
Improving Sparse Vector Technique with Renyi
Differential Privacy

Yuqing Zhu
Department of Computer Science

UC Santa Barbara
CA 93106

yuqingzhu@ucsb.edu

Yu-Xiang Wang
Department of Computer Science

UC Santa Barbara
CA 93106

yuxiangw@cs.ucsb.edu

Abstract

The Sparse Vector Technique (SVT) is one of the most fundamental algorithmic
tools in differential privacy (DP). It also plays a central role in the state-of-the-art
algorithms for adaptive data analysis and model-agnostic private learning. In this
paper, we revisit SVT from the lens of Renyi differential privacy, which results in
new privacy bounds, new theoretical insight and new variants of SVT algorithms.
A notable example is a Gaussian mechanism version of SVT, which provides better
utility over the standard (Laplace-mechanism-based) version thanks to its more
concentrated noise. Extensive empirical evaluation demonstrates the merits of
Gaussian SVT over the Laplace SVT and other alternatives, which encouragingly
suggests that using Gaussian SVT as a drop-in replacement could make SVT-based
algorithms more practical in downstream tasks.

1 Introduction

The Sparse Vector Technique (SVT) [Dwork et al., 2009] is a fundamental tool in differential privacy
(DP) that allows the algorithm to screen potentially an unbounded number of adaptively chosen
queries while paying a cost of privacy only for a small number of queries that passes a predefined
threshold.

SVT is the workhorse behind the private multiplicative weights mechanism [Hardt and Rothblum,
2010] and median oracle mechanism [Roth and Roughgarden, 2010], which famously shows that one
can answer exponentially more linear queries differential privately for low-dimensional problems. It
is also the key technique underlying the (conjectured optimal) improvements to the ReusableHoldout
algorithms for preserving statistical validity in adaptive data analysis [Dwork et al., 2015b] and
the Ladder algorithm for reliable machine learning leaderboards [Blum and Hardt, 2015]. We refer
readers to the excellent course [Smith and Roth, 2017, Lecture 12] and the references therein.

More recently, SVT is combined with the Distance to Stability argument to build a machinery for
model agnostic private learning in the knowledge transfer framework [Bassily et al., 2018]. The
proposed algorithm releases many private labels from an ensemble of “teacher” classifiers trained on
the private dataset [Bassily et al., 2018] while essentially only paying a privacy cost for those that
are unstable. This in principle would allow the use any deep neural networks as a blackbox while
leveraging the high-margin of the learned representation.

Despite the substantial benefit of SVT in theory, it is not known as a practical method. For example,
in the case of model-agnostic private learning, SVT is often outperformed by simple Gaussian
Mechanism [Papernot et al., 2018] that release all labels, since the latter uses a more concentrated
noise (Gaussian over Laplace) and also has a tighter composition via Concentrated / Renyi differential
privacy (CDP/RDP) [Dwork and Rothblum, 2016, Bun and Steinke, 2016, Mironov, 2017].
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In this paper, we revisit SVT and address the following questions:

1. Is it essential to add Laplace noise? Does Gaussian noise work too? How about other noises
e.g., [Geng and Viswanath, 2014]?

2. Is there a tighter RDP bound for SVT? Can we parameterize the RDP of SVT by the RDP
function of the randomized mechanisms that are used to perturb the threshold and the answer
to each query?

3. So far, the advanced composition of SVT is only available for the case when we compose c
SVTs with cut-off = 1, which requires refreshing the threshold noise each time. Could there
be an

√
c composition-theorem for the more general version when c > 1?

4. Finally, can we achieve better utility of SVT in practice? How small does c needs to be relative
to the total number of queries k before SVT can outperform naive Gaussian mechanism?

5. Are there more practical alternatives to SVT that operates in those regimes where SVT fails.

We answer affirmatively to the first three questions (with some caveats and restrictions) by studying a
generalized family of SVT (see Algorithm 2). Then we conduct numerical experiments to illustrate
the pros and cons of various algorithms while highlighting the challenges in the last two questions.
Moreover, we applied our results to the problem of adaptive data analysis and provided a “high
probability” bound on the maximum accuracy of a sequence of k adaptively chosen queries based
on a Gaussian-mechanism variant of SVT, which matches (but unfortunately not improving) the
strongest bound known to date on this problem.

A remark on our novelty. We believe our technical analysis that derives the RDP bound is new and
elegant. Also our empirical evaluation is by far the more extensive for SVT-like algorithms. That
said, we do borrow ideas from various prior work including [Lyu et al., 2017, Smith and Roth, 2017,
Hardt and Rothblum, 2010] for the analysis including a cute trick from [Bun and Steinke, 2016], as
well as getting practical insight and inspiration from [Papernot et al., 2018]’s data-dependent analysis
of noisy-screening. A recent work [Liu and Talwar, 2019] generalized SVT to beyond low-sensitivity
queries but still uses Laplace noise. We are different in that we develop SVT with other noise-adding
mechanisms. Our technique should be directly applicable to the BetweenThreshold variant as in [Bun
et al., 2017] an also release the “gap” as in [Ding et al., 2019]. The overarching goal of the paper is
to make progress in bringing an amazing theoretical tool to practice. The improvements might be a
constant factor in certain regimes but as differential privacy transitions into a practical technology,
“constant matters!”

Symbols and notations. Throughout the paper, we will use standard notations for probability
unless otherwise stated, e.g., Pr[·] for probability, p[·] for density, E[·] for expectation. Conditional
probabilities, density and expectations are denoted with the standard | in the middle, e.g., E[·|·], except
for the cases when we state upfront that they abbreviated for lighter notations in that section. We do
not distinguish fixed parameters and random variables as they are clear from context. The randomness
are entirely the randomness induced by the randomized algorithm, except in the last section when
we talk about adaptive data analysis. ε, δ are reserved for privacy budget/loss parameters, and α the
order of RDP. Other notations will be defined on the fly as they first appear.

2 Preliminary

In this section, we review the technical tools we use in this paper, introduce the sparse vector technique
and highlight two applications of SVT. We start by formally defining differential privacy.

2.1 Differential privacy: pure, approximate and Renyi

Definition 1 (Differential privacy[Dwork et al., 2006]). A randomized algorithm M is (ε, δ)-
differentially private (DP) if for any pair of neighboring dataset D and D′, and any S ⊂ Range(M),

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ.

The definition provides rigorous guarantees by requiring the indistinguishability of whether or not
a record is in the database based on the released information. ε, δ ≥ 0 are privacy loss parameters.
When δ = 0, we have ε-DP, or Pure DP.
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Algorithm 1 Standard SVT
Input: Data D, an adaptive sequence
of queries q1, q2, ... ∈ Q with sensitiv-
ity 4, privacy parameter ε1, ε2, thresh-
old T , cut-off c, option RESAMPLE.

1: Sample ρ ∼ Lap(4/ε1), count = 0
2: for i = 1, 2, 3, ...
3: Sample νi ∼ Lap(24/ε2)
4: if qi(D) + νi ≥ Ti + ρ then
5: Output ai = >, count = count + 1
6: if RESAMPLE, ρ ∼ Lap(4/ε1).
7: if count ≥ c, abort.
8: else
9: Output: ai =⊥

10: end if

Algorithm 2 Generalized SVT
Input: Data D, an adaptive sequence of
queries q1, q2, ... ∈ Q with sensitivity 4,
noise-adding mechanismsMρ,Mν , threshold T ,
cut-off c, max-length kmax

a, option RESAMPLE.

1: Sample T̂ ∼Mρ(D,T ), count = 0
2: for i = 1, 2, 3, ..., kmax

3: Sample q̂i ∼Mν(D, qi)

4: if q̂i ≥ T̂ then
5: Output ai = >, count = count + 1

6: if RESAMPLE, T̂ ∼Mρ(D,T )
7: if count ≥ c, abort.
8: else
9: Output: ai =⊥

10: end if

aYou may choose kmax =∞ in some cases.

Definition 2 (Renyi Differential Privacy [Mironov, 2017]). We say a randomized algorithmM is
(α, ε(α))-RDP with order α ≥ 1 if for neighboring datasets D,D′

Dα(M(D)||M(D′)) :=
1

α− 1
logEo∼M(D′)

[(
Pr[M(D) = o]

Pr[M(D′) = o]

)α]
≤ ε(α).

Instead of considering each fixed RDP order in isolation, we take the functional view of RDP and
use εM(·) to denote the RDP loss as a function of α (for α > 1). This view unifies various popular
notion of DP. At the limit of εM(∞), this recovers pure-DP. At the limit of α → 1, this recovers
Kullback-Liebler DP (a.k.a. KL-stability). Moreover, we can covert RDP to (ε, δ)-DP for any δ > 0
using:
Lemma 3 (From RDP to DP). If a randomized algorithmM satisfies (α, ε(α))-RDP, thenM also
satisfies (ε(α) + log(1/δ)

α−1 , δ)-DP for any δ ∈ (0, 1).

RDP is also connected to variants of the Concentrated Differential Privacy (CDP) [Dwork and
Rothblum, 2016, Bun and Steinke, 2016], which can be thought of as a linear upper bound of the
RDP function ε(α). One convenient result that comes out of the CDP literature is the following RDP
bound of a pure-DP mechanism.
Lemma 4 (From DP to RDP [Bun and Steinke, 2016]). LetM satisfy ε-DP, thenM also obeys
(ε(α), α)-RDP with ε(α) = 1

α−1 log
(

sinh (αε)−sinh ((α−1)ε)
sinh (ε)

)
≤ αε2

2 .

The sinh bound appears in the proof of Proposition 3.2 in [Bun and Steinke, 2016], which states
the final bound, which means ε2/2-CDP. RDP satisfies many information-theoretic properties of DP
including composition, closure to post-processing and so on (see Appendix A for more details.)

The most common mechanisms for differential privacy are those that add noise to queries answers.
Definition 5 (Noise-adding mechanisms). We say that M : Data × Q → PR is a noise-adding
mechanism if it answers a query q by outputting o ∼M(D, q) = q(D) + Z where Z is a random
variable.

Typical examples of these noise-adding mechanisms for differential privacy includes Laplace-
mechanism, Gaussian mechanism in which Z is drawn from a Laplace distribution and a Gaussian
distribution respectively. Notably, the “optimal” geometric mechanism falls under this category which
adds a “stair-case”-shape noise [Geng and Viswanath, 2014].
Definition 6 (Low-sensitivity queries). We define Q(4) to be the set of all queries q : Data → R
such that |q(D)− q(D′)| ≤ 4 for any pair of neighboring datasets D,D′.

4 is called global sensitivity and is used to calibrate the noise according to a given privacy budget.

2.2 Sparse vector techniques

In SVT, the input is a stream of possibly infinitely long, adaptively chosen queries q1, q2, ..., qi, ... ∈
Q(4). The queries are provided with a sequence of thresholds T1, T2, ..., Tk, .... The goal of SVT is
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to release a binary vector {⊥,>}k at every time k, > indicates that the corresponding query answer
qi(D) is above the threshold Ti and⊥ indicates below. To release this vector differential privately, we
first perturb the threshold T with a Laplace noise ρ. Then each individual query qi(D) is perturbed
by another Laplace noise νi before comparing against the perturbed threshold T + ρ to determine
the binary decion, until the stopping condition — the c-th > arrives. Algorithm 1 summarizes
pseudo-code from [Hardt and Rothblum, 2010] and [Lyu et al., 2017].

A remarkable property of SVT is that it allows the release of a vector that is exponentially long while
incurring only a privacy loss proportional to c (or its square root) — the maximum number of answers
that are allowed to be >. This is formalized in the following lemma.
Lemma 7 (Privacy calibration in Standard SVT). Algorithm 1 satisfies (ε1 + cε2)-DP when
RESAMPLE option is set to false. When RESAMPLE = True, then Algorithm 1 with 4ε1 = 4

ε2
=√

32c log(1/δ)

ε , then Algorithm 1 satisfies (ε, δ)-DP and (cε1 + cε2)-DP.

The version of the pure-DP calibration without resampling comes from [Lyu et al., 2017, Algorithm
1]. The (ε, δ)-DP calibration is extracted from [Dwork and Roth, 2013, Theorem 3.25], which is
essentially applying strong composition to to c instances of SVT, each obeying (ε1 + ε2)-DP.

Despite the asymptotic savings from
√
k to
√
c, SVT is still not known as a practical mechanism.

The reasons, in our opinion, are twofolds.

The Laplace distribution used in the SVT is a heavy-tailed (sub-exponential) distribution, which
requires the threshold to be set to O(log(1/β)) so as to control the false positive rate at β. This
could be much larger than the O(

√
log(1/β)) of sub-gaussian tailed distributions, hence make SVT

less favorable for utility-privacy trade-off in practice. Moreover, many practical differential private
algorithms benefit from tighter privacy accounting, e.g., composition using Renyi DP with numerical
computation. It will be ideal if we can come up with a version of the SVT that adds more concentrated
noise as well as a general Renyi DP analysis of that algorithm. This motivated us to consider the
family of Generalized SVT mechanism in Algorithm 2.

3 Main results

In this section, we derive RDP bounds for SVT variants with different distributions of noisy parameters
(νi, ρ). The goal is to find those distributions that not only have thin tail bounds but preserve the
essential property of the standard SVT — they can answer exponentially many⊥ queries while paying
a privacy loss only proportional to c or

√
c when the algorithm halts. The family of mechanisms we

consider is summarized in Algorithm 2. The differences from Algorithm 1 are highlighted in blue.

3.1 RDP analysis with c = 1

We first consider generalized SVT with c = 1, since the case of c > 1 is often treated as composition
of multiple SVT with c = 1.
Theorem 8. Let K be a random variable indicating the stopping time — number of ⊥s plus 1. Let
Mρ,Mν be noise-adding mechanisms (Definition 5). AssumeMρ satisfies ερ(α)-RDP for queries
with sensitivity4 andMν satisfies εν(α)-RDP for queries with sensitivity 24. Then Algorithm 2
with c = 1 (denoted byM) obeys

Dα(M(D)‖M(D′)) ≤ ερ(α) + εν(α) +
log supz E[K|ρ = z]

α− 1
, (1)

Dα(M(D)‖M(D′)) ≤ α− (γ − 1)/γ

α− 1
ερ
( γ

γ − 1
α
)

+ εν(α) +
log
(
Ez∼pρ [E[K|ρ = z]γ ]

)
γ(α− 1)

, (2)

for all γ > 1 and 1 < α <∞. Moreover, when ερ(∞) ≤ ∞, we get

Dα(M(D)‖M(D′)) ≤ ερ(α) + εν(∞). (3)

The theorem can be thought of as a general transfer theorem that allows us to bound the RDP of
the generalized SVT with the RDP of its subroutinesMρ andMν . Before proving the theorem in
Section B, let us parse the result in a number of special cases.
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Remark (Pure-DP). RDP (3) recovers the pure-DP bound of the standard SVT when α → ∞. It
also allows other noise-adding procedure that satisfies pure-DP to be applied. We could also consider
the hybrid-noise SVT where ρ is a Gaussian noise, but ν are Laplace-noises.
Remark (Bounded-length SVT). When we set kmax < +∞, the (1) implies an RDP bound of the
form ερ(α)+ εν(α)+log(1+kmax)/(α−1), which further implies an (ε, δ)-DP bound by Lemma 3.
In particular, if δ ≤ 1/(1 + kmax), then we get (ε, δ)-DP with

ε = min
α>1

ερ(α) + εν(α) + 2 log(1/δ)/(α− 1).

In the case of Gaussian mechanism, this loses at most a factor of
√

2 comparing to the case when
log(1 + kmax)/(α− 1) is not there all together.

When kmax is chosen to be +∞: (1) and (2) do not imply RDP in this case, because there are
cases where SVT can potentially have unbounded length (in fact, even the expected length can be
unbounded1 ). It is well-expected that if we use Gaussian-mechanism as a subroutine for SVT, the
dependence of the sequence length is unavoidable. Similar observations have been made about a
Gaussian-noise version of the ReportNoisyMax mechanism [see, e.g., Dwork and Roth, 2013, Section
3.5.3]. That said, the form of the bound (2), which depends only on the moments of the conditional
expectation seems to suggest that we can potentially obtain meaningful RDP bounds for generalized
SVT even if kmax = +∞ in some cases.

Let us consider a mild restriction to the family of queries that can be chosen, which allows us to keep
the sequence length unbounded even when the noise-adding subroutines do not satisfy pure-DP.
Definition 9 (Nonnegative, Low-sensitivity Queries Model). The adversary can adaptively choose
q1, q2, ... ∈ Q+(4) where

Q+(4) = {q : Data→ R | q(D) ≥ 0∀D, |q(D)− q(D′)| ≤ 4∀ neighboring datasets D,D′}.

The class covers both use cases of SVT that we described earlier. When we apply SVT to “Guess-and-
Check”2, qi(D) = ‖fi(D)− gi‖ is nonnegative. Similarly, in the case of “Model-agnostic private
learning” qi(D) = distMajorityVotefi

(D), which measures the number of data points that need to be
added or removed to make the argmax of the voting score unstable.
Proposition 10 (Gaussian SVT with non-negative queries). Let Algorithm 2 be instantiated with
Q+(4),Mρ andMν be Gaussian mechanism with parameter σ1 and σ2. Then for all T < +∞ and
γ > 1 such that σ2 >

√
γ + 1σ1, Algorithm 2 with c = 1 halts with K rounds satisfying

E[E[K|ρ = z]γ ] ≤ 1 + (cγ
√

2πmax{T (1 + γ)

σ1
, 1})γ(1 + γ)1/2e

γT2

2σ21 .

For Gaussian SVT satisfying σ2 ≥
√

3σ1, it obeys an RDP of α4
2

σ2
1

+ 2α42

σ2
2

+
log(1+2

√
3π(1+ 9T2

σ21
)e

T2

σ21 )

2(α−1) .

The proof of Proposition 10, deferred to the appendix, hinges upon the key observation thatK follows
a Negative Binomial distribution when conditioning on the threshold, and some technical calculations
involving Mill’s ratio and moments of Gaussian distribution.

Remark (Controlling Type I error). One can for example choose T =
√

2(σ2
1 + σ2

2) log 1/% =√
8σ2

1 log(1/%) such that the Type I error (false positive rate) is bounded by %. This is often the case
when using sparse vector technique for statistical applications. Then we can simplify the above bound
by using log(1 + x) ≤ x, and an assumption that ρ is sufficiently small, to obtain an RDP bound of

5α42

3σ2
1

+
8 log(1/ρ) + log(4

√
3π(1 + 72 log(1/ρ)))

2(α− 1)
≤ 5α42

3σ2
1

+
5 log(1/ρ)

(α− 1)
.

The above results allow us to obtain nearly the same (ε, δ)-DP bound for Gaussian-SVT as if we
are working with the RDP bound of a Gaussian mechanism, provided that the δ chosen such that

1see an example in the appendix.
2A subroutine of “private multiplicative weights” and “reusable holdout”.
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log(1/δ) is larger than either log kmax in the length-bounded case or O(log(1/ρ)) in the nonnegative
query setting.

To ease our subsequent presentation, from here onwards we will use kγ to denote a data-independent
upper bound of (E[K|ρ]γ ])1/γ . Conveniently, k∞ = kmax and k1, which unifies (1) and (2).
Moreover, we will use γ∗ such that 1/γ∗ + 1/γ = 1.

3.2 Generalized SVT with c > 1

We now address the case when c > 1. A natural, and general way to deal with SVT for c > 1 is
to simply apply composition theorems of differential privacy to c instances of SVT with cut-off
parameter c set to 1. We could also directly analyze the variant of SVT with c > 1, where the
threshold noise is not refreshed. Pros and cons of these two approaches are described in Appendix D.
Theorem 11 (RDP for length-capped SVT with c > 1). The generalized SVT with cut-off parameter
c > 1 and a maximum length is kmax obeys that

Dα(M(D)‖M(D′)) ≤ ερ(α) + cεν(α) +
1 + log

∑c
k=0

(
kmax

k

)
α− 1

.

The proof, presented in the Appendix, uses the same techniques as in the proof of Theorem 8, but we
no longer get an interpretable bounds that rely on moments of E[K|ρ]. The term in the logarithmic
factor, resembles kmax in the sense that it counts the cardinality of the output space — binary vectors
of length kmax with at most c ⊥s.
Remark. When both noise are Gaussian, the theorem and Lemma 3 implies an (ε, δ)-DP with

ε(δ) ≤ ∆2

2σ2
1

+
2c∆2

σ2
2

+

√
2

(
∆2

2σ2
1

+
2c∆2

σ2
2

)(
log(δ−1) + log c

(
kmax

c

))
which recovers the O(

√
c) scaling when δ ≤ c−1

(
kmax

c

)−1
and saves a factor of c in σ1.

While the restriction on δ being smaller than k−cmax is quite limiting, we are not aware of an analysis
that achieves the strong composition-like scaling in c for the version of the SVT that does not refresh
the noise under any parameter configurations.

Back to (ε, δ)-composition. Interestingly, if we use of the strong composition for (ε, δ)-DP directly,
we can obtain a bound with

√
c scaling for a much broader set of parameters. Let us consider the

following stage-wise algorithm for Generalized SVT, which resamples the threshold noise ρ after
every c′ rounds with a pre-specified bound k′max chosen in each round. This algorithm can be viewed
as a meta-algorithm that calls Algorithm 2 as a subroutine (see Algorithm 3). The idea is that we
can choose c′ and k′max carefully according to c and δ such that for each call of SVT, the region of
interests falls under the region where log(c′

(
k′max
c′

)
) is comparable to log(1/δ).

Theorem 12 ( Stage-wise Length-Capped Gaussian SVT forQ(4)). Let 0 < δ′ < 1 be a parameter.
LetM be the instance of the Algorithm 3 invoked with cut-off c′, max-length k′, option RESAMPLE =
False,Mρ,Mν chosen as Gaussian mechanisms with noise parameter σ1, σ2 satisfying σ2 = 2σ1

and σ1 ≥ 84
√
c log(1/δ′). If we choose c′ ≤ c such that c′

(
k′max
c′

)
≤ (δ′)−1, then M satisfies

(ε, δ̃ + c
c′ δ
′)-DP with ε = O

(√
c42

σ2
1

log(1/δ′) log(1/δ̃)
)
.

Theorem 13 (Adaptive Stage-wise Gaussian SVT for Q+(4)). Let M be an instance of Algo-
rithm 3 invoked with the same parameters as in Theorem 12, except that RESAMPLE = True
and kmax = +∞. Then for all c′, γ such that kc

′

γ ≤ (δ′)−1, then M is (ε, δ̃ + c
c′ δ
′)-DP with

ε = O
(√

c42

σ2
1

log(1/δ′) log(1/δ̃)
)

for all adaptively chosen sequences of queries in Q+.

Remark (Adaptive to c′ and numerical computation). Observe that choosing RESAMPLE = True
makes Algorithm 3 identical to Algorithm 2 for all choices of c′ ≥ 1. We can thus minimize the
bound numerically over the parameters c′, δ′ to minimize the final bound, to simulate the conceptual
process of which part of the composition is RDP-based and which part (ε, δ)-DP based. The best
choice would be to make c′ as large as possible so as to get the partial benefit of the savings from RDP
composition over the c′ steps within each stage, while not ruining the O(

√
c) strong composition

when c is large.
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Algorithm 3 Stage-wise generalized SVT
Input: Data D, an adaptive sequence of queries q1, q2, ... ∈ Q with sensitivity 4, noise-adding
mechanismsMρ,Mν , threshold T , total cut-off c, per-stage cut-off c′, per-stage max-length k′max,
option RESAMPLE.

1: Initialize output vector to be an empty list.
2: for for ` = 1, 2, 3, ..., dc/c′e do
3: Set c̃ = c− c′(dc/c′e − 1) if ` = dc/c′e, and c̃ = c′ otherwise.
4: Invoke Algorithm 2 with D,T,Mρ,Mν , c̃, k

′
max,RESAMPLE and current front of the adap-

tive stream of queries.
5: Append the new output vector from Algorithm 2 to the output.
6: end for

Remark. Comparing to the likely-unachievable conjecture where the generalized SVT has an RDP
of ερ(α) + cεν(α), which would give an ε = O(

√
c42

σ2
1

log(1/δ), this bound is worse only by a factor

of
√

log(1/δ), and has some mild restrictions on δ. We remark that in Theorem 12 and 13 we focused
on the asymptotic scaling, while in practice, we can use the optimal advanced composition due to
[Kairouz et al., 2015] and search for the best parameters to give the tightest bounds.

3.3 Application to Adaptive Data Analysis
The stage-wise length-bounded Gaussian SVT’s (ε, δ)-DP guarantee allows us to directly apply it to
the problem of adaptive data analysis that aims at preventing data dredging while still allowing an
analyst to get accurate answers about a sequence of k adaptively chosen statistical queries through an
interactive protocol [Dwork et al., 2015b, Smith, 2017].

Theorem 14. With probability ≥ 1− δ over the random coins of the i.i.d. data, our algorithm and
other randomness coming from the interaction protocols against an arbitrary adaptive adversary, the
Gaussian-SVT-based Private-Guess-and-Check answers k queries including at most c inaccurately
guesses with generalization error at most O( c

1/4 log(k/δ)3/4

n1/2 ).

The proof combines either Theorem 12 or 13 with the high probability generalization bound of
(ε, δ)-DP algorithms [Jung et al., 2020] as well as the Gaussian tail bound.

In comparison, the simple Gaussian mechanism guarantees an accuracy ofO(k1/4 log(k/δ)1/2n−1/2)

and the original ReusableHoldout gives O(c1/2
√

log(k/δ)n−1/2). We show that Gaussian SVT
improves over these and matches the best known rate for the problem achieved by Laplace-mechanism-
base SVT — an O(log(k/δ)1/4) away from the lower bound. Interestingly the reason of the subopti-
mality is different. Laplace SVT is off due to the subexponential tail bound of Laplace R.V., while
Gaussian SVT is off due to the additional O(log(k/δ)1/2) factor from the strong composition. It
remains an open problem how to close this gap.

4 Experiment and discussion
In this section, we conduct extensive numerical experiments to illustrate the behaviors of SVT variants.
We will have three sets of experiments.

Exp. 1 (Calibrating noise to privacy) Given a predetermined privacy budget (ε, δ) and the cut-off c,
we compare the length each SVT-like algorithm can screen before stopping.

Exp. 2 (Privacy loss computation) We evaluate SVT variants with the same variance of noise by
comparing the composed privacy loss for finishing a fixed length sequence of queries.

Exp. 3 (Real life data) We investigate various private screening methods with a realistic sequence of
queries from running a kNN-based private-query release on the CIFAR-10 dataset.

In Exp 1 and Exp 2, the sequences of queries are qt(D) = 0 for all t so all discoveries that end up
being detected as > are false positives. Thus the length of the sequence is a measure of utility in
Exp 1. Exp 2 and Exp 3 compares the expected privacy loss ε at a fixed δ as it composes. For all
experiments, we denote (σ1, σ2) or (λ1, λ2) as the noise to perturb threshold and query in Gaussian
and Laplace, respectively. The ratio between the query noise and the threshold noise is fixed —
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Figure 1: Number of queries each algorithm can process with a fixed privacy budget (ε, δ), fixed cut-off (# of
false positives) c and fixed threshold T .
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(a) Exp 2: Synthetic null sequence
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Figure 2: Total composed privacy loss as the algorithm progresses for δ = 10−6. The margin T = 1000 and
σ1 = 210. The standard deviation of Gaussian and Laplace are aligned to be comparable.
σ2

σ1
= λ2

λ1
= 2. When applicable, we include simple Gaussian mechanism as a baseline. Moreover,

we added noisy-screening, which basically output ⊥ if qt(D) +N (0, σ2) ≥ T and > otherwise.
The data-dependent RDP-bound for noisy-screening [Papernot et al., 2018, Theorem 6] behaves like
SVT as it pays exponentially smaller privacy loss when the query qt(D) gets far from the threshold
T . We emphasize the privacy loss is sensitive information, thus not directly comparable to other DP
methods. Finally for Gaussian-SVT, kmax needs to be chosen carefully. Due to space limit we defer
more details about the experimental setup and more exposition to Appendix G.

Observations on the experiments. In Experiment 1, when the tail of the noise plays a significant
role, e.g. the threshold T is large (Figure 1(b)), Gaussian-SVT is more advantageous due to a more
concentrated noise. To further improve Gaussian-SVT, the stage-wise Gaussian-SVT that uses hybrid
composition (Theorem 12) outperforms Laplace-SVT significantly. On a side note, the sinh -style
RDP bound for Laplace-SVT (c = 1) from Lemma 4 turns out to be quite a bit better than the CDP-
version and the standard calibration ( Lemma 7). In Experiment 2, we see that as the privacy loss
composes Laplace-SVT and Gaussian-SVT with the same noise variance behave qualitatively similar.
Gaussian-SVT is better by a constant factor with larger number of iterations. Meanwhile, naive
Gaussian mechanism and noisy-screening is often the better choice when the number of iterations is
small. In Experiment 3, we see that the expected privacy losses of Gaussian SVT outperforms that of
the noisy-screening despite that the latter is data-dependent. The error bars are computed based on 10
independent run and has a correct 95% coverage. We excluded Laplace-SVT in Exp 3 due to the lack
of a way for fair comparison.

5 Conclusion
To conclude, we developed a generalization of sparse vector technique for DP that allows us to use any
noise-adding mechanisms. We derived the Renyi-DP bounds of these generalized-SVT and showed
that we can get

√
c-composition in all practical regimes of interests. We use theory and experiments

to demonstrate the merits of Gaussian-SVT. In downstream tasks, we have shown that Gaussian-SVT
matches the best existing bound for adaptive data analysis and demonstrated in experiments that it
could improve the privacy accounting in model-agnostic private learning. We hope the work will
spark new ideas and practical applications involving SVT.
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Broader impacts

As mentioned in the paper, differential privacy is undergoing an exciting transition from theory
to practice and there is an increasing number of deployment of differential private algorithms and
systems in both the private and public sectors.

The focus of the work is to bring a mature and classical technique in differential privacy — Sparse
Vector Technique — to practice by improving the privacy-utility trade-off, and also to conduct
numerical studies so as to provide recommendations on which method to use in each regime. This
task is strongly tied to the goal of AI/ML for social good and responsible computing.

Notice that in practice, the computation of privacy loss or the calibration of noise to privacy budgets
is extremely important as these seemingly theoretical calculations will affect the number of data
points to collect, and affect the statistical power in sensitive applications such as clinical studies.

Moreover, our application to adaptive data analysis is strongly tied to the reproducibility crisis in
science and the problems of overfitting common benchmarks that we are currently experiencing in
the machine learning community.
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