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A Lifted dynamics for the Interacting Wasserstein-Fisher-Rao Gradient
Flow

Recall the IWFRGF in (8), which we reproduce here for convenience.

{at.uz =79V - (ﬂzvmvm(ﬂyvx)) - O‘Nm(Vz(/‘y)w) - E(Nm»/‘y))a pa(0) = a0
Oty = =Vy - (U VyVy (e, y)) + oy (Vy (pta, y) — L(kas y))s 11y5(0) = pay 0

Given v, € P(X x RY) define j1, = [, wy dve(-, w,) € P(X), thatis

|e@ @ = [ @) (o),
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for all ¢ € C(X). Given v, € P(Y x RT), define p,, = [, wy dvy(-,wy,) € P(Y) analogously.
We say that v,, v, are “lifted” measures of u.,, t,, and reciprocally ji,, 11, are “projected” measures
of vy, vy.

By Lemma | below, we can view a solution of (8) as the projection of a solution of the following
dynamics on the lifted domains X x R and ) x R*:

{8tl/z = vww,w : (Va:guy (SL‘, wa:))v V;v<0) = Hz,0 X 6w$:1 (10)

Oy = *wa,y : (Vyg/tm (vay))a Vy(o) = Hy,0 X 51"y:1
where
I, (@, we) = (qws (Vo (py, ) — L(pas y)), YV Va(py, T))),
Guo (Y, wy) = (Qwy (Vy (pta, ) — L(Ka, 1y)), YV Vy (15 )))-
Lemma 1. For a solution v, : [0,T] — P(X x R*), v, : [0,7] — P(Y x R") of (10), the
projections [i., [, are solutions of (8).

That is, given any ¢, € C!(X), ¢, € C*(Y), we have

G | or@ di == [ Vepu@) Vel ) die =0 [ ale) (Valiyr0) = £ ) i,

d

dt/ywy(y) duy—V/yvywy(y)'VyVy(Mx,y))duﬁ@/ywy(y)(%(ux,y)E(ux,uy))duy,

,Ux(o) = Hz,05 Ny(o) = HUy,0

(11)
From (10) in the weak form, we obtain that given any ¢, € C}(X x RT), ¢, € C}(Y x RT),
d
*/ wx(wix) de(wiz) = / _’yvm'(bm(mvw:r) ) szz(ﬂwx)
dt Jxxr+ X xR+
dip,
- awww(xaww)(vm(ﬂwx) — L ,uy)) dpig,
d _ (12)
dt Yy (Y, wy) dvy(y, wy) = YV oy ¥y (Y, wy) - Vi Vy (s y)
YxR+ VYxR+
+ awyd (Y, wy) (Vy (s y) — L(pay py)) ity
y
1/1(0) = Hg,0 X 6wz:15 Vy(o) = Hy,0 X 6wy:1-
Taking 1/}ZE ((E, wz) = wz@z (x)v wy (ya wy) = wy%@y(y) yields
d
% ww@w(x) de(ajawz> = / _’wavzgow(ZE) : vax(ﬂyat%‘)
X xR+ X xR+
- awx‘ﬂz(x)(vx(ﬂyv T) — ﬁ(ﬂxaﬂy)) dpig, (13)
d
pr wyty (Y, wy) dvy(y, wy) = / YwyVypy(y) - Vi Vy(ba, y)
VxRt VxRt

+ awy oy (Y) (Vy (b, y) — L1y py)) dpty.

Notice that (13) is indeed (1 1).

B Continuity and convergence properties of the Nikaido-Isoda error
Lemma 2. The Nikaido-Isoda error NI : P(X) x P()) — R defined in (2) is continuous when we

endow P(X), P(Y) with the topology of weak convergence. Specifically, it is Lip(£)-Lipschitz when
we use the distance Wi (puz, p) + Wi (py, p,) between (g, ) and (i, ) in P(X) x P(Y).
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Proof. For any 4, the function V; (p1y, ) : X — R defined as z — [ £(z,y) dp, is continuous and
it has the same Lipschitz constant Lip(¢) as ¢. Hence, for any i, 1), € P(X),

sup  L(pa, pty) — sup  L(pg, pry) =  sup /Vw(ﬂyax)dﬂw_ sup /Vz(uy,x)du;

l"yEP(y) l"yEP(y) uyE'P(y) uyE'P()/)
< sup / Vi (i, x)dp, +  sup / Ve (s ©)d(pp — ) —  sup / Vi (s @) dpiz,
MyE'P(y) MyE'P(y) MyE'P(y)

= sup /Vz(uy,l’)d(uz — ) < Lip(O)Wh (i, pi7,)
Hyep(y)

The same inequality interchanging the roles of pg, i, shows that [sup, cp(y) L(tz, ty) —
sup,,, ep(y) LKy, ty)| < Lip(€)Wi (i, p7;) holds. An analogous reasoning for £(i,,-) : Y — R
and the triangle inequality complete the proof. O

Lemma 3. Suppose that (11 )nen is a sequence of random elements valued in P(X) such that
E[W3 (43, pt)] === 0,

where p, € P(X). Analogously, suppose that (/LZ)neN is a sequence of random elements valued in
P(Y) such that

where i, € P(Y).

Then,
n— o0

E[|NI(pey s pryy) — NI(pa, py)|]] —— 0

Proof. First,
EDW (1, 112)] < EW (1)) < (BEDVE (1)) * (14)

which results from two applications of the Cauchy-Schwarz inequality on the appropriate scalar
products. An analogous inequality holds for EDV (uy, 1,,)]. Hence, by Lemma 2,

E[INI(py, i) — NI(pa, )] < Lip(€)EV (aly, i) + Wi (g5 i)
<Lip(t) (B3 (e p)])* + BV (2, 1)) )
< Lip(0)V2 (B2 (!, )] + EDVE(, 1)) 2,

where the second inequality uses (14) and the third inequality is another application of the Cauchy-
Schwarz inequality. Since the right hand side converges to 0 by assumption, this concludes the
proof. O

C Proof of Theorem 1

We restate Theorem | for convenience.

Theorem 1. Suppose that Asm. | holds, that £ € C%®(X x Y) for some o € (0, 1) and that the initial
measures [z 0, fby.0 have densities in L*(X), L*(Y). If a solution (p(t), j1,(t)) of the ERIWGF
(7) converges in time, it must converge to the point (fi,, fi,,)) which is the unique fixed point of the
problem

L sy x 1 T z
pa(x) = ——e PLE@ dia(y) () = —_ B[ U y) duale),
Zs Z,

(fig, fy) is an e-Nash equilibrium of the game given by L when 3 > % log (21%/5(21(5/5 - 1)) ,

where Ky := maxg, , {(x,y) — ming ,, {(z,y) is the length of the range of {, § := ¢ /(2Lip({)) and
Vs is a lower bound on the volume of a ball of radius 0 in X, ).

Theorem | is a consequence of the following three results, which we prove separately.
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Theorem 4. Assume X, ) are compact Polish metric spaces equipped with canonical Borel measures,
and that ¢ is a continuous function on X X ). Let us consider the fixed point problem

pole) = b )
pyly) = Zieﬁff(m,y) dpie (@)

where Z, and Z, are normalization constants and p., py are the densities of |iy, jty. This fixed point
problem has a unique solution (i, fi,,) that is also the unique Nash equilibrium of the game given

by L, ty) = L(pa, py) + B (H (11y) — H(p1a))-

Theorem 5. Let K, := max, , {(x,y) — min, , £(x,y) be the length of the range of (. Let ¢ > 0,
d = ¢/(2Lip(£)) and Vs be a lower bound on the volume of a ball of radius 6 in X,). Then the
solution (fi,, fi,) of (9) is an e-Nash equilibrium of the game given by L when

4 1-V;s
> -1 2———(2Ky/e—1) ).
e L e

Theorem 6. Suppose that Asm. | holds and { € C*%(X x Y) for some o € (0, 1), i.e. the second
derivatives of £ are a-Holder. Then, there exists only one stationary solution of the ERIWGF (7) and
it is the solution of the fixed point problem (9).

C.1 Proof of Theorem 4: Preliminaries

Definition 2 (Upper hemicontinuity). A set-valued function o : X — 2Y is upper hemicontinuous if
for every open set W C Y, the set {x|p(x) C W} is open.

Alternatively, set-valued functions can be seen as correspondences I' : X — Y. The graph of I is
Gr(I") = {(a,b) € X xY|b € I'(a)}. If T is upper hemicontinuous, then Gr(T') is closed. If Y is
compact, the converse is also true.

Definition 3 (Kakutani map). Let X and Y be topological vector spaces and ¢ : X — 2Y be a
set-valued function. IfY is convex, then ¢ is termed a Kakutani map if it is upper hemicontinuous
and @(x) is non-empty, compact and convex for all x € X.

Theorem 7 (Kakutani-Glicksberg-Fan). Let S be a non-empty, compact and convex subset of a
Hausdorff locally convex topological vector space. Let ¢ : S — 2° be a Kakutani map. Then o has
a fixed point.

Definition 4 (Lower semi-continuity). Suppose X is a topological space, xq is a point in X and
f: X = RU{—00, 00} is an extended real-valued function. We say that f is lower semi-continuous
(Ls.c.) at x if for every e > O there exists a neighborhood U of g such that f(x) > f(xo) — € for
all x in U when f(xg) < +00, and f(z) tends to +00 as x tends towards xo when f(xg) = +o0.

We can also characterize lower-semicontinuity in terms of level sets. A function is lower semi-
continuous if and only if all of its lower level sets {x € X : f(z) < a} are closed. This property
will be useful.

Theorem 8 (Weierstrass theorem for Ls.c. functions). Let f : T — (—o0, +00| be a Ls.c. function
on a compact Hausdorff topological space T. Then f attains its infimum over T, i.e. there exists a
minimum of f inT.

Proof. Proof. Let ag = inf f(T'). If g = +00, then f is infinite and the assertion trivially holds.
Let ay < +oo. Then, for each real @ > «y, the set {f < a} is closed and nonempty. Any finite
collection of such sets has a nonempty intersection. By compactness, also the set ﬂa>a0 {f<a}=

{f < ag} = f~(ap) is nonempty. (In particular, this implies that oy is finite.) O

Remark 1. By Prokhorov’s theorem, since X and ) are compact separable metric spaces, P(X)
and P(Y) are compact in the topology of weak convergence.

C.2 Proof of Theorem 4: Existence

ILemma 4 and 5 are intermediate results, and [.emma 6 shows existence of the solution.
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Lemma 4. Forany p1, € P(Y), Ls(-, y) : P(X) — Ris lower semicontinuous, and it achieves a
unique minimum in P(X). Moreover, the minimum mg (i, ) is absolutely continuous with respect to
the Borel measure, it has full support and its density takes the form

dmq (1) (z) = R e B Ly L (15)
dx Hy

where Z,,  is a normalization constant.

Analogously, for any pi, € P(X), —Ls(phz, ) : P(Y) — Ris lower semicontinuous, and it achieves

a unique minimum in P(Y). The minimum my (115 is absolutely continuous with respect to the Borel

measure, it has full support and its density takes the form

dmy(uﬂﬁ)( ) = LeﬁfL(Ly)dum
dy Z ’

B

where Z,, is a normalization constant.

Proof. We will prove the result for £3(-, 11,/), as the other one is analogous. Let dx denote the
canonical Borel measure on X, and let p be the probability measure proportional to the canonical

Borel measure, i.e. % = VO]( SOk Notice that vol(X') is by definition the value of the canonical Borel
measure on the whole X'. We rewrite

L3 (e py) = //f(wvy)duydux +ﬁ‘1/log (d/“) dpe + B H (py)

// (2, 5)dpydts + B~ / (d“f dp>dum+B1H(uy)

— [ (ta,y) — 5 10g (vol (X)) duydps + B [ 1og (2 dpuy + B H (1)
/ / / ( dp )

Notice that the first term in the right hand side is a lower semi-continuous (in weak convergence
topology) functional in 1, when p,, is fixed. That is because it is a linear functional in i, with a
continuous integrand, which implies that it is continuous in the weak convergence topology. The
second to last term can be seen as the relative entropy (or Kullback-Leibler divergence) between (i,

and p:
dpiy
H; w::/lo( ~>dw
5(Ha) e\ )

The relative entropy H(f4,) is a lower semi-continuous functional with respect to 41, (see Theorem
1 of Posner (1975), which proves a stronger statement: joint semi-continuity with respect to both
measures).

Therefore, we conclude that Lg(-, it,) (With p,, € P(Y) fixed) is a L.s.c. functional on P(X’). By
Theorem 8 and using the compactness of P(X'), there exists a minimum of Lg(-, pt,,) in P(X).
Denote a minimum of Lg(-, tty) by fiz. [i; must be absolutely continuous, because otherwise
—B71H(fi,) would take an infinite value. By the Euler-Lagrange equations for functionals on
probability measures, a necessary condition for /i, to be a minimum of Lg(-, 11,/ is that the first
variation M(uz)( ) must take a constant value for all © € supp(ji,;) and values larger or
equal outside of supp(fiz ). The intuition behind this is that otherwise a zero-mean signed measure
with positive mass on the minimizers of w (fi) and negative mass on the maximizers would
provide a direction of decrease of the functional. We compute the first variation at fi,:

0Ls( py) (- _ 0
b, )@ =5

_ /L(x7y)dﬂy + B tlog (df; (:c)) :

(/L(x, y)dpydp, — BV H (fig) + ﬁ_lH(Ny>>
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We equate [ ¢(z,y)dp, + 37" log(%(a@)) = K, Vz € supp(fi5), where K is a constant. The first
variation must take values larger or equal than K outside of supp(/i,), but since log(% (z)) = —0

outside of supp(/i, ), we obtain that supp(ji;) = X. Then, for all z € X,

dfis (z) = B L(@y)du,+BK _ 1 e~ B J L(zy)dpuy
dx Hy

where 7, is a normalization constant obtained from imposing J %(x) dx = [1df, = 1. Since
the necessary condition for optimality specifies a unique measure and the minimum exists, we obtain
that m (1) = fi, is the unique minimum. An analogous argument holds for m,, (fi,,) O

Lemma 5. Suppose that the measures (juy ), o and i, are in P(Y). Recall the definition of
my : P(Y) = P(X) in equation (15). If (j1y.n), o cOnverges weakly to puy, then (my(jy n)),cxn
converges weakly 10 m(f1y), i.e. my is a continuous mapping when we endow P () and P(X') with
their weak convergence topologies.

The same thing holds for m,, and measures (ji. ), . and fi; on X.

ne

Proof. Given x € X, we have [{(x,y)duyn — [£(z,y)du,, because £(z,-) is a continuous
bounded function on ). By continuity of the exponential function, we have that for all x € X,
e B y)diyn _y o=B [ zy)dry Using the dominated convergence theorem,

/ e~ B U=y dpyn 1o _>/ e~ B = y)dpy g,
X X

We need to find a dominating function. It is easy, because Vn € N, Va € X, e~/ {@v)duyn
e~ BmineG hexxy £(®.Y)  Apd fx e~ Amine ey @y) gy = ¢=Amineyexxy H{zvyol(X) < oo.

By the Portmanteau theorem, we just need to prove that for all continuity sets B of m, (u,,), we have
My (fby,n ) (B) = myg () (B). This translates to

[5 e—B [ U= y)dpy.n o [s B U=y)dpy g
_)
fX 6_6 ff(l‘ay)d/"/y,n dx fX e—ﬂ fé(l,y)duy dx

We have proved that the denominators converge appropriately, and the numerator converges as
well using the same reasoning with dominated convergence. And both the numerators and the
denominators are positive and the numerator is always smaller denominator, the quotient must
converge. O

Lemma 6. There exists a solution of (9), which is the Nash equilibrium of the game given by Lg.

Proof. We use Theorem 7 on the set P(X) x P (), with the map m : P(X)xP(Y) — P(X)xP(Y)
given by m(pz, tby) = (Mg (ty), my(1e)). The only condition to check is upper hemicontinuity of
m. By Lemma 5 we know that m,, m, are continuous, and since continuous functions are upper
hemicontinuous as set valued functions, this concludes the argument. Indeed, we could have used
Tychonoff’s theorem, which is similar to Theorem 7 but for single-valued functions. O

C.3 Proof of Theorem 4: Uniqueness

Lemma 7. The solution of (9) is unique.

Proof. The argument is analogous to the proof of Theorem 2 of Rosen (1965). Suppose
(Hz,1, fy,1) and (fz,2, f1y,2) are two different solutions of (9). We use the notation F (fiz, fty) =
La(fe, ty)s Fo(tta, tty) = —Ls (e, Hy). Hence, there exist constants K 1, K, 1, Ky 2, Ky 2 such
that

(5F1 6F2

x,1y K:c =Y, z,1s K =Y
o (15 pry1) (@) + Kz p =0 5, (ta,15 py,1) (y) + Ky 1 =0
(5F1 §F2
021 (1o, Koo =0, "2 (i 2, Ky2=0
o (25 fry2)(7) + Ky 2 5, (a2, oy 2) (Y) + Ky 2
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On the one hand, we know that

OF oF:
St 1)) Atz = ) + [ 52 s 1,0)0) 2= 1)
Y

SF SF.
+/571(,Ux,2a/‘y72)(93) d(pz,1 — fha,2) +/572(ux,27uy,2)(y) d(pry,1 — Hy,2)

- — /Kz,l d(ﬂa:,2 - ,ua:,l) - /K ,1 d(:uy,2 - Ny,l)

- /Kw,2 d(M;ml - Mm72) - /Ky72 d(/-j/y,l - /J'y,Q) =0

We will now prove that the left hand side of (16) must be strictly larger than 0, reaching a contradiction.
We can write

OF OF
i(/v‘x,%ﬂyﬂ)(x) - Mfi(ux,huy,l)(ﬂv) = /L(x,y) d(pry,2 = Hy,1)

+ 87 (log (. 2()) — log(pae1(2))),
O F: OF:
Wj(ﬂz,?vﬂyﬁ)(x) - ﬁ(ﬂm,lauy,l)(x) = —/L(I, y) d(/-’/ac,2 - Nac,l)
+ 871 (log(py,2()) — log(iy,1(x)))
Hence, we rewrite the left hand side of (16) as

/ / Lz, y) d(tys — fig1)d(ftaz — i) + B / (log(j12,2(2)) — 1og(tta 1 (1)) d(jtz.2 — frz1)
/ / (2,9) (s — 1o.1)d(pty2 — 1) + B / log 11y 2(x)) — 108(jiy.1 () d(tty.2 — 111)
(Huw 1(Nx 2) + H/La‘ z(ﬂac 1) + Huq 1(Ny 2) + H/Ly 1(#2/ 2))

Since the relative entropy is always non-negative and zero only if the two measures are equal, we
have reached the desired contradiction. O

C.4 Proof of Theorem 5

We will use the shorthand V,(z) = Vi(iy)(z) = [L(z,y)diy, V,(y) = Vy(i)(y) =
J L(z,y)dji,. Since £ : X x Y — Risa contlnuous function on a compact metric space, it
is uniformly continuous. Hence,

Ve > 0,36 > 0st. \/d(z,2)2 +d(y,y')2 <6 = |l(z,y) —L(z',y)| <e

‘Which means that
dwa') <5 = V() |—\/ (e,9) — € y))dy| < <

This proves that V; is uniformly continuous on X (and V/, is uniformly continuous on ) using the
same argument).

We can write the Nikaido-Isoda function of the game with loss £ (equation (2)) evaluated at (fi, fiy)
as

Nl(ﬂzv /ly) = ‘C(ﬂwv ﬂy) - II;}D{,C(,U,IM ﬂy)} + (_E(ﬂwa ﬂy) + m§x{£(ﬂwa M;)})

_ z 17)
[ Va(@)e Py . — [Vy(y eﬁVy(y dy (
= T emea V@)t = g T W)

The second equality follows from the definitions of £, V.., V},. We observe that in the right-most
expression the first two terms and the last two terms are analogous. Let us show the first two terms
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can be made smaller than an arbitrary € > 0 by taking 3 large enough; the last two will be dealt with
in an analogous manner. Let us define V,,(z) = V,(x) — mingrec, Vi (2').

/ Va(w)e PV (da — min V,(z) = J(Va(x) — mingec, Vi (a'))e PVe@)dy
J e BVal@)dy z€Cy [e Vel dy

o (18)
J Vi (w)em V=) (1{%@)@/2} Tl otz + 1{e<fa<z>}) dz

= f 6_'BV$(I)]1{V,T(1)<5/2}dx + f e_BVx(w)]l{s/2<Vm(m)<s}dx + f e—ﬂVx(a:)]l{s<Vﬂ(m)}dgg
Let us define

—BVe(zx
UV, (2)<e/2} :/6 o )]l{vm(x)gam}df”’
and ¢(. /7, (z)<c} A0 ¢(. ., (1) analogously.
Similarly, let
[/ —BVe(x
T Vo (2)<e/2} :/Vz(fﬂ)e PG <oy

and 7', /5 7 (2)<e} AN Ty ¢, )y analogously.
Let
Ue/2< Vs (2)<e}

ﬁ =
4V, (x)<e/2) T Uej2<Vi(@)<e) T Ue<Vi(a)}

Then, we can rewrite the right-most expression of (18) as

TV (@)<e/2} T Me/2<Vu(@)<er T Me<Val@)}

UV (0)<e/2y T Ue/2<Vi(a)<ey T UHe<Va(o)}

(19)
"V (@)<e/2) T Me<lu(@)}

=p - +(1=p)— -
Ue/2<Va(w)<e) UV (@0)<e/2y T Ue<Va(o)}
Since V(z) < ¢ in the set {z|¢/2 < V,(z) < €}, Tiej2<iy()<e Ve o<y (x)<e} S E

Let i be such that V (zyin) = mingec, V(z) (possibly not unique). By unifoer continuity of V.,
we know there exists § > 0 (dependent only on €) such that B(zpin, 6) C {z|Vy(z) < £/2}. The

following inequalities hold:
€
T(Va(0)<e/2) S 3UT(0)<e/2p

Me<a(eyy S (MaxVe(z) — min Va())q(e v, o)y < (max L(z,y) —min Lz, ¥))4p. <7, o))

= K14 v, ()
(20)

where we define K, = max, , ¢(x,y) — min, , £(z,y). Using (20), we obtain

@se/2) Fe<tu@) o 29Va@se/2t T KL i@y

Ui wy<es2y T UYeclo@)  UPh@r<e/2s T Ueaty(@)

If the right-hand side is smaller or equal than ¢, then equation (19) would be smaller than € and the
proof would be concluded. For that to happen, we need (K¢ — €)q(. v, ()} < 597, (1)<e/2} <

U, ()<e /2t VeV (2)} 2 2(Ky¢/e — 1). The following bounds hold:
417, (z)<e/2} > Vol(B(zmin, 5))€7ﬁ(minmecl Vz(m)+€/2)a
Ueat () < (1 — Vol(B(2min, 6)))6—/3(Hlinzecl Ve ()+e)
Thus, the following condition is sufficient:

Vol(B(Zmin,0))

Bel2 > o(Kp Je —1).
T Nol(Blamm,0)) ¢ = 2Ke/e—1)

20



Hence, if we take

5> 21 (21 — Vol(B(xin, 9))
Vol(B(Zmin, 0))
then (fiz, fi,) is an e-Nash equilibrium. Since we have only bound the first two terms in the right

hand side of (17) and the other two are bounded in the same manner, the statement of the theorem
results from setting ¢ = &/2 in (21).

(K= 1>> e

C.5 Proof of Theorem 6

First, we show that any pair i, fi,, such that

dite 1 _grewy) dpy) Yy _ 1 8 e@y) dpe@)

is a stationary solution of (7). Denoting the Radon-Nikodym derivatives dj;'” , dd% by pz, Py, it is

sufficient to see that

{0 = Vo (2 VaVa(tty, 7)) + B~ Dufo (22)
0 ==Yy (pyVyVy(tte,y)) + B Ay
holds weakly. And

. 1 _ w0 di . . .
Vapz = Ze B twy) divy(y) <_sz /ﬁ(x,y) d,uy(y)> = _vazvz(ﬂyax)a

x

~ 1 T (1o (T ~ ~ ~
Vypy = 765IZ( ¥) dia () (5Vy/€(x,y) dﬂﬂﬁ@)) = pyVyVy(fias y),
y

implies that (22) holds.

Now we will prove the converse. Suppose that fi,, fi, are (weak) stationary solutions of (7). That is,
if o, € C?(X), p, € C*(Y) are arbitrary twice continuously differentiable functions, the following
holds

O=/ (—/ Ve (x) - Val(z,y) d/ly‘i‘ﬁ_lAz‘Pz(x)) Ay
X y (23)

0= / </ _vaOy(y) : Vyf(x,y) dfiy — BlAySOy(xay)) dﬂy
y X

(23) can be seen as two measure-valued stationary Fokker-Planck equations. We want to see that
they have densities and that the densities satisfy the corresponding classical stationary Fokker-Planck
equations (22). Works in the theory of PDEs have studied sufficient conditions for measure-valued
stationary Fokker-Planck equations to correspond to weak stationary Fokker-Planck equations, and
further to classical stationary Fokker-Planck equations. See page 3 of Huang et al. (2015) for a more
detailed explanation on the two steps. That measure-valued stationary correspond to weak stationary
solutions is shown in Theorem 2.2 of Bogachev et al., 2001. That weak stationary solutions are
classical stationary solutions requires that the drift term is in C&)’C‘X (locally a-Holder continuous with
exponent 1), meaning that it is in C'* and that its derivatives are a-Holder in compact sets. The result
follows from the theory of Schauder estimates. Differentiating under the integral sign, the drift terms
— fy Vo l(x,y) diiy, [ Vyl(x,y) dji, fulfill the condition if £ € C?,

D Proof of Theorem 2

Recall the expression of an Interacting Wasserstein-Fisher-Rao Gradient Flow (IWFRGF) in (8):

at/f“a: = ’Vv . (/ffxvzvr(,u’w‘r))

_O‘/Jx(vx(va r) — Lz, N'y))7 pa(0) = Ha,0
Oipry ==YV - (1y Vy Vy (b, v))

oy (Vy(pa, y) — Lz py))s 115(0) = py0

The aim is to obtain a global convergence result like the one in Theorem 3.8 of Chizat (2019). First,
we will rewrite Lemma 3.10 of Chizat (2019) in our case.
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Lemma 8. Let ,ux, iy be the solution ofthe IWFRGF in (8). Let piy, puy, be arbitrary measures on
X, ). Let A (t) = 1 fo te:(8) ds and fi, (t) = * fo oy (s) ds. Let || - || be the bounded Lipschitz
o e Hlon = N T 2o

1
. — inf g — ot 4 24
Qoo (7) = I " = pellae + —H (1 o) (24)
with © = X or ). Let
1 .
B = 3 (Ter%a;j(eyﬂ(x y) — rer;n;leyf(x y)> + Lip(¢) (25)

Then,

Proof. The proof is as in Lemma 3.10 of Chizat (2019), but in this case we have to do everything
twice. Namely, we define the dynamics

dps p

dat =9V (szvx(ﬂyvx))
dus R

7 = V(1 VVy(pa,y)

initialized at #5(0) = p5 o, 115(0) = Hy o arbitrary such that 1. ; and fuy  are absolutely continuous
with respect to . o and p,, o respectively.

Let us show that

1d 5L
**”H(um o) = o (M iy ) () A5, — pir) (27)

where H(uS, 1) is the relative entropy, i.e.
d . d
(s ) = = [ Tog (%) dus,
7 1 ) dt/ og (p5) dpg

05 being the Radon-Nikodym derivative dus, /d i,

Assume to begin with that £ remains absolutely continuous with respect to p,, through time. We
can write

G [e@pi@aue) = 5 [e@di)

We can develop the left hand side into
G [l = [ =29 (ea@)pi @) - TVl 0)de (0
+f —ammpz(x)(vz(uy,x) = Lt 1)) ()

e

/ (Vo (2)05 () + 0 (2)V 55 (2)) - VValpty ) i ()

x)dpi, ()

/ — g ()5 (@) (Va sty 2) — Lt 1))yt ()

+ [ wﬁgf () ()

and the right hand side into
d
G [e@i@ = [ —1Veu@) Vi )dic o)
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Note that comparing terms, we obtain

/ e () V() - Vit 7) dpin ()

— [ a2 ) Valiys ) = Ltas ) = () 22 2) i (0)

Since ¢, is arbitrary, it must be that

VL) Vel ) = 0 (@) Ve 7) — Ll i) — 5opi@)  8)

holds ,.-almost everywhere. Now,
d
G [ 108 62) dus == [ 9 1o (4@)) - VWil ) dic (o)

_ 77/ %V (p5 () - VVi(pty, x) dps, ()

= [ 0ali) = £lpnse) (o)~ [ Spi @i (o)
Here,
| @i = [ @@ =0
And since

oL
»C(szliy) = 51t (Nzaﬂy)(x) dpiz,

the first term yields (27). We assumed that pZ, existed and was regular enough. To make the argument
precise, we can define the density of yu, with respect to i, to be a solution pZ, of (28), and thus

specify uZ.
Now, recall that p% is an arbitrary measure in P (X). By linearity of £ with respect to i,

[ )@ 0z = ) = [ 5 )@ s = ) + [ 5 i) )

* oL *[|*
S (Ll 11y) = Lk p1y)) + 15~ (ﬂxvﬂy)HBLHux 1z |lBL
(29)

Notice that we can take || %(sz {ty)||BL to be smaller than B (defined in (25)). If we integrate (27)
and (29) from O to ¢ and divide by ¢, we obtain

/Em s My (8 /Em,uy ) ds

L M 0 pm0) — HOE (D). 1 (1) / s — w2 llg, ds

‘We bound the last term on the RHS:

B K * * B i *
T =i s < Bluto i T [ Mo —silids 6D

(30)

\at

And
1050~ piali = sup / raGe® = sw 4 / 7 i (s
HfHBLﬁl fec*(x Il flleL<T, fECZ(X) §

HfHBL<1 fec2(X)
(32)
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Also, by linearity of £ with respect to (i,

1

= / Lk, iy (5)) ds = =L, iy (1)) (33)

If we use (31), (32) and (33) and the non-negativeness of the relative entropy on (30), we obtain:
H(,U/i’o, ,ua:,())
4at

H(MZ707 ,UJy,O)
4ot

1 ! * = € * || * B2,y
7 L),y o)) s — £ (1) < + Bl o - il + =5t G4)

1 ! * g * || * B2
[ a9 ds 4 LU0 < + Bl o — pj i+ 5 tG9)
0

Equation (35) is obtained by performing the same argument switching the roles of = and y, and L by
—L. By adding equations (34) and (35) and considering the definition of Q in (24), we obtain the
inequality (26).

O

Notice that by taking the supremum wrt (7, 7 on (26) we obtain a bound on the Nikaido-Isoda error
of (fiz(t), iy (1)) (see (2)).

Next, we will obtain a result like Lemma E.1 from Chizat (2019) in which we bound Q. The proof
is a variation of the argument in Lemma E.1 from Chizat (2019), as in our case no measures are
necessarily sparse.

Lemma 9. Let © be a Riemannian manifold of dimension d. Assume that Vol(By ¢) > e~ e for all
0 € ©, where the volume is defined of course in terms of the Borel measure' of ©. If p := % is the

Radon-Nikodym derivative of g with respect to the Borel measure of ©, assume that p(0) > e l
forall § € ©. The function Q,,« ., (T) defined in (24) can be bounded by

d 1
Qv o (1) < ;(1 —logd +logT) + ;(K—&- K')

Proof. We will choose p° in order to bound the infimum. For § € ©,¢ > 0, let &y . be a probability
measure on © with support on the ball By . of radius € centered at  and proportional to the Borel
measure for all subsets of the ball. Let us define the measure

4 (4) = /@ £9.c(A) du*(0)

for all Borel sets A of X. Now, we can bound ||u° — p*||5. < Wi(u®, p*). Let us consider the
coupling 7y between u° and p* defined as:

V(A x B) = /A €9.-(B) dyr*(6)

for A, B arbitrary Borel sets of O. Notice that v is indeed a coupling between p° and p*, because
Y(A x ©) = p*(A) and v(© x B) = uf(B). Hence,

Wil ) < [ da(0.0) ar(o.0) = |
Ox06 €]

1

S de(0,0') d6 du*(0') (36
Vol(Byr ) /BS o(0,0) do dy”(¢") ~ (36)

where the inner integral is with respect to the Borel measure on ©. Since dg(6,60’) < ¢ for all
0 € By ., we conclude from that (36) that Wy (u°, p*) < e.

Next, let us bound the relative entropy term. Define p. as the Radon-Nikodym derivative of p® with
respect to the Borel measure of O, i.e.

)= 50 = | ot Lo - (0) (),

!The metric of the manifold gives a natural choice of a Borel (volume) measure, the one given by integrating
the canonical volume form.
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Also, recall that p := dg‘%. Then, we write

H(ps, po) = / log = dp = / log(pe)p-df — / log(p)pedf. (37)
e) p e) S}

On the one hand, we use the convexity of the function z — x log z:

pel®)1020:0) = ([ oyt @ ) 10w ([ G 0 ')

‘We use Fubini’s theorem:

1 1 .

/@pg(ﬂ) log p(0) df < /@/@ <\]01(-BG/’5)ILBSI,E(0)) log (V()I(Bg/,a)]lBe"f(e)> db dp*(0")
1 *x/nl\ __ *(n!
= /@ VOI(BQ/,E)/B —log (Vol(By ¢)) d du*(0") = —/elog (Vol(Byr ) du™(8")

< —dloge + K

0/ e

(38)

where d is the dimension of © and K is a constant such that Vol(By/ ) > e Kedforall @ € O.
On the other hand,

1 %/l
- /@ log(p(6))p-(6) db = /e i / o) 0 00

1
< = K'df dp*(0') = K'
AVOl(Be',E) /Vol(Bgf,E) 8 ( )

where K is defined such that p(6) > e~ forall 6 € ©.

(39)

By plugging (38) and (39) into (37) we obtain:

1 1
li* = b + —H (1", po) < e+ —(=dloge + K + K').
If we optimize the bound with respect to € we obtain the final result. O

Theorem 2. Let € > 0 arbitrary. Suppose that (i, o, py,0 are such that their Radon-Nikodym

!
derivatives with respect to the Borel measures of X, Y are lower-bounded by e~ . ,e Ky respectively.

Forany 6 € (0,1/2), there exists a constant Cs xy k;,k; > 0 depending on the dimensions of X, Y,
their curvatures and K, K, such that if /o < 1 and

1-6
ol €
LA P — 40
« <C’5,x,y,K;,K;> 0
Then, at ty = (ary)~Y/? we have
N](ﬂx(to); /jy(tOD ‘= sup E(ﬂw@O)vﬂZ) - [’(:U’;ﬂy(tO)) <e
“;7H§

Proof. We plug the bound of Theorem 9 into the result of Theorem &, obtaining
_ 5 - dy
L (), ) = Ll iy (1)) < —2(1 = log dy + log(aBt))
d
+ %(1 — logdy + log(aBt))
e

1
+ &(Kx + K, + K, + K,) + Bt
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Now, we set t = (ary) /2

¥ d « d @
”a(dw (1—1og§+log,/’y)+dy <1—logé’+log1lw>+Kx+K;+Ky+K;+BQ>

(41)

, and thus the right hand side becomes

Let & > 0 arbitrary. We want (41) to be lower or equal than e. For any § such that 0 < § < 1/2, there
exists Cs such that log(z) < Csz°. This yields

5 d N d N
—|de|1—-log—= +Cs | — +dy (1—1log-2+Cs(—
o B v B 0%
(42)
+,/% (K. + K, + K, + K, + B?)

If we set v < a, (7/a)~%/2 > 1 then (42) is upper-bounded by

= ds d,
(2) (dx(l —log 7 + Cs) + dy(1 —log 75 + Co) + Ko + K + Ky + K +B2)

If we bound this by ¢, we obtain the bound in (40). O]

Corollary 1. Let (Xy,, Va,,ld,.d,), en.a, en be a family indexed by N2, Assume that fi,0, jiy.0
2 : x s Ay

are set to be the Borel measures in Xy, ,Va,, that Xy, ,Ya, are locally isometric to the dy,dy-
dimensional Euclidean spaces, and that the volumes of Xa,, Va, grow no faster than exponentially
on the dimensions dy, d,.. Assume that ly, 4, are such that B is constant. Then, we can rewrite (40)
as

o2

e =)
S0 (((dl +dy) log(B) +d. IOg(dw)+dy log(dy) +Bz> )

Proof. The volume of n-dimensional ball of radius r in n-dimensional Euclidean space is

7.‘_n/2

B

13
R",

and hence, if X', ) are locally isometric to the d,, and d,-dimensional Euclidean spaces we can take

d

dy dy dy dy z
K, =logT (2 + 1> - 710g(7r) < (2 + 1) log (2 + 1) -5 log(m) < O(dg logdy)

d
K, =logD(F +1) - glog(w) < 0(d, log dy)
If the volumes of X', ) grow no faster than an exponential of the dimensions d,, d, and we take

Ha,05 Hy,0 to be the Borel measures, we can take K, = log(Vol(X)), K = log(Vol(})) to be
constant with respect to the dimensions d, d,. O

E Proof of Theorem 3(i)

E.1 Preliminaries

Throughout the section we will use the techniques shown in §G.5 to deal with SDEs on manifolds.

Effectively, this means that for SDEs we have additional drift terms h,, or h, induced by the geometry
of the manifold, and that we must project the variations of the Brownian motion onto the tangent
space.
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Define the processes X" = (X1,..., X")and Y™ = (Y!,...,Y") such thatforalli € {1,...,n},

A 1
dxi=|-—-

n XL Y ) + Do (X) | dt+ /287 Projp 1 (dW)), X" =€~ pag

HM:

i 1¢ i i r i . T n,i &
vy = | =3 VXY +hy(Y)) | dt+ V2671 Projy, oy, (dW), Y5 =€~ g
j=1 ¢
(43)

where Wy = (W}, ..., W), and W, = (W},..., W) are Brownian motions on R"P+ and R"Pv
respectively. Notice that X, is valued in X" C R™P= and Y, is valued in Y™ C R™Pv._ (43) can be
seen as a system of 2n interacting particles in which each particle of one player interacts with all the
particles of the other one. It also corresponds to noisy continuous-time mirror descent on parameter
spaces for an augmented game in which there are n replicas of each player, choosing |- |13 for the
mirror map.

Now, define X = (X',..., X" and Y = (Y!,...,Y") foralli € {1,...,n} let

ax; = ( V. zvy>duy,t+ﬁx<)2§>) dt + /35T Projy_ o (d77),
y t

- - N . g 44
a7 = ([ 9T o+ 8 50)) e+ /B5T By ), 4
X t
= € ~ Hz,0, Myt = LaW()’;}Z% Y/OZ = EZ ~ Hy,05 Mzt = LaW(XtZ)
Lemma 10 (Forward Kolmogorov equation). The laws (jiz):e[0,71; (iy)tc(o,) of a solution XY
of (44) with n = 1 (seen as elements of C([0,T], P(X)),C([0,T],P(}))) are a solution of (45).
{at,ufm =V, (vazvx(ﬂyax)) + ﬂilAacﬂza ,Uz(o) = Hzx,0

_ (45)
Oty = =Vy - (yVy Vi (b2, y)) + B lAyﬂyv 1y (0) = fiy,0

Proof. We sketch the derivation for the forward Kolmogorov equation on manifolds. First, we define
the semigroups

PPos(w) = Elps(X:)|Xo = 2], Ploy(y) = Elpy (Y2)[Yo = 9],
where X , Y are solutions of (44) with n = 1. We obtain that if £Z, LY are the infinitesimal
generators (i.e., LF@,(x) = limy_,o+ +(PFoa(z) — @a(z))), the backward Kolmogorov equa-
tions 4P, (v) = LIPFo.(x), LPYo,(y) = LIPYp,(y) hold for ¢,,¢p, in the domains
of the generators Since £ and P’ commute for these choices of ¢,, we have %Pf@x(m) =

PELE oy (), L P oy (y) = PYLYpy(y). By integrating these two equations over the initial mea-
SUIES [iz,0, fby,0, WE gL

d d
dt/wr( T) dpig s = /Ef%(:z:) Az ¢, %/wy(y) iyt = /Ei’soy(y) dfty t-

We can write an explicit form for £ P, (x) by using Itd’s lemma on (44):

LYo, (x (/ Vl(z,y) duy s ds — h, (z )) Ve () + B Tr ((ProjTIX)T Hop,(x) ProszX) ,

where we use Proj;-_ ., to denote its matrix in the canonical basis.
%
t

Let {¢;} be a partition of unity for X (i.e. a set of functions such that ), & (z) = 1) in which each
&y 1s regular enough and supported on a patch of X'. We can write

% X@m(l') dﬂz,t( ) dt/ 9096( dﬂmt Zdt/ Ek 801; d/imt( )
=" [ @) dn
k
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Now, let G (x) = &(2) 00 (z).
/ £33 (@) dpias
X

= [ (VeVility ) = B ) V(o) + 57T (Prod, ) " HE ) Proir, ) de

Notice that this equation is analogous to (660). We reverse the argument made in §G.5. Using the fact
that the support of ¥ (z) is contained on some patch of X" given by the mapping s, : Uga C R? —
U C X C RP, the corresponding Fokker-Planck on Uga is

9 W) Wy epesl)

= /U VVatiy,s: ¥1(q) - VEE(Ur(a)) + B AGE(r(q)) Ay, ) sttt (q),

where the gradients and the Laplacian are in the metric inherited from the embedding (as in §G.5).
The pushforward definition implies

d
i P e = [ VValtynw) VR 7 E ) o),
By substituting @% (z) = & (2)¢,(z), summing for all k and using >, & (z) = 1, we obtain:

G | ert@) dunsl@) = [ 92Vali2) - V@) + 571 Bripr(a) dan )

which is the same as the first equation in (7). The second equation is obtained analogously. O

Let pu? = £ 37" | 6xi beaP(C([0,T], X))-valued random element that corresponds to the empirical
measure of a solution X" of (43). Analogously, let 7 = L 3" | 8y be a P(C([0,T],Y))-valued
random element corresponding to the empirical measure of Y.

Define the 2-Wasserstein distance on P(C([0,T7], X)) as

Wi(p,v) = inf / d(z,y)* dr(z,y) (46)
mell(p,v) Jo([o,17,x)2

where d(z,y) = sup,c(o, 7] dx ((t), y(t)). Define it analogously on P(C([0, 77, Y)).

We state a stronger version of the law of large numbers in the first statement of Theorem 3(i).

Theorem 9. There exists a solution of the coupled McKean-Vlasov SDEs (44). Pathwise uniqueness
and uniqueness in law hold. Let p,, € P(C([0,T], X)), y € P(C([0,T7,Y)) be the unique laws of
the solutions for n = 1 (all pairs have the same solutions). Then,

n—o0

E[WQQ(:U‘ZMU'T) + Wg(ﬂg,ﬂy)] —0

Let us comment on why Theorem 9 implies the first statement in Theorem 3(i). We make use of
the mapping P(C([0,T], X)) > u = (ut)iejo,r) € C([0,T],P(X)) into the time marginals. By
the definition (46), sup;c(o ¢ W3 (plt 15 b)) < W3 (plt, ) and the same holds for g, pi,,. At this
point, Lemma 10 states that (f1.)se[0, 7], (14y)tc[o, 7] 18 a solution of the mean-field ERIWGF (45) and
concludes the argument. The proof of Theorem 9 uses a propagation of chaos argument, originally
due to Sznitman (1991) in the context of interacting particle systems. Our argument follows Theorem
3.3 of Lacker (2018).

E.2 Existence and uniqueness

We prove existence and uniqueness of the system given by

t
Xt:/ (—/W( o 4) dity.s ds + hy (X >ds+\/25 1 / Projp. x(dW.),
0
47
/(/VﬂxY ity s + by, Y’”) ds + /2871 /PI‘OJT Y (dWy),

ot = Law(X]), gy =Law(Yy"), Xo =&~ oo, Yo =E&~ 0.
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Path-wise uniqueness means that given W, W, £, £, two solutions are equal almost surely. Uniqueness
in law means that regardless of the Brownian motion and the initialization random variables chosen
(as long as they are p, o and pi, o-distributed), the law of the solution is unique. We prove that both
hold for (47).

We have that for all z,z’ € X, u,v € P(Y),

[ Vet = [ 9.t o] < Lo ) 4 WaGu) 48)

This is obtained by adding and subtracting the term [ V,¢(2'y) dp, by using the triangle inequality
and the inequality Wy (i, v)) < Wa(u, v)) (which is proven using the Cauchy-Schwarz inequality).
Hence,

2

’ / V., ) di — / Vol y) dv| < 2L2(d(x,a’)? + WE(u,v)) (49)

On the other hand, using the regularity of the manifold, there exists £ such that

b, (2) — hu(2')| < Lad(z,2"),

|Projr, x — Projg , x| < Lxd(z,2’)

where Projr. , denotes its matrix in the canonical basis and the norm in the second line is the
Frobenius norm. Also, let ||z — 2’|| be the Euclidean norm of X’ in RP= (the Euclidean space where
X is embedded) and let K > 1 be such that d(z,z') < Kx ||z — /||

Let p,, v, € P(C([0,T], X)) and let X*v, X*v be the solutions of the first equation of (47) when
we plug pi, (v resp.) as the measure for the other player. X#v and X"v exist and are unique by the
classical theory of SDEs (see Chapter 18 of Kallenberg (2002)). Following the procedure in Theorem
3.3 of Lacker (2018), we obtain
2
dr]

r t
B[l - x*[2) < 38| |
L/0

/VJ(X“y,y) dfiy,r —/Vwﬁ(X”y,y) dvy,»

t
- 3tE[/ b, (XH) — Dy (X)) |2 dr}
0 (50)

+ 12E -/Ot |Projr. x — Prosz,X|2 dr]

<3(3t + 4)E2E[/Ot(|X“y — X2+ W2y V) dr} ,
where L2 = (L? + L%)K?%. Using Fubini’s theorem and Gronwall’s inequality, we obtain

B = X0 ] < 3T + )1 exp(36T + 41°) | Wlyrvy ) dr D)
Let Cp := 3(3T + 4)L? exp(3(3T + 4)L?). For p,v € P(C([0,T), X)), define
Wg’t(u, v):= inf / sup d(z(r),y(r)) w(dz, dy)
mell(p,v) Jo([0,1],4)2 rel0,t]

Hence, (51) and the bound W3 (tiyr, vy.r) < W3 ,.(11y, vy) yield

I = X471 < Cr [ W (o)
Reasoning analogously for the other player, we obtain

E[”Xﬂy — XYy

t t
P YR =y < CT/ Wg,r(:“yv”y) dr + OT/ WQQ,T(Nxan) dr
0 0
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Given p,, € P(C([0,7T7,Y)), define ®,(n,) = Law(X*v) € P(C([0,T], X)), and define P,
analogously. Notice that W3 ,(® (1), P2 (1)) < E[||X#v — X v |[7], WQt( y(pz), Py (vz)) <
E[||X#s — X¥=|/?]. Hence, we obtain

t
W%,t(q)m(.uy)a . (vy)) + W%,t((py(ﬂx)y Py (ve)) < CT/O WQQ,T(:U/?W vy) + WQQ,T(M:va vy) dr

Observe that W , (11, V) + W 4 (11, 1) is the square of a distance between (jtz, f1,,) and (v, 1)
on P(C(]0,T), X)) x P(C([0,T],))). Hence, we can apply the Piccard iteration argument to obtain
the existence result and another application of Gronwall’s inequality yields pathwise uniqueness.

Uniqueness in law (i.e., regardless of the specific Brownian motions and initialization random
variables) follows from the typical uniqueness in law result for SDEs (see Chapter 18 of Kallenberg
(2002) for example). The idea is that when we solve the SDEs with W/ W' ¢’ ¢’ plugging in the
drift the laws of a solution for W, W, £, £, the solution has the same laws by _uniqueness in law of
SDEs. Hence, that new solution solves the coupled McKean-Vlasov for W/ W’ &' &',

E.3 Propagation of chaos

Let u2 = % o Oxi, Hy = % > i dyi. Using the argument from existence and uniqueness on
the i-th components of X, X,

t
E[ X — X2 < 3(3T + 4>L2E[ R R Tm) dr}

Arguing as before, we obtain

t
BIX X2 < o | [ W8, Gipan)
0

Let v = 13" §, be the empirical measure of the mean field processes in (44). Notice that
xr n i=1"X
D O(xi ki is a coupling between v and 47/, and so

W2t :um’ w ZHXl Xl”t

Thus, we obtain

EW3, (1, vi)] < CTIE{ /0 t W3 (1, 11y) dr]
We use the triangle inequality
EV3 (ki 1)) < 2EDVS (i, V)] + 2BV, (V7 )]
<201E| / WA, () dr] -+ 2B (02 )

At this point we follow an analogous procedure for the other player and we end up with

t
0

+ QE[Wg,t(VQ’ fa) + W%,t(Vg’ My)]
We use Fubini’s theorem and Gronwall’s inequality again.

EDWV3 4 (1, 1) + W3 4 (1, 1)) < 2expCrTIEVS , (v 1) + W34 (vy 1))
If wesett =T we get
EDW3 (1. 1) + W3 (i, 1)) < 2exp(207T)EWV (V7 1) + W3 (v, )]
and the factor E[W3 (v}, 1) + W3 (v}, 1)) goes to 0 as n. — oo by the law of large numbers (see
Corollary 2.14 of (Lacker, 2018)).

30



E.4 Convergence of the Nikaido-Isoda error

Corollary 2. Fort € [0, T, if iy 4, a1, iy 45 Myt Qre the marginals of py, fiz, fiy;, py at time t, we

have
n—oo

BNz 5 t1y,6) = NIpta i, 1)) —— 0
Proof. See LLemma 3. O

F Proof of Theorem 3(ii)

F.1 Preliminaries

Define the processes X = (X', ... . X"),w, = (wl,...,w?)and Y = (Y!,...,Y"),w, =

x

(w,, ..., wy) such that forall i € {1,...,n}
dX} 1 o o
SE = D Wl VRl(XL YY), XG =€~ g
j=1
dw , 1 & ; 1 &K< ; .
R D SN BURES 3) SRR IRV
j=1 k=1 j=1
dyy N J i i _ Fi oY
dt :’Yﬁzwm,tvyaxtay;)’ Yo =&~ pyo
j=1
d“’;,t i j J i i
o = ZwmﬁXt,Y QZZwythtﬁX“Y) Wy 4y Wy =1

k=1 j=1
Let v}, = 1 Ly 1 0(X3 i € P(X x RT), v, ZE %Zf 160,,- ) € P(Y x RT). Let pfy , =
LY wk Oy € P(X), gy = £ 307wl by € P(D) be the projections of v ;, 14, Notice
that we have changed the notation with respect to the main text, multiplying w?, by n: now wm}O =1
and ), wl, , = n, V¥t > Oinstead of wl, y = 1/nand Y, wl , = 1,Vt > 0.

Let hy, h, be the projection operators, i.e. hpvy = fR + Wylyg (¢, W, ). We also define the mean field
processes X, Y, W, W, given component-wise by

dx; 2 i = g
dtt = -V, /e(XZ,y)duy,t, Xo =&~ pao
du?;’t i =i 17K
Tat a) - /Z(Xtay)dﬂy,t + L(tta,ts py,t) Wap W =1
dY; i i i ©3)
dtt = ")/Vy /E(‘T, }/;5 )dILLz7t’ YO = 6 ~ ,ley70
di?

di‘/’t = (/E(.’E,ﬁi)dﬂz,t - E(NI,taMg,t)) d}fv,tﬂ U/y 0o=1
Pt = thaw(Xtiaw;,t)v Kyt = hyLaW(Yti’wzi/,t)

for ¢ between 1 and n.

Lemma 11 (Forward Kolmogorov equation). If X s Wy 17, Wy is a solution of (53) withn = 1, then
its laws vy, vy, fulfill (10).

Proof. Lett, : X x Rt —> R. Plug the laws v, v, of the solution (X, ), (Y, 1,) into the ODE
(53). Let @y = (X2, wy,) : (X xRT) = (X xRT) denote the flow that maps an initial condition

31



of the ODE (53) to the corresponding solution at time ¢. Then, we can write v,y = (P 1).Vs,0,
where (P, ¢), is the pushforward. Hence,

a Ve (2, we) dvg (2, wy)
dt ) xxr+
d
= 5 wx(q)a:,t(w7wx)) dVa:,O(x7wac)
dt ) xxm+
— [ (T @), o @a0)) ) - G al) dra()
— A ¥z z,t\ T, Wy ’dwm z,t\ T, Wy, dt z,t\ Ty Wy 2,0\ T, Wy
- / Ve (Pt (,0,)) - (—9V o Va (g, X2,))
X xRt
di),
+ i((I)ac,t(xywz))a(_‘/ac(hyljy,ty*X;)it) + E(hzym,t7 hy,uy,t)) dV:E,O(x7w:L’)

dw,

And we can identify the right hand side as the weak form of (10), shown in (12). The argument for
vy is analogous. O

We state a stronger version of the law of large numbers in the first statement of Theorem 3(ii).

Theorem 10. There exists a solution of the coupled SDEs (53). Pathwise uniqueness and uniqueness
in law hold. Let v, € P(C([0,T], X x R")), v, € P(C([0,T],Y x R")) be the unique laws of the

solutions for n = 1 (all pairs have the same solutions). Then,

n—oo

EDWVE (g, ve) + Wi (v, vy)] = 0

Theorem 10 is the law of large numbers for the WFR dynamics, and its proof follows the same
argument of Theorem 9. The reason Theorem 10 implies Theorem 3(ii) is analogous to the rea-
son for which Theorem 9 implies Theorem 3(i), with the additional step that W%(pgyt, Pot) =

W3 (hat} o, haie ) < eMTWE (U2, v, 1), and this inequality is shown in (55).

F.2 Existence and uniqueness
We choose to do an argument close to Sznitman (1991) (see Lacker (2018)), which yields convergence

of the expectation of the square of the 2-Wasserstein distances between the empirical and the mean
field measures.

First, to prove existence and uniqueness of the solution (£ ¢, ity,¢) in the time interval [0, T'] for
arbitrary 7', we can use the same argument as in the App. E. Now, instead of (47) we have

t
Xy =¢- 7/ / Val(Xs,y) dpy,s ds,
o Jy
t
’J}z,t =1 + a/ <_ /K(Xihy)d/'l’y,t + E(/sz’t, lLLyst)) wm’s dS,
0
t
Y, = §_+7/ / Vyl(z,Ys) dpie,s ds,
0 X

t
Wy =1+ a/ (/ e(xvyt)d,uw,t - E(MI,tvMZ/,t)) Wy, s ds,
0
Mzt = thaW(Xt, wm,t)a Moyt = hyLaW(f/t,@y,t)y
where ¢ and ¢ are arbitrary random variables with laws W0, fy,0 Tespectively. For z, 2’ € X,

' € RY, pg, pify € P(X), py, py, € P(Y), notice that using an argument similar to (48) the
following bound holds

‘ (/Z(x,y)d,uy +£(uz,uy)> w — </€(I/,y)d,u; *ﬁ(u;,/t;)> o

<2M|w —w'[ + [w'|L(|a — 2’| + 3W1 (v, 1)) < 2M |w — w'| + [w'|L(Je — &'] + 3Wa(pay 17)))
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2

= ‘ (—/ﬁ(x,y)dﬂy + ﬁ(uz,uy)> r— (— /lf(x’,y)d#; + E(u;,u’y)) 7’
< 12M2|w — w'|* + 3|w'[PL? (lz — 2'|* + I3 (g, i)

Recall that M is a bound on the absolute value of ¢ and L is the Lipschitz constant of the loss /.
A simple application of Gronwall’s inequality shows |, ;| is bounded by €M7 for all t € [0, 7.

Hence, we can write
2
/Z v y)dpy s — Vy /E s ,y)du;’s ds]

(- [« é,y)duwz(uz,uy))wﬂv—( [ i+ 2ai)) d]

t
< kg [ 080 XS e =t 2 ds| 4 KB | [ WG, 5]
0 0

E{IX* — XM + [ty —wh 2] < 4 tE{

+o*E [

where K = max{12a2M? 2L?y? + 3L2e*MT a2} K’ = 217~ + 27L%e*MT o2, Notice that we
have used (49) as well. This equation is analogous to equation (50), and upon application of Fubini’s
theorem and Gronwall’s inequality it yields

, t
E[Jl X — XM + [l — w2 < TK' exp(TK)ﬂ«:[ / WA (1.0 1. ds} (54)
0
Now we will prove that

W2(hyvy, hotl) < e MTW2 (1, 1)), (55)

where v, v, € P(X x[0,e2MT]). Define the homogeneous projection operator i : P((X xRT)2) —
P(X?)asVf € C(X?),

/ F(a,y) d(im) (. y) = / wowy (2, ) dr(@, we y, wy), ¥ € P(X x RT)2).
X2 (X x[0,e2MTT])

Let 7 be a coupling between h,v,, h, V.. Then hris a coupling between h, v, h, v, and
[ e = ol dtim) o) = [ wow o — yl1? dr(a, w,,y,w,)
X2 (XX[O,EQNIT])Q
<ot | o = yll? dr(e, wey,w,)
(XX[O e?lvlT])

< [ i =yl + g = wy (2, 00,0,
(X x[0,e2MT])2
Taking the infimum with respect to 7 on both sides we obtain the desired inequality.

Let vy = Law(X[", wh*), v, , = Law(X“y w,) and recall that i, ; = hoVyg, ph, = hat/h,

Given v, € P(C([0,T],Y x R+)) define @, (v,) = Law(X"»,w;") € P(C([0,T], X)) where we
abuse the notation and use (X"v,w,") to refer to (X", wk"). Notice also that

w%,t@z(uy)xbz(u;))@[ sup X8 — X" 4 ks, — ulh }
s€[0,¢] (56)

’
E[IX# — X7 + [lwh — wi 7]

We use (55) and (56) on (54) to conclude

t
W3 (Da(1y), @o(v,)) < TK' exp(TK)IE[/ W3 ((vy, 1) ds]
0

The rest of the argument is sketched in App. E.
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F.3 Propagation of chaos
Following the reasoning in the existence and uniqueness proof, we can write
E[| X = X7 + [|lw}, — a5 I7)
<z [ X R ot — 2 s+ es [ WG ) .

Hence, we obtain
t
I~ X+ uk — 012 < TR exp(T OB | [ WG 0010,0) ]
0

Let vy, = % Py 6(5(;-@:) € P(X x RT) be the marginal at time ¢ of the empirical measure of
(52). Asin App. E,

_ 1 <& S . » 1 &< S S
Wi, (2, ) < =D sup || XD = X2+ w3 < EZIIXl—XZII?Jeri—w;IIf

Vg s Vg
n i—1 S€[0,t]

which yields
EDWVE, (v, 7)) < TK' exp(TK)E [ / WEGE ) d}
<TK' exp((K+4M)T)E[/ W3 (v vy) ds}
0

The second inequality above follows from inequality (55) W3 (v)! ,, vy.s) < W3 (v}, v). Now we
use the triangle inequality as in App. E:

EDWVS (v, va)] < 2BV, (v, 73] + 2B, (77, va)]

< 2TK' exp((K + 4M)T [/ W (v, vy) ds} + 2EW3 (7, va)]

If we denote C' := 2T K’ exp((K +4M)T) and we make the same developments for the other player,
we obtain

BV v) + W, 4)] < B[ [ WA 0 + WA, 02) a5
+ QE[Wg’t(ﬂg, Ve) + W%,t@g?? vy)]
From this point on, the proof works as in App. E.
F.4 Convergence of the Nikaido-Isoda error
Corollary 3. Fort € [0,T], let i}y , = %fot hovy . dr, iy, = %fot NV, dr and define iy ;, iy ¢

analogously. Then,
n—oo

EHNI(ﬂZ,t, ﬂ;,t) - Nl(ﬁm,ta ﬁyt)u —0
Proof. Notice that since the integral over time and the homogeneous projection commute, we have

A, = hm(% fot vy dr), figy = hz(% fot Vg dr). Since 1 fo o dr and 1 fo vy dr belong to
P(X x [0,e*MT]), (55) implies

W2 (h, (= vlodr |, he | = Vg dr L eMTW2 (= vl dr, — Vg dr
2 t 0 x,r t 0 s 2 t 0 z,r t 0 ,
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Notice that W3 (+ fo v dr, 3 fo Ve dr) <1 fo W32 ., Ve,r) dr. Indeed,
1 [ 1 [
Wi f/ z/grdr,f/uwrdr = max //(pdz/zrdr—i— //go dvy . dr
t 0 ’ t 0 ’ peW, (/Y)t
1
</<max /gpdg” /gpdumr>dr
t Jo \p€eTlc(X) ’ ’

1 t
W2( 17“7’/3??“) dr
t 0

Hence, using the inequality W3 (v}} ., vz ) < W3 (V) vg):

1/t 1/t 1 /¢
E[W% (h (t | dr),hx <t | ver d))] <e4MTEL [ ez dr]
0 0 0

< MTEWS (v, v0)]

Since the right hand side goes to zero as n — oo by Theorem 10, we conclude by applying
Lemma 3.

F.5 Hint of the infinitesimal generator approach

Let o, : X = R,p, : YV — R be arbitrary continuously differentiable functions, i.e. ¢, €
CHX,R),p, € C*(V,R). Let us define the operators L’i”t) : CHX,R) — C%X,R), E(”) :
CYY,R) = C°(Y,R) as

L0 pale) = = [ He)iu, - Vaale) +a (— [ oy, + e, u;;,»)

(57)
£ ) =29, [ teaiints, Vo) +a ([ oot~ L)
Notice that from (52) and (57), we have
d ()d"(a:)—i/ We o () dvy (7, w Zw
dt QOI Mz,t - dt xR+ 1‘;01 I dt mtSOI
Ndwh, iy, 4Xi
= i (58)
Z dt (px X + lzl wm tva:(Pa:( ) dt
- / WL (o) A (o) = [ £ (o) du (o)
A xR+ x
The analogous equation holds for p; ,:
d
dt Lp’l} My t [’y t %01/ d/’cy t( ) (59)
Formally taking the limit n — oo on (58) and (59) ylelds
d
& | eole) duni@) = [ Loron(o) diecs(a)

%/ W) dity o (y /cytsoy (y) dpiye(y);

where

Ew,t()oa:(x) = _'va /£<x7y)dﬂy,t : vm‘Pw (l‘) +a (_ /E(Iay)duy,t + ‘C(MI7t7My,t)>

Lyaos) =2V [ (o 0)des -y (@) + ( [t~ £l um)
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and fiz,0, fy,0 are set as in (52).

To make the limit n — oo rigorous, an argument analogous to Theorem 2.6 of Chizat and Bach
(2018) would result in almost sure convergence of the 2-Wasserstein distances between the empirical
and the mean field measures. In our case almost sure convergence of the squared distance implies
convergence of the expectation of the squared distance through dominated convergence, and hence
the almost sure convergence result is stronger. Nonetheless, such an argument would require proving
uniqueness of the mean field measure PDE through some notion of geodesic convexity, which is not
clear in our case.
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G Auxiliary material

G.1 e-Nash equilibria and the Nikaido-Isoda error

Recall that an e-NE (p, ) satisfies Vi, € P(X), Lpa, py) < L1, py) + € and Yy €
P(Y), L(paspty) = L(pa, i) — €. That is, each player can improve its value by at most ¢ by
deviating from the equilibrium strategy, supposing that the other player is kept fixed.

Recall the Nikaido-Isoda error defined in (2). This equation can be rewritten as:

NI(pa, py) = sup  L(pas py) = L(Ras by) + Ltz pry) —  nf L5, 1) -
uyEPY) ny€P(X)

The terms sup,,cp(y) Lt fy) — L(fa, pty) > 0 measure how much player y can improve
% ‘

its value by deviating from p, while p, stays fixed. Analogously, the terms L(fiy, fty) —

inf,:epx) L}, pty) > 0 measure how much player = can improve its value by deviating from i,

while p,, stays fixed.

Notice that

Vu, € P(X), E(ﬂraﬂy) < L(ﬂzvﬂy) +e E(Nma/uy) - u*é%f()()ﬁ(#;,ﬂy) <e¢
>L

VNZ € 77(3)), E(Mwa,“/y) = (,uzv/JfZ) —& — sup ‘C(Mm,u;;) - ‘C(Mm,uy) <e
ny€PQY)

Thus, an e-Nash equilibrium (g, p1,) fulfills NI(pg, pty) < 2¢, and any pair (4, ) such that
NI(ftz, tty) < € is an e-Nash equilibrium.

G.2 Example: failure of the Interacting Wasserstein Gradient Flow

Let us consider the polynomial f(z) = 5z* + 102% — 2, which is an asymmetric double well as
shown in Fig. 4.
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Figure 4: Plot of the function f(z) = 5% + 1022 — 2z.

Let us define the loss £ : R x R — R as ¢(z,y) = f(x) — f(y). That is, the two players are
non-interacting and hence we obtain V,(x, ut,) = f(x) + K, V,(y, i) = —f(y) + K’. This means
that the IWGF in equation (6) becomes two independent Wasserstein Gradient Flows
Otz =V - (o f'(2)),  1a(0) = pia,o,
Orpry = =V - (g I'(y)), 11y (0) = piy0-
The particle flows in (3) become
dl‘i
dt




That is, the particles of player x follow the gradient flow of f and the particles of player y follow the
gradient flow of — f. It is clear from Fig. 4 that if the initializations xg ;, yo,; are on the left of the
barrier, they will not end up in the global minimum f (resp., the global maximum of — f). And in this
case, the pair of measures supported on the global minimum of f is the only (pure) Nash equilibrium.

The game given by ¢ does not fall exactly in the framework that we describe in this work because
¢ is not defined on compact spaces. However, it is easy to construct very similar continuously
differentiable functions on compact spaces that display the same behavior.

G.3 Link between Interacting Wasserstein Gradient Flow and interacting particle gradient
flows

Recall (3):

dz?z—fZVExZ,yj dyz: ZV Uz, yq).

Let & = ($gy4,Pyy) + A" X y" — X" x Y™ be the ﬂow mapping initial conditions Xy =
(%,0)sef1n)» Yo = (¥i,0) (1) to the solution of (3). Let iy, = IS 5<I>$,’,,(X0,Yo)’”;/l’t =
D 5q>§i> (Xo. vy FOrall gy € C(X),

G | onta) el )=72dtwmi (X0, Yy)

vax% (@) (X0, Y0)) ——ZV (@) (Xo, Yo), V) (X0, Yo))

x,t

—= Z Vot (80(Xo, Yo)) - VoV (1 1. 8, (Xo, Yo))

- /X war(x) ! Vzvm(,uz,ta Z) d/u‘:,t(x)v

which is the first line of (6). The second line follows analogously.

G.4 Minimax problems and Stackelberg equilibria

Several machine learning problems, including GANS, are framed as a minimax problem

¢
R A

A minimax point (also known as a Stackelberg equilibrium or sequential equilibrium) is a pair (Z, §)
at which the minimum and maximum of the problem are attained, i.e.
{mianX maXycy K(CC, y) = maXycy Z(ia y)
maxyey Z(‘%7 y) = é(‘%7 g)
We consider the lifted version of the minimax problem (G.4) in the space of probability measures.

min  max L(pg, 60
110 EP(X) 11, €P(Y) (b 1) (60

By the generalized Von Neumann’s minimax theorem, a Nash equilibrium of the game given by L is
a solution of the lifted minimax problem (60) (see Lemma 12 in the case € = 0).

The converse is not true: minimax points (solutions of (60)) are not necessarily mixed Nash equilibria
even in the case where the loss function is convex-concave. An example is £ : R x R — R given by
Lz, py) = [f (2 +22y) dpy dpy,. Let M be the set of measures 1 € P(R) such that [z dp = 0.
Notice that any pair (do, p,) with p1,, € P(R) is a minimax point. That is because

+00 if 1, ¢ M
max  L(g, ositive  if p, € M\ {4
L2 )= (it i < M1 (5}
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and hence &y = argmin, cpg)max, epwr)L(ta fly). But if g, = dp, we have
argmax,, cp ) L(Ha, fty) = P(R), because for all measures i, € P(R), L(do, p1y) = 0. However,
for p,y, ¢ M, L(fts, f1,y) as a function of 11, does not have a minimum at &y, but at §_ [y dp,- Hence,
the only mixed Nash equilibria are of the form (do, p,, ), with p,, € M.

The intuition behind the counterexample is that minimax points only require the minimizing player to
be non-exploitable, but the maximizing player is only subject to a weaker condition.

We define a e-minimax point (or e-Stackelberg equilibrium) of an objective £(u,, jt,) as a couple
(fiz, fly) such that
{minuzep(x) max,, epy) Lt fy) = max, cpy)y Lz, Hy) — €
maxﬂyep(y) E(IELI’ My) < E([LJ” ﬁy) +e

Lemma 12. An e-Nash equilibrium is a 2e-minimax point, and it holds that

min  max L(ug, —e < L(fug, fby) £ max  min  L(ug, fby) +€
i max Ll py) =& < Ll fiy) < max min L, foy)

Proof. Let (fis, fi,) be an e-Nash equilibrium. Notice that max,, ep(y) ming,, ep(x) L(jiz, fty) <
ming, cp(x) max,, epy) Lfiz, ity). Also,

i L(pte, < L(fig, pry) < L(fiz, fly) +€ < in L, fty) +2
,nin ) max (thas thy) ,nax (fus py) < L(flzs fly) + € ,nin (o fiy) (661)

< max  min  L(ug, fiy) + 2¢
1y EP (V) pa €P(X) iz i)

and this yields the chain of inequalities in the statement of the theorem. The condition
max,, epy) Lz, fty) < L(fiz, fiyy) + € of the definition of e-minimax point follows directly
from the definition of an e-Nash equilibrium. Using part of (61), we get

max L(fz, —2e< max min L(pg, fiy) < min = max L(fig, fty),
BBy Pl p) =28 S | Wi Elba i) S B B EUFe ity)

which is the first condition of a 2¢-minimax. O

Lemma 12 provides the link between approximate Nash equilibria and approximate Stackelberg
equilibria, and it allows to translate our convergence results into minimax problems such as GANs.

G.5 1Ito SDEs on Riemannian manifolds: a parametric approach

We provide a brief summary on how to deal with SDEs on Riemannian manifolds and their cor-
responding Fokker-Planck equations (see Chapter 8 of Chirikjian (2009)). While ODEs have a
straightforward translation into manifolds, the same is not true for SDEs. Recall that the definitions
of the gradient and divergence for Riemannian manifolds are

VX = [g|720;(|g|"*X"), (Vf) =g"9;f,

where g;; is the metric tensor, g%/ = (g;;)~* and |g| = det(g;;). We use the Einstein convention for
summing repeated indices.

The parametric approach to SDEs in manifolds is to define the SDE for the variables q = (g1, , qq)
of a patch of the manifold:

dq = h(q,t)dt + H(q,t)dw. (62)
The corresponding forward Kolmogorov equation is
d d D
of —1/2 0 1/2 1o 9?
hif) == /2 —— V2N g HY 63
e 19172 g (1o *hur) Sl 3 Gy, |91 S eSS ) (69

which is to be understood in the weak form.
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Assume that the manifold M embedded in R”. If ¢ : Uga € R? — U4 C M C RP is the mapping
corresponding to the patch I/ and (62) is defined on Upa, let us set H(q) = (Dy(q)) . In this case,

Sk HiHy = 300 (D) (D)) T = g% (q). Hence, the right hand side of (63) becomes

1 1/2 - s 1/2 ij
_ - %)
2Ig\ 3:1 9000, (Igl g f)

d d

0 ~ 1 0 0
—a-1/2 e V25 1) 4+ =[g]"1/2 ( 1/2 45 9 >
Y (lg/2hif ) +5g 2 g o175,
d d
0 ~ 1 0 9
_ —1/2 v 1/2hi + = —1/2 < 1/2 i3 Y >
75 (lg1"/2hif ) + 5ol 2 g o175, ¢
~ 1
:V-(hf)+§V-Vf
where
d ..
7 71 —1/2 ij a|G(01)|1/2 99" (a)
hi(a) = 2;<|Q(Q)| @)= g,
Hence, we can rewrite (63) as
of ~ 1
5 =V (Chth)f)+ Vs

For this equation to be a Fokker-Planck equation with potential E' (i.e. with a Gibbs equilibrium
solution), we need —h + h = VE, which impliesh = —VE + h.

We can convert an SDE in parametric form like (62) into an SDE on R” by using Ito’s lemma on
X =¢(q):

% = dpita) = ( Des(@hta) + 3T (@ 0T (Ho)@H(a.0) ) dt + D) H(a, )

If we set H(q) = (Dy(q))~! as before, Dy(q) H(q, t) is the projection onto the tangent space of the
manifold, i.e. Do(q)H(q,t)v = Projp, a0, Vv € RP. Inthe case h = VE +h, Dy;(q)h(q) =

Dy;(q)VE(q)+ Dy;(q)h(q). Itis very convenient to abuse the notation and denote Dy (q)V E(q)

by VE(p(q)). We also use h((a)) := De(a)h(q) + 3Tr(((De(a)) ™) (He)(@)(Dp(a)) ™).
Both definitions are well-defined because the variables are invariant by changes of coordinates. Hence,
under these assumptions (64) becomes

dX = (-VE(X) + h(X)) dt + Projy_,,(dw) (65)

In short that means that we can treat SDEs on embedded manifolds as SDEs on the ambient space

by projecting the Brownian motions to the tangent space and adding a drift term h that depends on
the geometry of the manifold. Notice that for ODEs on manifolds the additional drift term does not
appear and (65) reads simply dX = VE(X)dt.

Notice that the forward Kolmogorov equation for (65) on R” reads

G [ 1@ dus@) = [(VE@) = B@) - Vo f @) + 5 T((Proig ) THS (0)Projz, ) dis(o),
(66)

for an arbitrary f.
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