tail bounds and makes SVT practical.

We provide the “Reuseable-Holdout” algorithm implemented with Gaussian Mechanism as follows.

Step 1 For each attribute i ∈ [d] compute the correlation with the label on the training and holdout
sets: wti =

∑
(x,y)∈St xiy and whi =

∑
(x,y)∈Sh xiy.

Step 2 Sort wti with k lagest values.

Step 3 For each of the k features, if training correlation |wti | ≥ 1/
√
n; |whi | ≥ 1/

√
n, test if

|wti − whi |+N (0, σ2
2) > T . If so, return ⊥, else return >.

Step 4 Pick out the subset of features (denoted as Vk) with output ⊥ and construct a linear classifier
f(x) = sign(

∑
i∈Vk sign(wti) · xi) using the sign of the training correlation.

In the Gaussian-SVT based algorithm, we first perturb T with T̃ = T +N (0, σ2
1). Then we modefiy

the “step 3” with testing if |wti − whi |+N (0, σ2
2) > T̃ . If so, return ⊥ and refresh T̃ , else return >.

We set T = 0.04 and 2σ1 = σ2 = 0.01. As shown in Figure 4, we provide the average and standard
deviation of results with 100 independent trials. Noting there are no correlations between x and y, no
classifiers can achieve accuracy better than 50%. However, a standard holdout (denoted as “training”)
results in accuracy� 50%, which is overfitting. “Fresh” refers to the classifier accuracy on another
fresh data of size n, which results in an accuracy 50%. Both the Gaussian mechanism and Gaussian
SVT can prevent the algorithm from overfitting to the holdout set. Moreover, with the same noise
scale to perturb queries, Gaussian-SVT pays privacy cost proportional to the size of features that
outputs ⊥. Hence it can answer exponentially more queries with the same privacy budget.

H One example for SVT with unbounded length

We provide an example for Laplace SVT with unbounded length as follows.
Proposition 26. Suppose we have an infinite sequence of queries q1, ..., q∞ with ground truth at 0,
threshold Ti increases exponentially (i.e. Ti+1 = θTi) where i is the index of the query. The Laplace
noise νi ∼ Lap(λ2) is used to perturb each query. Then the expected length of SVT with a cut-off
c = 1 is unbounded.

Proof. We first rewrite T0 = β · λ2. Recall that if Y ∼ Lap(b), then Pr[Y ≥ t · b] = 1
2 exp(−t).

Therefore, we have Pr[K = 1] = 1
2 exp(−β) where K is a random variable indicating the stopping

time. Moreover, Pr[K = 2] can be written as Pr

[
q2 + ν2 ≥ T2|q1 + ν1 < T1

]
· Pr[K 6= 1], which

is smaller than 1
2 exp(−β · θ). Noting the probability of stopping at all integer can be written as
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Figure 4: Learning uncorrelated label. The x-axis is the number of variables selected for the classifier.
The y-axis indicates average classification accuracy over 100 executions.

limi→∞ Pr[K < i + 1] =
∑∞
i=1 Pr[K = i] ≤

∑∞
i=1

1
2exp(−βθ

i−1) < 1. Hence the expected
length of SVT with a cut-off c = 1 is unbounded.
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