
We thank the reviewers for their feedback.1

On the role of x?min (R1, R3)2

We expect that the assumption x?min ≥ Ω(‖x?‖2/
√
k) (where x?min = mini:x?

i 6=0 |x?i |) is likely an artifact of our proof.3

However, we expect a proof without this assumption (if feasible) to be more complicated, possibly distracting from the4

main ideas of the (already lengthy) proof. On the experimental side, both our setting and the setting considered in [53]5

uses Gaussian signals without any restriction on x?min, which might indicate that the assumption on x?min is in fact not6

necessary for mirror descent to reconstruct the signal x?.7

On the theoretical side, the assumption on x?min appears in two places in our analysis. On a high level, the inner product8

X(t)Tx? is a key quantity in showing the convergence of mirror descent. Using the fact that we have no mismatched9

signs (Lemma 5 equation (20)), we have the simple lower bound |X(t)Tx?| = |
∑n

i=1Xi(t)x
?
i | ≥ ‖X(t)S‖1x?min,10

where S = {i : x?i 6= 0} denotes the support of the signal. Our technical lemmas then guarantee that the discrepancy11

between the empirical gradient ∇F and the population gradient ∇f is sufficiently small compared to X(t)Tx?. We12

believe that it might be possible to control the inner product via a more refined analysis of the trajectory of mirror13

descent instead of assuming x?min ≥ Ω(‖x?‖2/
√
k), however it is likely to require different techniques from the ones14

used in our analysis. Second, the assumption on x?min allows us to separate all support coordinates from off-support15

coordinates at the end of the initial warm-up stage, in the sense that |Xi(t)| � |Xj(t)| for all i ∈ S , j /∈ S . Intuitively,16

we neither expect nor need |Xi(t)| > |Xj(t)| if |x?i | is very small. Rather, it should suffice if above inequality holds17

for i ∈ S corresponding to “large” coordinates. We anticipate that it might be possible to make this intuition rigorous,18

potentially utilising similar tools as the ones used in [10] to eliminate the need for an assumption on x?min.19

Experiment in a setting with k2 < m� n (R3)20

Following the reviewer’s suggestion, we repeated the experiment of Section 5 in various settings with k2 < m� n.21

We present an example in Figure 2, where we increased the dimension of the signal to n = 50000 and kept everything22

else as described in Section 5. We observe the same qualitative behaviour as in Figure 1 (we only include the relative `223

error, as the Bregman divergence also shows the same behaviour as in Figure 1).24

On noise in the measurement model (R1)25

We ran discrete-time mirror descent in a measurement model with additive white Gaussian noise, Yj = (AT
j x

?)2 + εj26

where εj ∼ N (0, σ2) i.i.d. for some σ2 > 0. We show the results of an experiment with n = 50000, m = 1000,27

k = 10 and σ2 = 0.1 below. Figure 3 suggests that mirror descent can also reconstruct sparse signals in the model28

with noise, and the parameter β seems to affect convergence in a similar way as in the noiseless case. The precision29

up to which we have linear convergence barely improves as we decrease β from 10−10 to 10−14, which we suspect30

is because the presence of noise in the measurement model limits the attainable accuracy. In all our experiments, the31

relative `2 error increases after reaching a minimum, which suggests that additional techniques such as early stopping32

might be needed. We leave this to future work, as the analysis of the noisy model is likely to involve novel ideas.33

On the improved sample complexity of HWF (R2)34

Theorem 2 requires the number of measurements m to be of order k2 (ignoring logarithmic factors). The empirical35

results in [53] suggest that HWF is able to reconstruct sparse signals from far fewer measurements (m < k2) if the36

signal contains one large entry. There are two obvious candidate explanations for this discrepancy: it could be the case37

that 1) our proof is suboptimal and the sample complexity in Theorem 2 is overly pessimistic, or that 2) the statement of38

Theorem 2 does not hold if m < k2, regardless of the maximum magnitude entry of the signal (Theorem 2 not only39

guarantees convergence towards the underlying signal, but also characterizes the speed of convergence). To investigate40

which of the two explanations seems more likely, we consider an experiment with n = 1000, m = 500, k = 100 and41

one entry of the signal set to 0.7. In this setting we have m < k2, and the assumptions of Theorem 2 are not satisfied.42

Figure 4 suggests that explanation 2) seems more likely: while we have convergence towards the underlying signal, the43

convergence behaviour is not as described by Theorem 2. In particular, we do not observe linear convergence up to a44

precision depending on β.
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Figure 2: Relative `2 error (log-scale) of
HWF for n = 50000, m = 1000 and
k = 10 (no noise).
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Figure 3: Relative `2 error (log-scale)
of HWF for n = 50000, m = 1000,
k = 10 and σ2 = 0.1.
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Figure 4: Relative `2 error (log-scale) of
HWF for n = 1000, m = 500, k = 100
and one entry of x? set to 0.7 (no noise).


