
A Regret analysis of F-UCBVI

A.1 Failure event

Before we define the failure event that causes our regret guarantee to fail, we introduce some
additional notation. As a shorthand, for any natural number n, any factored set X =

⊗n
i=1 Xi and

any given index set I ⊂ [n], let X [−I] :=
⊗n

i=1,i/∈I Xi and x[−I] ∈ X [−I] be a tuple of x[j] for
j ∈ [n] and j /∈ I . For a singleton {i}, let S−i ≡ S[−{i}] := (

⊗i−1
j=1 Sj) × (

⊗m
j=i+1 Sj). Let

s[−i] ∈ S−i be a tuple of s[j] for j ∈ [m] and j 6= i. For vector V ∈ RS ,

V (s[−i]) := V ((s[1], · · · , s[i− 1], ·, s[i+ 1], · · · , s[m])) ∈ RSi ,
V (s[i]) := V ((·, · · · , ·, s[i], ·, · · · , ·)) ∈ RS−i .

Recall that wk,h(x) is the visit probability to x at step h of episode k. Overloading the notation, we
make the following definitions.

Definition 3 (Visit probabilities). Define

wi,k,h(x) := wi,k,h(x[Ii]) =
∑

x[−Ii]∈X [−Ii]
wk,h(x),

vi,k,h(x) := vi,k,h(x[Ji]) =
∑

x[−Ji]∈X [−Ji]
wk,h(x).

Then let wk(x) :=
∑H
h=1 wk,h(x), wi,k(x) :=

∑H
h=1 wi,k,h(x) and vi,k(x) :=

∑H
h=1 vi,k,h(x).

Recall that L = log(16mlSXT/δ). Then we define the failure event below.

Definition 4 (Failure event). Define the events

F1 :=

{
∃(i ∈ [m], k ∈ [K], h ∈ [H], x ∈ X ),

∣∣∣〈P̂i,k(x)− Pi(x),EP−i(x)[V
∗
h+1]

〉∣∣∣ > H

√
L

2Ni,k(x)

}
,

F2 :=

{
∃(i ∈ [m], k ∈ [K], x ∈ X ),

∥∥∥P̂i,k(x)− Pi(x)
∥∥∥

1
>

√
2SiL

Ni,k(x)

}
,

F3 :=

{
∃(i ∈ [l], k ∈ [K], x ∈ X ),

∣∣∣R̂i,k(x)−Ri(x)
∣∣∣ >√ L

2Mi,k(x)

}
,

F4 :=

{
∃(i ∈ [m], k ∈ [K], x ∈ X ), Ni,k(x) <

1

2

∑
κ<k

wi,κ(x)−HL

}
,

F5 :=

{
∃(i ∈ [l], k ∈ [K], x ∈ X ), Mi,k(x) <

1

2

∑
κ<k

vi,κ(x)−HL

}
,

F6 :=

{
∃(i ∈ [m], k ∈ [K], x ∈ X , s′ ∈ S),

∣∣∣P̂i,k(s′[i]|x)− Pi(s′[i]|x)
∣∣∣ > 2L

3Ni,k(x)
+

√
2Pi(s′[i]|x)L

Ni,k(x)

}
.

Then the failure event for F-UCBVI is defined by F :=
⋃6
i=1 Fi.

The following lemma shows that the failure event F happens with low probability.

Lemma 8 (Failure probability). For any FMDP specified by (2.1), during the running of F-UCBVI
for K episodes, the failure event F happens with probability at most δ.
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Proof. By Hoeffding’s inequality (Lemma 37) and the union bound, F1 happens with probability at
most δ/8. The same argument applies to F3. By L1-norm concentration (Lemma 36) and the union
bound, F2 happens with probability at most δ/8. By the same argument regarding failure event FN
in [9, Lemma 6, Section B.1], F4 and F5 happen with probability at most δ/16 respectively. By the
same Bernstein’s inequality argument in [1, Lemma 1, Section B.4], F6 happens with probability at
most δ/8. Finally, applying the union bound on Fi for i ∈ [6] yields that the failure event F happens
with probability at most 5δ/8 ≤ δ.

The deduction in the rest of this section and hence the regret bound hold outside the failure event F ,
with probability at least 1− δ. From the above derivation, note that we can actually use a smaller

L0 = log(10mlmax{max
i

(SiX[Ii]),max
i
X[Ji]}T/δ)

to replace L for F-UCBVI. We use L for simplicity.

A.2 Upper confidence bound on the optimal state-value function

The transition estimation error refers to a term incurred by the difference between the estimated
transition and the true one. To apply scalar concentration, we use the standard technique that bounds
the inner product of their difference and the optimal value function. Specifically, we have the
following lemma.
Lemma 9 (Transition estimation error, Hoeffding-style). Outside the failure event F , for any episode
k ∈ [K], step h ∈ [H] and state-action pair x ∈ X , the transition estimation error satisfies that∣∣∣〈P̂k(x)− P (x), V ∗h+1

〉∣∣∣ ≤ m∑
i=1

H

√
L

2Ni,k(x)
+

m∑
i=1

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)
. (A.1)

Proof. Omitting the dependence of P̂k(x), P (x), P̂i,k(x), Pi(x) on x,〈
P̂k − P, V ∗h+1

〉
=

〈
m∏
i=1

P̂i,k −
m∏
i=1

Pi, V
∗
h+1

〉

=

〈
m∑
i=1

(P̂i,k − Pi)P1:i−1P̂i+1:m,k, V
∗
h+1

〉

=

m∑
i=1

〈
P̂i,k − Pi,EP1:i−1P̂i+1:m,k

[V ∗h+1]
〉

=

m∑
i=1

〈
P̂i,k − Pi,EP1:i−1EP̂i+1:m,k

[V ∗h+1]
〉

=

m∑
i=1

〈
P̂i,k − Pi,EP1:i−1EPi+1:m [V ∗h+1]

〉
(A.2)

+

m∑
i=1

〈
P̂i,k − Pi,EP1:i−1(EP̂i+1:m,k

− EPi+1:m)[V ∗h+1]
〉
, (A.3)

where the second equality adopts an inverse telescoping technique (add and subtract a sequence
of terms), essential to our analysis. Outside the failure event F (specifically, F1), (A.2) is upper
bounded by ∣∣∣〈P̂i,k(x)− Pi(x),EP1:i−1(x)EPi+1:m(x)[V

∗
h+1]

〉∣∣∣ ≤ H√ L

2Ni,k(x)
. (A.4)

By Lemma 10, outside the failure event F , (A.3) is upper bounded by∣∣∣〈P̂i,k(x)− Pi(x),EP1:i−1(x)(EP̂i+1:m,k(x) − EPi+1:m(x))[V
∗
h+1]

〉∣∣∣
≤

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)
.

(A.5)
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Combining (A.4) and (A.5) yields the transition estimation error bound (A.1).

The following Lemma 10 brings in the cross-component term, also as part of the transition bonus
later, which results from applying inverse telescoping once and L1-norm concentration (lemma 36)
twice.

Lemma 10 (Holder’s argument). Outside the failure event F , for any index i ∈ [m], episode k ∈ [K],
step h ∈ [H] and state-action pair x ∈ X ,∣∣∣〈P̂i,k(x)− Pi(x),EP1:i−1(x)(EP̂i+1:m,k(x) − EPi+1:m(x))[V

∗
h+1]

〉∣∣∣
≤

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)
.

Proof. By Holder’s inequality,∣∣∣〈P̂i,k(x)− Pi(x),EP1:i−1(x)(EP̂i+1:m,k(x) − EPi+1:m(x))[V
∗
h+1]

〉∣∣∣
≤
∥∥∥P̂i,k(x)− Pi(x)

∥∥∥
1
·
∥∥∥EP1:i−1(x)(EP̂i+1:m,k(x) − EPi+1:m(x))[V

∗
h+1]

∥∥∥
∞

≤

√
2SiL

Ni,k(x)
·
∥∥∥EP1:i−1(x)(EP̂i+1:m,k(x) − EPi+1:m,h(x))[V

∗
h+1]

∥∥∥
∞
, (A.6)

where the second inequality holds outside the failure event F (specifically, F2). We proceed to
bound the L∞-norm term by applying the inverse telescoping technique. Omitting the dependence
of P̂k(x), P (x), P̂i,k(x), Pi(x) on x and defining the empty product (e.g., Pi+1:i) to be 1, for any
i ∈ [m],

EP1:i−1(EP̂i+1:m,k
− EPi+1:m)[V ∗h+1]

=

〈 m∏
j=i+1

P̂j,k −
m∏

j=i+1

Pj ,EP1:i−1
[V ∗h+1]

〉

=

〈 m∑
j=i+1

(P̂j,k − Pj)Pi+1:j−1P̂j+1:m,k,EP1:i−1
[V ∗h+1]

〉

=

m∑
j=i+1

〈
P̂j,k − Pj ,EP1:i−1

EPi+1:j−1
EP̂j+1:m,k

[V ∗h+1]
〉
∈ RSi .

Therefore, for any i ∈ [m] and s′[i] ∈ Si,∣∣∣EP1:i−1
(EP̂i+1:m,k

− EPi+1:m
)[V ∗h+1](s′[i])

∣∣∣
=
∣∣∣EP1:i−1

(EP̂i+1:m,k
− EPi+1:m

)[V ∗h+1(s′[i])]
∣∣∣

≤
m∑

j=i+1

∣∣∣〈P̂j,k − Pj ,EP1:i−1
EPi+1:j−1

EP̂j+1:m,k
[V ∗h+1(s′[i])]

〉∣∣∣
≤

m∑
j=i+1

∥∥∥P̂j,k − Pj∥∥∥
1
·
∥∥∥EPi+1:j−1EP̂j+1:m,k

[V ∗h+1(s′[i])]
∥∥∥
∞

≤
m∑

j=i+1

√
2SjL

Nj,k
·H,
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where the last inequality holds outside the failure event F (specifically, F2). Substituting the above
into (A.6) yields ∣∣∣〈P̂i,k(x)− Pi(x),EP1:i−1(x)(EP̂i+1:m,k(x) − EPi+1:m(x))[V

∗
h+1]

〉∣∣∣
≤

m∑
j=i+1

√
2SiL

Ni,k(x)
·H

√
2SjL

Nj,k(x)

=

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)
.

Recall that our Hoeffding-style transition bonus (3.1) is exactly the transition estimation error bound
in (A.1). Add a subscript k to R̂, R̂i to denote the corresponding quantities in the kth episode. Recall
that our choice of the reward bonus upper bounds the reward estimation error outside the failure event
F (specifically, F3), i.e.,

∣∣∣R̂k(x)−R(x)
∣∣∣ ≤ l∑

i=1

∣∣∣R̂i,k(x)−Ri(x)
∣∣∣ ≤ l∑

i=1

√
L

2Mi,k(x)
:= βk(x).

The following lemma shows that these choices ensure the optimism. Specifically, V k,h is an entrywise
UCB of V ∗h for all k ∈ [K], h ∈ [H].

Lemma 11 (Upper confidence bound). Outside the failure event F , for the choices of bonuses in (3.1)
and (3.2), V ∗h (s) ≤ V k,h(s) for any episode k ∈ [K], step h ∈ [H] and state s ∈ S.

Proof. For h = H + 1, V ∗H+1(s) = Vk,H+1(s) = 0 for all k ∈ [K] and s ∈ S. We proceed by
backward induction. For all k ∈ [K], for a given h ∈ [H], for all s ∈ S, with xk,h = (s, πk(s, h))
and x∗h = (s, π∗(s, h)),

V k,h(s)− V ∗h (s)

=R̂(xk,h) + βk(xk,h) +
〈
P̂k(xk,h), V k,h+1

〉
+ bk(xk,h)−R(x∗h)−

〈
P (x∗h), V ∗h+1

〉
≥R̂(x∗h) + βk(x∗h) +

〈
P̂k(x∗h), V k,h+1

〉
+ bk(x∗h)−R(x∗h)−

〈
P (x∗h), V ∗h+1

〉
≥
〈
P̂k(x∗h), V k,h+1 − V ∗h+1

〉
+ R̂(x∗h)−R(x∗h) + βk(x∗h)

+
〈
P̂k(x∗h)− P (x∗h), V ∗h+1

〉
+ bk(x∗h),

where the first equality corresponds to the nontrivial case where V k,h(s) < H − h + 1. Since〈
P̂k(x∗h), V k,h+1 − V ∗h+1

〉
≥ 0 by the inductive assumption, we have V k,h(s)−V ∗h (s) ≥ 0 outside

the failure event F . Therefore, V ∗h (s) ≤ V k,h(s) for all k ∈ [K], h ∈ [H], s ∈ S.

Refer to the difference between the optimistic value function than the optimal value function as
the confidence radius. We now bound the confidence radius in the following lemma. After the
introduction of “good” sets, we then bound the sum over time of the squared confidence radius, which
is useful to prove that the cumulative correction term is lower-order (polylog in T , Lemma 22).

Lemma 12 (Confidence radius, Hoeffding-style). Let F0 := 5mH maxi SiL be a lower-order term.
Let sk,t ∈ S denote the state at step t of episode k and xk,t = (sk,t, πk(sk,t, t)). Outside the failure
event F , for any episode k ∈ [K], step h ∈ [H] and state s ∈ S, the confidence radius of F-UCBVI
satisfies that

V k,h(s)− V ∗h (s) ≤ min

{
H∑
t=h

Eπk

[
m∑
i=1

F0√
Ni,k(xk,t)

+

l∑
i=1

√
2L

Mi,k(xk,t)

∣∣∣∣∣sk,h = s

]
, H

}
.
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Proof. By definition, for any k ∈ [K], h ∈ [H], s ∈ S,

V k,h(s)− V ∗h (s)

≤R̂(xk,h) + βk(xk,h) +
〈
P̂k(xk,h), V k,h+1

〉
+ bk(xk,h)−R(x∗h)−

〈
P (x∗h), V ∗h+1

〉
≤R̂(xk,h) + βk(xk,h) +

〈
P̂k(xk,h), V k,h+1

〉
+ bk(xk,h)−R(xk,h)−

〈
P (xk,h), V ∗h+1

〉
≤2βk(xk,h) +

〈
P̂k(xk,h)− P (xk,h), V k,h+1

〉
+
〈
P (xk,h), V k,h+1 − V ∗h+1

〉
+ bk(xk,h)

≤
〈
P (xk,h), V k,h+1 − V ∗h+1

〉
+

m∑
i=1

H

√
2SiL

Ni,k(x)
+ bk(xk,h) + 2βk(xk,h). (A.7)

For bk(xk,h), we have

bk(xk,h) =

m∑
i=1

H

√
L

2Ni,k(xk,h)
+

m∑
i=1

m∑
j=i+1

2HL

√
SiSj

Ni,k(xk,h)Nj,k(xk,h)

≤
m∑
i=1

H

√
L

2Ni,k(xk,h)
+

m∑
i=1

2mmax
i
SiHL

1√
Ni,k(xk,h)

≤ 3mmax
i
SiHL

m∑
i=1

1√
Ni,k(xk,h)

.

Substituting the above into (A.7) yields

V k,h(s)− V ∗h (s)

≤
〈
P (xk,h), V k,h+1 − V ∗h+1

〉
+ 5mH max

i
SiL

m∑
i=1

1√
Ni,k(x)

+

l∑
i=1

√
2L

Mi,k(xk,h)

=
〈
P (xk,h), V k,h+1 − V ∗h+1

〉
+

m∑
i=1

F0√
Ni,k(x)

+

l∑
i=1

√
2L

Mi,k(xk,h)
.

By backward induction over the subscript h, we have

V k,h(s)− V ∗h (s) ≤ min

{
H∑
t=h

Eπk

[
m∑
i=1

F0√
Ni,k(xk,t)

+

l∑
i=1

√
2L

Mi,k(xk,t)

∣∣∣∣∣sk,h = s

]
, H

}
.

A.3 Good sets of state-action pairs

The following “good sets” [44] are a notion of sufficient visits so that the estimations are meaningful,
the introduction of which is seminal to the sum-over-time analysis.

Definition 5 (Good sets). Define the good sets of state-action components for transition and reward
estimations as

Li,k :=

{
x[Ii] ∈ X [Ii] :

1

4

∑
κ<k

wi,κ(x[Ii]) ≥ HL+H

}
,

Λi,k :=

{
x[Ji] ∈ X [Ji] :

1

4

∑
κ<k

vi,κ(x[Ji]) ≥ HL+H

}
.

Then the corresponding good sets of state-action pairs are defined by

Lk := {x ∈ X : x[Ii] ∈ Li,k for all i ∈ [m]} ,
Λk := {x ∈ X : x[Ji] ∈ Λi,k for all i ∈ [l]} .
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We shall restrict our attention to the state-action pairs in the good sets (with sufficient visits). To
this end, we show the sums of visit probabilities to the state-action pairs outside the good sets are
lower-order terms in the following lemma.

Lemma 13 (Sum out of good sets). The sums of the visit probabilities of the state-action pairs out of
the good sets and over time satisfy that

K∑
k=1

H∑
h=1

∑
x/∈Lk

wk,h(x) ≤ 8

m∑
i=1

X[Ii]HL.

K∑
k=1

H∑
h=1

∑
x/∈Λk

vk,h(x) ≤ 8

l∑
i=1

X[Ji]HL.

Proof. If x[Ii] /∈ Li,k, then by definition,

1

4

∑
κ≤k

wi,κ(x[Ii]) < HL+H +H = H(L+ 2).

Therefore,

K∑
k=1

H∑
h=1

∑
x/∈Lk

wk,h(x) ≤
K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)I(x /∈ Lk)

≤
K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)

m∑
i=1

I(x[Ii] /∈ Li,k)

≤
m∑
i=1

∑
x[Ii]∈X [Ii]

K∑
k=1

H∑
h=1

wi,k,h(x[Ii])I(x[Ii] /∈ Li,k)

=

m∑
i=1

∑
x[Ii]∈X [Ii]

K∑
k=1

wi,k(x[Ii])I(x[Ii] /∈ Li,k)

≤ 4

m∑
i=1

X[Ii]H(L+ 2),

where in the third inequality we write
∑
x∈X as

∑
x[Ii]∈X [Ii]

∑
x[−Ii]∈X [−Ii] and use the definition

of wi,k,h (Definition 3). Since L = log(16mlSXT/δ) ≥ 2, we have

K∑
k=1

H∑
h=1

∑
x/∈Lk

wk,h(x) ≤ 8

m∑
i=1

X[Ii]HL.

The same argument applies to vk,h(x).

The following lemma bridges the visit probabilities wi,k and vi,k to the actual numbers of visits Ni,k
and Mi,k for the state-action pairs in the good sets.

Lemma 14 (Visit number and visit probability). Outside the failure event F , the numbers of visits
Ni,k and Mi,k to the state-action pairs in the good sets satisfy that

Ni,k(x) ≥ 1

4

∑
κ≤k

wi,κ(x) for all i ∈ [m] and x ∈ Lk,

Mi,k(x) ≥ 1

4

∑
κ≤k

wri,κ(x) for all i ∈ [l] and x ∈ Λk.
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Proof. Outside the failure event F (specifically, F4), for all i ∈ [m],

Ni,k(x) ≥ 1

2

∑
κ<k

wi,κ(x)−HL

=
1

4

∑
κ<k

wi,κ(x) +
1

4

∑
κ<k

wi,κ(x)−HL

≥ 1

4

∑
κ<k

wi,κ(x) +H

≥ 1

4

∑
κ≤k

wi,κ(x),

where the second inequality results from the definition of good sets (Definition 5). Outside the failure
event F (specifically, F5), the same argument applies to Mi,k(x) for all i ∈ [l].

By Lemma 14 and the definition of the good sets (Definition 5), for all k ∈ [K],Ni,k(x) ≥ HL+H ≥
2 for all x ∈ Lk, and Mi,k(x) ≥ HL+H ≥ 2 for all x ∈ Λk. Therefore, the regret analysis out of
the good sets automatically precludes the cases of zero denominators in Algorithms 1 and 2, where
we replace the zeros by ones for algorithmic completeness.

Refer to the ratio of visit probability wk,h to visit number Ni,k or Mi,k as the visit ratio. Then the
accumulation of the visit ratios turns out to be a lower-order term, as shown in the following lemma.

Lemma 15 (Sum of visit ratio in good sets). Outside the failure event F , the sums of the visit ratios
of the state-action pairs within the good sets and over time satisfy that

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

Ni,k(x)
=

K∑
k=1

∑
x∈Lk

wk(x)

Ni,k(x[Ii])
≤ 4X[Ii]L for all i ∈ [m],

K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)

Mi,k(x)
=

K∑
k=1

∑
x∈Λk

wk(x)

Mi,k(x[Ji])
≤ 4X[Ji]L for all i ∈ [l].

Proof. Outside the failure event F , for any i ∈ [m], by Lemma 14,

K∑
k=1

∑
x∈Lk

wk(x)

Ni,k(x[Ii])
≤

K∑
k=1

∑
x∈X

wk(x)

Ni,k(x[Ii])
I(x[Ii] ∈ Li,k)

≤
K∑
k=1

∑
x[Ii]∈X [Ii]

wi,k(x[Ii])

Ni,k(x[Ii])
I(x[Ii] ∈ Li,k)

≤ 4

K∑
k=1

∑
x[Ii]∈X [Ii]

wi,k(x[Ii])∑
κ≤k wi,κ(x[Ii])

I(x[Ii] ∈ Li,k)

≤ 4X[Ii]L,

where the last inequality is shown by the proof of Lemma 13 in [44]. The same argument applies to
the visit ratio wk,h(x)/Mi,k(x) for any i ∈ [l].

As to be shown below, the cross-component transition bonus term brings in the mixed visit ratio
wk,h(x)/

√
Ni,k(x)Nj,k(x) in the analysis. By the Cauchy-Schwarz inequality, we immediately

have the following control on the accumulation of the mixed visit ratios.

Lemma 16 (Sum of mixed visit ratio in good sets). Outside the failure event F , the sum of the mixed
visit ratios of the state-action pairs within the good set Lk and over time satisfies that

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)√
Ni,k(x)Nj,k(x)

≤ 4
√
X[Ii]X[Ij ]L for all i, j ∈ [m].
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Proof. Outside the failure event F , by the Cauchy-Schwarz inequality and Lemma 15, for any
i, j ∈ [m],

K∑
k=1

H∑
h=1

∑
x∈Lk

wk(x)√
Ni,k(x)Nj,k(x)

=

K∑
k=1

∑
x∈Lk

wk(x)√
Ni,k(x[Ii])Nj,k(x[Ij ])

≤

√√√√ K∑
k=1

∑
x∈Lk

wk(x)

Ni,k(x[Ii])
·

√√√√ K∑
k=1

∑
x∈Lk

wk(x)

Nj,k(x[Ij ])

≤ 4
√
X[Ii]X[Ij ]L.

The following lemma bounds the sum over time of the expected squared confidence radius, through
the proof of which we can see an initial application of the above lemmas obtained with the notion
of good sets. For clarification, by “sum over time”, we mean the wk,h(x)-weighted sum over
k ∈ [K], h ∈ [H] and x ∈ Lk or x ∈ Λk henceforth.

Lemma 17 (Cumulative confidence radius, Hoeffding-style). Define the lower-order term

G0 := 208m4H4(max
i
Si)

2 max
i
X[Ii]L

3 + 24l2H3 max
i
X[Ji]L

2.

Then outside the failure event F , for all i ∈ [m], the sum over time of the following expected squared
confidence radius of F-UCBVI satisfies that

K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)
(
EPi

(
EP−i

[V k,h+1 − V ∗h+1]
)2)

≤
K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)
(
EP [

(
V k,h+1 − V ∗h+1

)2
]
)
≤ G0.

Proof. Let sk,h ∈ S denote the state at step h of episode k. Since (E[X])2 ≤ E[X2] for any random
variable X , we have that for all i ∈ [m],

K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)
(
EPi

(
EP−i

[V k,h+1 − V ∗h+1]
)2)

≤
K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)
(
EPi

EP−i
[
(
V k,h+1 − V ∗h+1

)2
]
)

=

K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)

(∑
s′∈S

P (s′|x)
(
V k,h+1(s′)− V ∗h+1(s′)

)2)

=

K∑
k=1

H∑
h=1

Eπk

[(
V k,h+1(sk,h+1)− V ∗h+1(sk,h+1)

)2∣∣∣sk,1]
≤

K∑
k=1

H∑
h=1

Eπk

[(
V k,h(sk,h)− V ∗h (sk,h)

)2∣∣∣sk,1] . (A.8)
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By the confidence radius lemma (Lemma 12), for any k ∈ [K], h ∈ [H],

Eπk

[(
V k,h(sk,h)− V ∗h (sk,h)

)2∣∣∣sk,1]
≤Eπk

( H∑
t=h

Eπk

[
m∑
i=1

F0√
Ni,k(xk,t)

+

l∑
i=1

√
2L

Mi,k(xk,t)

∣∣∣∣∣sk,h
])2

∣∣∣∣∣∣sk,1


≤2mHF 2
0

m∑
i=1

H∑
t=h

Eπk

[
1

Ni,k(xk,t)

∣∣∣∣sk,1]+ 4lHL

l∑
i=1

H∑
t=h

Eπk

[
1

Mi,k(xk,t)

∣∣∣∣sk,1]

≤2mH2F 2
0

m∑
i=1

Eπk

[
1

Ni,k(xk,h)

∣∣∣∣sk,1]+ 4lH2L

l∑
i=1

Eπk

[
1

Mi,k(xk,t)

∣∣∣∣sk,1] ,
where in the second inequality we use the inequality (

∑n
i=1 ai)

2 ≤ n
∑n
i=1 a

2
i for multiple times

(n = 2,m, l,H). The confidence radius lemma (Lemma 12) also guarantees that

Eπk

[(
V k,h(sk,h)− V ∗h (sk,h)

)2∣∣∣sk,1] ≤ H2.

Therefore, substituting the above two bounds into (A.8) and by Lemmas 13 and 15, we have
K∑
k=1

H∑
h=1

Eπk

[(
V k,h(sk,h)− V ∗h (sk,h)

)2∣∣∣sk,1]
≤2mH2F 2

0

m∑
i=1

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

Ni,k(x)
+ 4lH2L

l∑
i=1

K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)

Mi,k(x)

+

K∑
k=1

H∑
h=1

∑
x/∈Lk

wk,h(x)H2 +

K∑
k=1

H∑
h=1

∑
x/∈Λk

wk,h(x)H2

≤2mH2F 2
0

m∑
i=1

4X[Ii]L+ 4lH2L

l∑
i=1

4X[Ji]L+ 8H3
m∑
i=1

X[Ii]L+ 8H3
l∑
i=1

X[Ji]L

≤8mH2F 2
0

m∑
i=1

X[Ii]L+ 16lH2
l∑
i=1

X[Ji]L
2 + 8H3

m∑
i=1

X[Ii]L+ 8H3
l∑
i=1

X[Ji]L

=208m4H4(max
i
Si)

2 max
i
X[Ii]L

3 + 24l2H3 max
i
X[Ji]L

2,

where in the last equality we use the definition of F0 (Lemma 12).

A.4 Regret decomposition

We decompose the regret in the following standard way [44], and then bound the sum over time of
the individual terms in the next few subsections. Here we assume the general transition bonus b to be
a function of step h, as in F-EULER.
Lemma 18 (Regret decomposition). Let Lk,Λk be the good sets defined in Definition 5. Then for
any given FMDP specified in (2.1), outside the failure event F , the regret of F-UCBVI in K episodes
satisfies that

Regret(K)

≤
K∑
k=1

∑
x∈X

wk,h(x) min
{(〈

P̂k(x)− P (x), V k,h+1

〉
+ bk,h(x) + R̂k(x)−R(x) + βk(x)

)
, H
}

≤
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
(〈
P̂k(x)− P (x), V ∗h+1

〉
︸ ︷︷ ︸

transition estimation error

+bk,h(x) +
〈
P̂k(x)− P (x), V k,h+1 − V ∗h+1

〉
︸ ︷︷ ︸

correction term

)

+

K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)2βk(x) + 8H2
m∑
i=1

X[Ii]L+ 8H2
l∑
i=1

X[Ji]L,
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where the bk,h(x) term is referred to as “transition optimism” and 2βk(x) term is referred to as
“reward estimation error and optimism”.

Proof. Add a subscript k to Qh in the VI_Optimism procedure (Algorithm 2) to denote the corre-
sponding optimistic Q-value function in episode k. Since V k,h is an entrywise UCB of V ∗h , we upper
bound the regret by

Regret(K) ≤
K∑
k=1

V k,1(sk,1)− V πk
1 (sk,1) (A.9)

=

K∑
k=1

∑
x∈X

wk,1(x)(Qk,1(x)−Qπk
1 (x))

=

K∑
k=1

∑
x∈X

wk,1(x)
(

min
{
R̂k(x) + βk(x) +

〈
P̂k(x), V k,2

〉
+ bk,1(x), H

}
−R(x)− 〈P (x), V πk

2 〉
)

(A.10)

≤
K∑
k=1

∑
x∈X

wk,1(x)

(
min

{(
R̂k(x)−R(x) + βk(x) +

〈
P̂k(x)− P (x), V k,2

〉
+ bk,1(x)

)
, H
}

+
〈
P (x), V k,2 − V πk

2

〉)
=

K∑
k=1

(∑
x∈X

wk,1(x) min
{(
R̂k(x)−R(x) + βk(x) +

〈
P̂k(x)− P (x), V k,2

〉
+ bk,1(x)

)
, H
}

+
∑
x∈X

wk,1(x)
∑
s′

P (s′|x)
(
V k,2(s′)− V πk

2 (s′)
))
. (A.11)

Let x′ = (s′, a′). By definition, the visit probability wk,h(x) has the property that wk,h+1(x′) =∑
x∈X wk,h(x)P (s′|x)P(πk(s′, h) = a′), where P(·) denotes an appropriate probability measure.

Hence, ∑
x∈X

wk,1(x)
∑
s′

P (s′|x)
(
V k,2(s′)− V πk

2 (s′)
)

=
∑
x∈X

wk,1(x)
∑
x′∈X

P (s′|x)P(πk(s′, 1) = a′) (Qk,2(x′)−Qπk
2 (x′))

=
∑
x′∈X

wk,2(x′) (Qk,2(x′)−Qπk
2 (x′)) .

Substituting the above into (A.11) yields

Regret(K) ≤
K∑
k=1

∑
x∈X

wk,1(x)(Qk,1(x)−Qπk
1 (x))

≤
K∑
k=1

(∑
x∈X

wk,1(x) min
{(
R̂k(x)−R(x) + βk(x) +

〈
P̂k(x)− P (x), V k,2

〉
+ bk,1(x)

)
, H
}

+
∑
x∈X

wk,2(x) (Qk,2(x)−Qπk
2 (x))

)
.

Inductively, we have

Regret(K)

≤
K∑
k=1

∑
x∈X

wk,h(x) min
{(
R̂k(x)−R(x) + βk(x) +

〈
P̂k(x)− P (x), V k,h+1

〉
+ bk,h(x)

)
, H
}
.
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Outside the failure event F (specifically, F3 for F-UCBVI),

Regret(K)

≤
K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x) min
{(〈

P̂k(x)− P (x), V k,h+1

〉
+ bk,h(x) + 2βk(x)

)
, H
}

=

K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x) min
{(〈

P̂k(x)− P (x), V ∗h+1

〉
+ bk,h(x)

+
〈
P̂k(x)− P (x), V k,h+1 − V ∗h+1

〉
+ 2βk(x)

)
, H
}
,

≤
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
(〈
P̂k(x)− P (x), V ∗h+1

〉
+ bk,h(x) +

〈
P̂k(x)− P (x), V k,h+1 − V ∗h+1

〉)

+

K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)2βk(x) +

K∑
k=1

H∑
h=1

∑
x/∈Lk

wk,h(x)H +

K∑
k=1

H∑
h=1

∑
x/∈Λk

wk,h(x)H

≤
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
(〈
P̂k(x)− P (x), V ∗h+1

〉
+ bk,h(x) +

〈
P̂k(x)− P (x), V k,h+1 − V ∗h+1

〉)

+

K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)2βk(x) + 8H2
m∑
i=1

X[Ii]L+ 8H2
l∑
i=1

X[Ji]L.

A.5 Bounds on the individual terms in regret

To prove the following bounds on the individual terms in regret (Lemma 18), we heavily use the
lemmas derived from the notion of the good sets (Section A.3).

Lemma 19 (Cumulative transition estimation error, Hoeffding-style). For F-UCBVI, outside the
failure event F , the sum over time of the transition estimation error satisfies that

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
〈
P̂k(x)− P (x), V ∗h+1

〉
≤

m∑
i=1

H
√

2X[Ii]TL+ 4m2H max
i
Si max

i
XiL

2.

Proof. Outside the failure event F , by lemma 9,

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
〈
P̂k(x)− P (x), V ∗h+1

〉

≤
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

 m∑
i=1

H

√
L

2Ni,k(x)
+

m∑
i=1

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)

 , (A.12)

For the first term in (A.12), by the Cauchy-Schwarz inequality and Lemma 15,

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

(
m∑
i=1

H

√
L

2Ni,k(x)

)

≤H
√
L

2

m∑
i=1

√√√√ K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x) ·

√√√√ K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

Ni,k(x)

≤
m∑
i=1

H
√

2X[Ii]TL.
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For the second term in (A.12), by Lemma 16,

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

 m∑
i=1

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)


≤m2HLmax

i
Si · 4

√
X[Ii]X[Ij ]L

≤4m2H max
i
Si max

i
XiL

2.

Substituting the above two bounds into (A.12)completes the proof.

Lemma 20 (Cumulative transition optimism, Hoeffding-style). For F-UCBVI, outside the failure
event F , the sum over time of the transition optimism satisfies that

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)bk(x) ≤
m∑
i=1

H
√

2X[Ii]TL+ 4m2H max
i
Si max

i
XiL

2.

Proof. The proof is exactly the same as that of Lemma 19 by noting

bk(x) =

m∑
i=1

H

√
L

2Ni,k(x)
+

m∑
i=1

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)
.

Lemma 21 (Cumulative reward estimation error and optimism, Hoeffding-style). For F-UCBVI,
outside the failure event F , the sum over time of the reward estimation error and optimism satisfies
that

K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)2βk(x) ≤
l∑
i=1

2
√

2X[Ji]TL

Proof. Outside the failure event F , by the Cauchy-Schwarz inequality,

K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)βk(x) =

K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)

l∑
i=1

√
L

2Mi,k(x)

≤
√
L

2

l∑
i=1

√√√√ K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)

Mi,k(x)

√√√√ K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)

≤
l∑
i=1

√
2X[Ji]TL,

where the last inequality is due to Lemma 15.

Lemma 22 (Cumulative correction term, Hoeffding-style). For F-UCBVI, outside the failure event
F , the sum over time of the correction term satisfies that

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
〈
P̂k(x)− P (x), V k,h+1 − V ∗h+1

〉
≤45m3H2(max

i
Si)

1.5 max
i
X[Ii]L

2.5 + 14mlH1.5(max
i
Si)

0.5(max
i
X[Ii])

0.5(max
i
X[Ji])

0.5L2.

Proof. Since V k,h+1 is a random vector, we cannot apply scalar concentration as in bounding the
transition estimation error (Lemma 9). However, some techniques there are useful here, including the
inverse telescoping technique and the Holder’s argument (Lemma 10).
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Omitting the dependence of P̂k(x), P (x), P̂i,k(x), Pi(x) on x, for any fixed i and s′[i] ∈ Si, by the
inverse telescoping technique,〈

P̂k − P, V k,h+1 − V ∗h+1

〉
=

〈
m∏
i=1

P̂i,k −
m∏
i=1

Pi, V k,h+1 − V ∗h+1

〉

=

〈
m∑
i=1

(P̂i,k − Pi)P1:i−1P̂i+1:m,k, V k,h+1 − V ∗h+1

〉

=

m∑
i=1

〈
P̂i,k − Pi,EP1:i−1

EP̂i+1:m,k
[V k,h+1 − V ∗h+1]

〉
=

m∑
i=1

〈
P̂i,k − Pi,EP1:i−1

EPi+1:m
[V k,h+1 − V ∗h+1]

〉
(A.13)

+

m∑
i=1

〈
P̂i,k − Pi,EP1:i−1

(EP̂i+1:m,k
− EPi+1:m

)[V k,h+1 − V ∗h+1]
〉
. (A.14)

For (A.13), outside the failure event F (specifically, F6),〈
P̂i,k − Pi,EP1:i−1

EPi+1:m
[V k,h+1 − V ∗h+1]

〉
≤

∑
s′[i]∈Si

(
2L

3Ni,k(x)
+

√
2Pi(s′[i]|x)L

Ni,k(x)

)
EP1:i−1

EPi+1:m
[V k,h+1 − V ∗h+1]

≤ 2HSiL

3Ni,k(x)
+

∑
s′[i]∈Si

√
2Pi(s′[i]|x)L

Ni,k(x)
EP−i

[V k,h+1 − V ∗h+1],

the sum over time of which are both bounded, respectively, by
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
2HSiL

3Ni,k(x)
≤ 8

3
HSiX[Ii]L

2 ≤ 3HSiX[Ii]L
2,

and
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
∑

s′[i]∈Si

√
2Pi(s′[i]|x)L

Ni,k(x)
EP−i

[V k,h+1 − V ∗h+1]

≤
√

2SiL

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

√
EPi

(EP−i
[V k,h+1 − V ∗h+1])2

Ni,k(x)

≤
√

2SiL

√√√√ K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

Ni,k(x)
·

√√√√ K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)EPi
(EP−i

[V k,h+1 − V ∗h+1])2

≤
√

2SiL · 2
√
X[Ii]L ·

√
G0

≤41m2H2(max
i
Si)

1.5 max
i
X[Ii]L

2.5 + 14lH1.5(max
i
Si)

0.5(max
i
X[Ii])

0.5(max
i
X[Ji])

0.5L2,

where the first and second inequalities are due to the Cauchy-Schwarz inequality, and the third inequal-
ity is due to Lemma 15 and Lemma 17. With the same Holder’s argument as in Lemma 10, (A.14) is
upper bounded by

m∑
i=1

〈
P̂i,k − Pi,EP1:i−1(EP̂i+1:m,k

− EPi+1:m)[V k,h+1 − V ∗h+1]
〉

≤
m∑
i=1

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)
,

the sum over time of which is upper bounded by 4m2H maxi Si maxiXiL
2 due to Lemma 16.
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A.6 Regret bounds (proof of Theorem 1)

Proof. Outside the failure event F , combining Lemmas 18, 19, 20, 21 and 22, we obtain

Regret(K) ≤ 2

(
m∑
i=1

H
√

2X[Ii]TL+ 4m2H max
i
Si max

i
XiL

2

)
+ 45m3H2(max

i
Si)

1.5 max
i
X[Ii]L

2.5

+ 14mlH1.5(max
i
Si)

0.5(max
i
X[Ii])

0.5(max
i
X[Ji])

0.5L2 + 4

l∑
i=1

√
X[Ji]TL

+ 8

m∑
i=1

X[Ii]H
2L+ 8

l∑
i=1

X[Ji]H
2L

≤ 3

m∑
i=1

H
√
X[Ii]TL+ 4

l∑
i=1

√
X[Ji]TL+ 53m3H2(max

i
Si)

1.5 max
i
X[Ii]L

2.5

+ 22mlH2(max
i
Si)

0.5(max
i
X[Ii])

0.5 max
i
X[Ji]L

2

= Õ

(
m∑
i=1

√
H2X[Ii]T +

l∑
i=1

√
X[Ji]T

)
,

where in the last equality we assume that T ≥ poly(m, l,maxi Si,maxiX[Ii], H).

To accommodate the case of known rewards, it suffices to remove the parts related to reward
estimation and reward bonuses in both the algorithm and the analysis, which yields the regret bound
Õ(
∑m
i=1

√
H2X[Ii]T ).
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B Regret analysis of F-EULER

The basic structure of the regret analysis in this section is the same as that of F-UCBVI (Section A),
e.g., the notion of the good sets, including the definitions and lemmas (specifically, Definition 5 and
Lemmas 13, 14, 15 and 16), carries through here. The key difference is a more refined analysis using
Bernstein-style concentrations (Lemmas 38 and 39).

B.1 Failure event

Recall that L = log(16mlSXT/δ). We define the failure event for F-EULER as follows.

Definition 6 (Failure events). Define the events

B1 :=

{
∃(i ∈ [m], k ∈ [K], h ∈ [H], x ∈ X ),

∣∣∣〈P̂i,k(x)− Pi(x),EP−i(x)[V
∗
h+1]

〉∣∣∣ >
√

2VarPi(x)EP−i(x)[V
∗
h+1]L

Ni,k(x)
+

2HL

3Ni,k(x)

}
,

B2 := F2,

B3 :=

{
∃(i ∈ [l], k ∈ [K], x ∈ X ),

∣∣∣R̂i,k(x)−Ri(x)
∣∣∣ >√2S[r̂i(x)]L

Mi,k(x)
+

14L

3Mi,k(x)

}
,

B4 :=

{
∃(i ∈ [m], k ∈ [K], h ∈ [H], x ∈ X , s[−i] ∈ S−i),

∣∣∣〈P̂i,k(x)− Pi(x), V ∗h+1(s[−i])
〉∣∣∣ > H

√
L

2Ni,k(x)

}
,

B5 :=

{
∃(i ∈ [m], k ∈ [K], h ∈ [H], x ∈ X ),

∣∣∣√VarP̂i,k(x)EP−i(x)[V
∗
h ]−

√
VarPi(x)EP−i(x)[V

∗
h ]
∣∣∣ > 3H

√
L

Ni,k(x)

}
,

B6 :=

{
∃(i ∈ [m], k ∈ [K], h ∈ [H], x ∈ X ),

∣∣∣√S[r̂i(x)]−
√

Var(ri(x))
∣∣∣ >√ 4L

Mi,k(x)

}
,

B7 := F4, B8 := F5, B9 := F6,

where in B3 and B5 we assume Ni,k ≥ 2 (true for x in the good set Lk), and in B6 we assume
Mi,k ≥ 2 (true for x in the good set Λk). Then the failure event for F-EULER is defined by
B :=

⋃9
i=1 Bi.

The following lemma shows that the failure event B happens with low probability.

Lemma 23 (Failure probability). For any FMDP specified by (2.1), during the running of F-EULER
for K episodes, the failure event B happens with probability at most δ.

Proof. By Bernstein’s inequality (Lemma 38) and the union bound, B1 happens with probability at
most δ/8. By empirical Bernstein’s inequality (Lemma 39) [27] and the union bound, B3 happens
with probability at most δ/8, where 1/(Ni,k(x) − 1) is replaced by 2/Ni,k(x) for Ni,k(x) ≥ 2.
By Hoeffding’s inequality (Lemma 37) and the union bound, B4 happens with probability at most
δ/8. By Theorem 10 in [27] and the union bound, B6 happens with probability at most δ/8, where
1/(Mi,k(x)− 1) is replaced by 2/Mi,k(x) for Mi,k(x) ≥ 2. By the proof of Lemma 8, B2 and B9

happen with probability at most δ/8, respectively; B7 and B8 happen with probability at most δ/16,
respectively. The argument on B5 is more involved, which is stated as follows.
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For k ∈ [K], h ∈ [H], x ∈ X , let SP̂i,k(x)EP−i(x)[V
∗
h ] denote the sample variance of EP−i(x)[V

∗
h ],

whose relationship with the empirical variance is given by

SP̂i,k(x)EP−i(x)[V
∗
h ] =

Ni,k(x)

Ni,k(x)− 1
VarP̂i,k(x)EP−i(x)[V

∗
h ].

Hence, for Ni,k(x) ≥ 2,

SP̂i,k(x)EP−i(x)[V
∗
h ]−VarP̂i,k(x)EP−i(x)[V

∗
h ] =

1

Ni,k(x)− 1
VarP̂i,k(x)EP−i(x)[V

∗
h ] ≤ 2H2

Ni,k(x)
.

By Theorem 10 in [27] and the union bound, with probability at least 1− δ/8, for all i ∈ [m], k ∈
[K], h ∈ [H], x ∈ X and Ni,k(x) ≥ 2,∣∣∣√SP̂i,k(x)EP−i(x)[V

∗
h ]−

√
VarPi(x)EP−i(x)[V

∗
h ]
∣∣∣ ≤ H√ 2L

Ni,k(x)− 1
≤ H

√
4L

Ni,k(x)
,

which yields that ∣∣∣√VarP̂i,k(x)EP−i(x)[V
∗
h ]−

√
VarPi(x)EP−i(x)[V

∗
h ]
∣∣∣

≤
∣∣∣√VarP̂i,k(x)EP−i(x)[V

∗
h ]−

√
SP̂i,k(x)EP−i(x)[V

∗
h ]

+
√
SP̂i,k(x)EP−i(x)[V

∗
h ]−

√
VarPi(x)EP−i(x)[V

∗
h ]
∣∣∣

≤

√
2H2

Ni,k(x)
+H

√
4L

Ni,k(x)
≤ 3H

√
L

Ni,k(x)
,

where in the second inequality we use |
√
a −
√
b| ≤

√
|a− b| for all a, b ≥ 0 and in the third

inequality we use L = log(16mlSXT/δ) ≥ 2. Therefore, B5 happens with probability at most δ/8.

Finally, applying the union bound on Bi for i ∈ [9] yields that the failure event F happens with
probability at most δ.

The deduction in the rest of this section and hence the regret bound hold outside the failure event B,
with probability at least 1− δ. From the above derivation, note that we can actually use a smaller

L1 = log(16mlmax{Smax
i
X[Ii],max

i
X[Ji]}T/δ)

to replace L for F-EULER. We use L for simplicity.

B.2 Upper confidence bound on the optimal state-value function

The goal of this section is to show that V k,h is an entrywise UCB of V ∗h for all k ∈ [K], h ∈ [H].
Analogously to the analysis of F-UCBVI, this optimism is achieved by setting the transition (reward,
respectively) bonus as the UCB of the transition (reward, respectively) estimation error. While the
reward estimation error is direct to bound (failure event B3), to bound the transition estimation error,
we need some properties of the relevant functions.

Recall that in (4.1), for i ∈ [m], Pi ∈ ∆(Si), P =
∏m
i=1 Pi ∈ ∆(S) and V ∈ RS , we define

gi(P, V ) := 2
√
L
√

VarPi
EP−i

[V ]. Now for i ∈ [m], k ∈ [K], P ∈ ∆(S), V ∈ RS and x ∈ X , we
define

φi,k(P, V, x) :=
gi(P, V )√
Ni,k(x)

+
2HL

3Ni,k(x)
.

The following lemma establishes some “Lipschitzness” properties of gi, which are then used to prove
a similar property of φi,k.
Lemma 24 (Properties of gi). Outside the failure event B, for any index i ∈ [m], episode k ∈ [K],
step h ∈ [H], state-action pair x ∈ X and vectors V1, V2 ∈ RS ,

|gi(P (x), V1)− gi(P (x), V2)| ≤
√

2L‖V1 − V2‖2,P (x), (B.1)∣∣∣gi(P̂k(x), V ∗h )− gi(P (x), V ∗h )
∣∣∣ ≤ 3

√
2HL

m∑
j=1

1√
Nj,k(x)

. (B.2)
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Proof. For any finite set S, P ∈ ∆(S) and vectors V1, V2 ∈ RS , we have that
√

VarP [V1] ≤√
VarP [V2] +

√
VarP [V1 − V2] (see [44, Section D.3] for a proof). Then for the first property (B.1),

|gi(P (x), V1)− gi(P (x), V2)| ≤
√

2L
√

VarPi(x)EP1:i−1(x)EPi+1:m(x)[V1 − V2]

≤
√

2L

√
EPi(x)

(
EP1:i−1(x)EPi+1:m(x)[V1 − V2]

)2
≤
√

2L
√
EP [(V1 − V2)2] :=

√
2L‖V1 − V2‖2,P (x).

For the second property (B.2),∣∣∣gi(P̂k(x), V ∗h )− gi(P (x), V ∗h )
∣∣∣

=
√

2L
∣∣∣√VarP̂i,k(x)EP̂−i,k(x)[V

∗
h ]−

√
VarPi(x)EP−i(x)[V

∗
h ]
∣∣∣

=
√

2L

∣∣∣∣√VarP̂i,k(x)EP̂−i,k(x)[V
∗
h ]−

√
VarP̂i,k(x)EP−i(x)[V

∗
h ]

+
√

VarP̂i,k(x)EP−i(x)[V
∗
h ]−

√
VarPi(x)EP−i(x)[V

∗
h ]

∣∣∣∣
≤
√

2L
∣∣∣√VarP̂i,k(x)EP̂−i,k(x)[V

∗
h ]−

√
VarP̂i,k(x)EP−i(x)[V

∗
h ]
∣∣∣ (B.3)

+
√

2L
∣∣∣√VarP̂i,k(x)EP−i(x)[V

∗
h ]−

√
VarPi(x)EP−i(x)[V

∗
h ]
∣∣∣ . (B.4)

To bound (B.3), omitting the dependence of P̂i,k(x), Pi(x) on x, outside the failure event B (specifi-
cally, B4), by an inverse telescoping argument,∣∣∣√VarP̂i,k

EP̂−i,k
[V ∗h ]−

√
VarP̂i,k

EP−i
[V ∗h ]

∣∣∣
≤

m∑
j=1,j 6=i

∣∣∣√VarP̂i,k
EP1:j−1\i,kEP̂j:m\i,k

[V ∗h ]−
√

VarP̂i,k
EP1:j\i,kEP̂j+1:m\i,k

[V ∗h ]
∣∣∣

≤
m∑

j=1,j 6=i

√
VarP̂i,k

EP1:j−1\iEP̂j+1:m\i,k
(EP̂j,k

− EPj )[V ∗h ]

≤
m∑

j=1,j 6=i

√
EP̂i,k

(
EP1:j−1\iEP̂j+1:m\i,k

(EP̂j,k
− EPj )[V ∗h ]

)2

≤
m∑

j=1,j 6=i

H

√
L

2Nj,k(x)
,

where “·\i” denotes excluding i. For (B.4), outside the failure event B (specifically, B5),∣∣∣√VarP̂i,k(x)EP−i(x)[V
∗
h ]−

√
VarPi(x)EP−i(x)[V

∗
h ]
∣∣∣ ≤ 3H

√
L

Ni,k(x)
,

Combining the above bounds on (B.3) and (B.4) yields∣∣∣gi(P̂k(x), V ∗h )− gi(P (x), V ∗h )
∣∣∣ ≤ 3

√
2HL

m∑
j=1

1√
Nj,k(x)

.

Then φi,k satisfies the following “Lipschitzness” property.
Lemma 25 (Property of φi,k). Outside the failure event B, for any index i ∈ [m], episode k ∈ [K],
step h ∈ [H], state-action pair x ∈ X and vector V ∈ RS ,∣∣∣φi,k(P̂k(x), V, x)− φi,k(P (x), V ∗h+1, x)

∣∣∣
≤

√
2L
∥∥V − V ∗h+1

∥∥
2,P̂k(x)√

Ni,k(x)
+

3
√

2HL√
Ni,k(x)

m∑
j=1

1√
Nj,k(x)

.
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Proof. By Lemma 24, outside the failure event B,∣∣∣φi,k(P̂k(x), V, x)− φi,k(P (x), V ∗h+1, x)
∣∣∣

≤ 1√
Ni,k(x)

(∣∣∣gi(P̂k(x), V )− gi(P̂k(x), V ∗h+1)
∣∣∣+
∣∣∣gi(P̂k(x), V ∗h+1)− gi(P (x), V ∗h+1)

∣∣∣)
≤

√
2L
∥∥V − V ∗h+1

∥∥
2,P̂k(x)√

Ni,k(x)
+

3
√

2HL√
Ni,k(x)

m∑
j=1

1√
Nj,k(x)

.

Now we are ready to present the bounds on transition estimation error in the following lemma.

Lemma 26 (Transition estimation error, Bernstein-style). Outside the failure event B, for any episode
k ∈ [K], step h ∈ [H] and state-action pair x ∈ X ,∣∣∣〈P̂k(x)− Pk(x), V ∗h+1

〉∣∣∣ ≤ m∑
i=1

φi,k(P (x), V ∗h+1, x) +

m∑
i=1

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)
.

And for a given k ∈ [K] and a given h ∈ [H], if V k,h+1 ≤ V ∗h+1 ≤ V k,h+1 entrywise, then the
above inequality yields∣∣∣〈P̂k(x)− Pk(x), V ∗h+1

〉∣∣∣
≤

m∑
i=1

φi,k(P̂k(x), V k,h+1, x) +

m∑
i=1

√
2L
∥∥V k,h+1 − V k,h+1

∥∥
2,P̂k(x)√

Ni,k(x)

+

m∑
i=1

3
√

2HL√
Ni,k(x)

m∑
j=1

1√
Nj,k(x)

+

m∑
i=1

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)
.

Proof. Recall that in Lemma 9, for all k ∈ [K], h ∈ [H], x ∈ X , omitting the dependence of
P̂k(x), P (x), P̂i,k(x), Pi(x) on x, we decompose the transition estimation error as〈

P̂k − P, V ∗h+1

〉
=

m∑
i=1

〈
P̂i,k − Pi,EP1:i−1EPi+1:m [V ∗h+1]

〉
(B.5)

+

m∑
i=1

〈
P̂i,k − Pi,EP1:i−1

(EP̂i+1:m,k
− EPi+1:m

)[V ∗h+1]
〉
. (B.6)

Outside the failure event B (specifically, B1), (B.5) is bounded by∣∣∣〈P̂i,k(x)− Pi(x),EP1:i−1(x)EPi+1:m(x)[V
∗
h+1]

〉∣∣∣
≤

√
2VarPi(x)EP1:i−1(x)EPi+1:m(x)[V

∗
h+1]L

Ni,k(x)
+

2HL

3Ni,k(x)

=φi,k(P (x), V ∗h+1, x).

If V k,h+1 ≤ V ∗h+1 ≤ V k,h+1 entrywise, then by Lemma 25, (B.5) is further bounded by

φi,k(P (x), V ∗h+1, x)

≤φi,k(P̂k(x), V h+1, x) +

√
2L
∥∥V k,h+1 − V ∗h+1

∥∥
2,P̂k(x)√

Ni,k(x)
+

3
√

2HL√
Ni,k(x)

m∑
j=1

1√
Nj,k(x)

≤φi,k(P̂k(x), V h+1, x) +

√
2L
∥∥V k,h+1 − V k,h+1

∥∥
2,P̂k(x)√

Ni,k(x)
+

3
√

2HL√
Ni,k(x)

m∑
j=1

1√
Nj,k(x)

,
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For (B.6), the Holder’s argument (Lemma 10) yields∣∣∣〈P̂i,k(x)− Pi(x),EP1:i−1(x)(EP̂i+1:m,k(x) − EPi+1:m(x))[V
∗
h+1]

〉∣∣∣
≤

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)
.

Combining the above bounds on (B.5) and (B.6) completes the proof.

The first Bernstein-style bound on the transition estimation error (Lemma 26) depends on the unknown
V ∗h+1, which is why we derive the second bound in terms of the UCB V k,h and LCB V k,h. Now
simplify the second bound to the form of the transition bonus. Expanding φi,k by definition,

m∑
i=1

φi,k(P̂k(x), V k,h+1, x) +

m∑
i=1

√
2L
∥∥V k,h+1 − V k,h+1

∥∥
2,P̂k(x)√

Ni,k(x)

+

m∑
i=1

3
√

2HL√
Ni,k(x)

m∑
j=1

1√
Nj,k(x)

+

m∑
i=1

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)

=

m∑
i=1

gi(P̂k(x), V k,h+1)√
Ni,k(x)

+

m∑
i=1

2HL

3Ni,k(x)
+

m∑
i=1

√
2L
∥∥V k,h+1 − V k,h+1

∥∥
2,P̂k(x)√

Ni,k(x)

+

m∑
i=1

3
√

2HL√
Ni,k(x)

m∑
j=1

1√
Nj,k(x)

+

m∑
i=1

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)

≤
m∑
i=1

gi(P̂k(x), V k,h+1)√
Ni,k(x)

+

m∑
i=1

√
2L
∥∥V k,h+1 − V k,h+1

∥∥
2,P̂k(x)√

Ni,k(x)

+

m∑
i=1

m∑
j=i+1

11HL

√
SiSj

Ni,k(x)Nj,k(x)
+

m∑
i=1

5HL

Ni,k(x)
,

which is precisely the transition bonus bk,h(x) in (4.2). Therefore, for any k ∈ [K], h ∈ [H],∣∣∣〈P̂k(x)− Pk(x), V ∗h+1

〉∣∣∣ ≤bk,h(x),

if V k,h+1 ≤ V ∗h+1 ≤ V k,h+1 holds entrywise, which we soon prove in Lemma 27. Note that our
choice of the reward bonus upper bounds the reward estimation error outside the failure event B
(specifically, B3), i.e.,∣∣∣R̂k(x)−R(x)

∣∣∣ ≤ l∑
i=1

∣∣∣R̂i,k(x)−Ri(x)
∣∣∣ ≤ l∑

i=1

√
2S[r̂i(x)]L

Mi,k(x)
+

l∑
i=1

14L

3Mi,k(x)
:= βk(x).

With xk,h = (s, πk(s, h)), recall the optimistic and pessimistic value iterations are defined as

V k,h(s) = min
{
H − h+ 1, R̂(xk,h) +

〈
P̂k(xk,h), V k,h+1

〉
+ bk,h(xk,h) + βk(xk,h)

}
,

V k,h(s) = max
{

0, R(xk,h) +
〈
P̂k(xk,h), V k,h+1

〉
− bk,h(xk,h)− βk(xk,h)

}
.

The following lemma indicates that the Bernstein-style bonuses and the above value iterations ensure
optimism and pessimism. Specifically, V k,h and V k,h are entrywise upper and lower confidence
bounds of V ∗h for all k ∈ [K], h ∈ [H].

Lemma 27 (Upper-lower confidence bounds). Outside the failure event B, for the choices of bonuses
in (4.2) and (4.3), for any episode k ∈ [K], step h ∈ [H] and state s ∈ S,

V k,h(s) ≤ V ∗h (s) ≤ V k,h(s). (B.7)

31



Proof. For h = H + 1, V k,H+1(s) = V ∗H+1(s) = V k,H+1(s) = 0 for all s ∈ S, k ∈ [K]. We
proceed by backward induction. For h ∈ [H], assume (B.7) holds for h+1. The transition bonus then
satisfies |

〈
P̂k(x)− Pk(x), V ∗h+1

〉
| ≤ bk,h(x) for all x ∈ X . For all s ∈ S , with xk,h = (s, πk(s, h))

and x∗h = (s, π∗(s, h)), V k,h satisfies that

V k,h(s)− V ∗h (s)

=R̂(xk,h) + βk(xk,h) +
〈
P̂k(xk,h), V k,h+1

〉
+ bk(xk,h)−R(x∗h)−

〈
P (x∗h), V ∗h+1

〉
≥R̂(x∗h) + βk(x∗h) +

〈
P̂k(x∗h), V k,h+1

〉
+ bk(x∗h)−R(x∗h)−

〈
P (x∗h), V ∗h+1

〉
≥
〈
P̂k(x∗h), V k,h+1 − V ∗h+1

〉
+
〈
P̂k(x∗h)− P (x∗h), V ∗h+1

〉
+ bk(x∗h) ≥ 0,

and V k,h satisfies that

V ∗h (s)− V k,h(s)

≥R(x∗h) +
〈
P (x∗h), V ∗h+1

〉
− R̂k(xk,h)− βk(xk,h)−

〈
P̂k(xk,h), V k,h+1

〉
+ bk,h(xk,h)

≥R(xk,h) +
〈
P (xk,h), V ∗h+1

〉
− R̂k(xk,h)− βk(xk,h)−

〈
P̂k(xk,h), V k,h+1

〉
+ bk,h(xk,h)

≥
〈
P̂k(xk,h), V ∗h+1 − V k,h+1

〉
+
〈
P (xk,h)− P̂k(xk,h), V ∗h+1

〉
+ bk,h(xk,h) ≥ 0.

Inductively, V k,h ≤ V ∗h ≤ V k,h holds entrywise for all k ∈ [K] and h ∈ [H].

For F-EULER, we refer to the difference between the optimistic value function and the pessimistic
value function as the confidence radius, which we bound in the following lemma. For here and
below, we use “.,≈” to denote “≤,=” neglecting constants. Different from the main text, we make
lower-order terms explicit in the appendices.

Lemma 28 (Confidence radius, Bernstein-style). Let F1 := mH maxi SiL be a lower-order term.
Let sk,t ∈ S denote the state at step t of episode k and xk,t = (sk,t, πk(sk,t, t)). Outside the failure
event B, for any episode k ∈ [K], step h ∈ [H] and state s ∈ S, the confidence radius of F-EULER
satisfies that

V k,h(s)− V k,h(s) . min

{
H∑
t=h

Eπk

[
m∑
i=1

F1√
Ni,k(xk,t)

+

l∑
i=1

L√
Mi,k(xk,t)

∣∣∣∣∣sk,h = s

]
, H

}
.

Proof. By definition, for any k ∈ [K], h ∈ [H], s ∈ S,

V k,h(s)− V k,h(s)

≤R̂k(xk,h) +
〈
P̂k(xk,h), V k,h+1

〉
+ bk,h(xk,h) + βk(xk,h)

− R̂k(xk,h)−
〈
P̂k(xk,h), V k,h+1

〉
+ bk,h(xk,h) + βk(xk,h)

=
〈
P̂k(xk,h), V k,h+1 − V k,h+1

〉
+ 2bk,h(xk,h) + 2βk(xk,h)

=
〈
P (xk,h), V k,h+1 − V k,h+1

〉
+
〈
P (xk,h)− P̂k(xk,h), V k,h+1 − V k,h+1

〉
+ 2bk,h(xk,h) + 2βk(xk,h)

≤
〈
P (xk,h), V k,h+1 − V k,h+1

〉
+

m∑
i=1

H

√
2SiL

Ni,k(xk,h)
+ 2bk,h(xk,h) + 2βk(xk,h), (B.8)

where the last inequality results from Holder’s inequality and holds outside the failure event B
(specifically, B2). We apply the following loose bounds on the transition bonus and the reward bonus
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that for any k ∈ [K], h ∈ [H], x ∈ X ,

bk,h(x) =

m∑
i=1

gi(P̂k(x), V k,h+1)√
Ni,k(x)

+

m∑
i=1

√
2L
∥∥V k,h+1 − V k,h+1

∥∥
2,P̂k(x)√

Ni,k(x)

+

m∑
i=1

m∑
j=i+1

8HL

√
SiSj

Ni,k(x)Nj,k(x)
+

m∑
i=1

4HL

Ni,k(x)

≤
2
√
L
√

VarP̂i,k
EP̂−i,k

[V k,h+1]√
Ni,k(x)

+

m∑
i=1

√
2LH√
Ni,k(x)

+

m∑
i=1

m∑
j=i+1

8HLmax
i
Si

1√
Ni,k(x)

+

m∑
i=1

4HL

Ni,k(x)

. mH max
i
SiL

m∑
i=1

1√
Ni,k(x)

,

and

βk(x) =

l∑
i=1

√
2S[r̂i(x)]L

Mi,k(x)
+

l∑
i=1

14L

3Mi,k(x)
. L

l∑
i=1

1√
Mi,k(x)

.

Substituting the above bounds on bk,h(x) and βk(x) at x = xk,h into (B.8) yields

V k,h(s)− V k,h(s) .
〈
P (xk,h), V k,h+1 − V k,h+1

〉
+

m∑
i=1

F√
Ni,k(xk,h)

+

l∑
i=1

L√
Mi,k(xk,h)

.

Inductively, we have

V k,h(s)− V k,h(s) . min

{
H∑
t=h

Eπk

[
m∑
i=1

F1√
Ni,k(xk,t)

+

l∑
i=1

L√
Mi,k(xk,t)

∣∣∣∣∣sk,h = s

]
, H

}
.

As noted above, the notion of the good sets in the analysis of F-UCBVI carries over here, which again
plays an important role in showing sum-over-time bounds. Analogous to Lemma 17, the following
lemma bounds the sum over time of the squared confidence radius, which is later used to bound the
cumulative correction term (Lemma 34).

Lemma 29 (Cumulative confidence radius, Bernstein-style). Define the lower-order term

G1 := m4H4(max
i
Si)

2 max
i
X[Ii]L

3 + l2H3 max
i
X[Ji]L

3.

Then outside the failure event B, for all i ∈ [m], the sum over time of the following expected squared
confidence radius of F-EULER satisfies that

K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)
(
EPi

(
EP−i [V k,h+1 − V k,h+1]

)2)

≤
K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)
(
EP [(V k,h+1 − V k,h+1)2]

)
. G1.

Proof. Replacing the failure event F and confidence radius bound (Lemma 12) of F-UCBVI by the
failure event B and confidence radius bound (Lemma 28) of F-EULER, the proof of Lemma 17 carries
over here. Note that there is a minor difference in the order of L between the second terms of G1

(F-EULER) and G0 (F-UCBVI), resulting from the
√
L difference in the corresponding confidence

radius bounds.
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Like the analysis of EULER [44], we show two problem-dependent regret bounds of F-EULER. The
following lemma bridges one bound to the other.
Lemma 30 (Bound bridge). Outside the failure event B, for F-EULER, we have

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
gi(P (x), V ∗h+1)− gi(P (x), V πk

h+1)√
Ni,k(x)

≤ 2
√

2LH
√
X[Ii]L

√
Regret(K).

Proof. Outside the failure event B, by the properties of gi (Lemma 24),
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
gi(P (x), V ∗h+1)− gi(P (x), V πk

h+1)√
Ni,k(x)

≤
√

2L

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
‖V ∗h+1 − V

πk

h+1‖2,P (x)√
Ni,k(x)

≤
√

2L

√√√√ K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

Ni,k(x)
·

√√√√ K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
〈
P (x), (V ∗h+1 − V

πk

h+1)2
〉

≤2
√

2L
√
X[Ii]L ·

√
H2Regret(K) = 2

√
2LH

√
X[Ii]L

√
Regret(K),

where in the second inequality we use the Cauchy-Schwarz inequality, and the third inequality is due
to Lemma 15 in this work and Lemma 16 in [44].

B.3 Bounds on the individual terms in regret

Replacing the failure event F by B, the regret decomposition in Lemma 18 carries over here. Hence,
outside the failure event B,

Regret(K)

≤
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
(〈
P̂k(x)− P (x), V ∗h+1

〉
︸ ︷︷ ︸

transition estimation error

+bk,h(x) +
〈
P̂k(x)− P (x), V k,h+1 − V ∗h+1

〉
︸ ︷︷ ︸

correction term

)

+

K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)2βk(x) + 8H2
m∑
i=1

X[Ii]L+ 8H2
l∑
i=1

X[Ji]L,

where the bk,h(x) term is referred to as “transition optimism” and 2βk(x) term is referred to as
“reward estimation error and optimism”. In this subsection, we present the bounds on the above
individual terms for F-EULER.
Lemma 31 (Cumulative transition estimation error, Bernstein-style). Define

C∗i :=
1

T

K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)g2
i (P (x), V ∗h+1) =

1

T

K∑
k=1

H∑
h=1

Eπk
[g2
i (P, V ∗h+1)|sk,1],

Cπi :=
1

T

K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)g2
i (P (x), V πk

h+1) =
1

T

K∑
k=1

H∑
h=1

Eπk
[g2
i (P, V πk

h+1)|sk,1],

where sk,1 denotes the initial state in the kth episode. Then for F-EULER, outside the failure event B,
the sum over time of the transition estimation error satisfies that
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
〈
P̂k(x)− P (x), V ∗h+1

〉
.

m∑
i=1

√
C∗iX[Ii]T +m2H max

i
Si max

i
X[Ii]L

2,

and that
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
〈
P̂k(x)− P (x), V ∗h+1

〉
.

m∑
i=1

√
Cπi X[Ii]TL+

m∑
i=1

H
√
X[Ii]L

√
Regret(K) +m2H max

i
Si max

i
X[Ii]L

2.
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Proof. Outside the failure event B, by lemma 26,
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
〈
P̂k(x)− P (x), V ∗h+1

〉

≤
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

 m∑
i=1

φi,k(P (x), V ∗h+1, x) +

m∑
i=1

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)


=

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

 m∑
i=1

gi(P (x), V ∗h+1)√
Ni,k(x)

(B.9)

+

m∑
i=1

2HL

3Ni,k(x)
+

m∑
i=1

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)

. (B.10)

By the Cauchy-Schwarz inequality and Lemma 15, the term (B.9) is bounded by
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

(
m∑
i=1

gi(P (x), V ∗h+1)√
Ni,k(x)

)

≤
m∑
i=1

√√√√ K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)g2
i (P (x), V ∗h+1) ·

√√√√ K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

Ni,k(x)

≤
m∑
i=1

2
√
C∗iX[Ii]TL.

By Lemma 15 and Lemma 16, the terms in (B.10) are bounded by

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

 m∑
i=1

2HL

3Ni,k(x)
+

m∑
i=1

m∑
j=i+1

2HL

√
SiSj

Ni,k(x)Nj,k(x)


≤2

3
HL

m∑
i=1

4X[Ii]L+ 2HLmax
i
Si

m∑
i=1

m∑
j=i+1

4
√
X[Ii]X[Ij ]L

.m2H max
i
Si max

i
X[Ii]L

2.

Combining the above bounds on (B.9) and (B.10) yields the first bound in this lemma. To show the
second bound, we bound (B.9) otherwise, by

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

(
m∑
i=1

gi(P (x), V ∗h+1)√
Ni,k(x)

)

=

m∑
i=1

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

(
gi(P (x), V πk

h+1)√
Ni,k(x)

+
gi(P (x), V ∗h+1)− gi(P (x), V πk

h+1)√
Ni,k(x)

)

≤
m∑
i=1

2
√
Cπi X[Ii]TL+

m∑
i=1

2
√

2LH
√
X[Ii]L

√
Regret(K),

where the inequality is due to the bound bridge (Lemma 30).

Lemma 32 (Cumulative transition optimism, Bernstein-style). For F-EULER, outside the failure
event B, the sum over time of the transition optimism satisfies that

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)bk,h(x) .
m∑
i=1

√
C∗iX[Ii]T +m3H2 max

i
Si max

i
X[Ii]L

2

+m1.5lH1.5(max
i
Si)

0.25(max
i
X[Ii])

0.75(max
i
X[Ji])

0.5L2,
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and that

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)bk,h(x) .
m∑
i=1

√
Cπi X[Ii]TL+

m∑
i=1

H
√
X[Ii]L

√
Regret(K)

+m3H2 max
i
Si max

i
X[Ii]L

2

+m1.5lH1.5(max
i
Si)

0.25(max
i
X[Ii])

0.75(max
i
X[Ji])

0.5L2.

Proof. Outside the failure event B, for all k ∈ [K], h ∈ [H] and x ∈ X , by definition,

bk,h(x) =

m∑
i=1

gi(P̂k(x), V k,h+1)√
Ni,k(x)

+

m∑
i=1

√
2L
∥∥V k,h+1 − V k,h+1

∥∥
2,P̂k(x)√

Ni,k(x)

+

m∑
i=1

m∑
j=i+1

11HL

√
SiSj

Ni,k(x)Nj,k(x)
+

m∑
i=1

5HL

Ni,k(x)

=

m∑
i=1

φi,k(P̂k(x), V h+1, x) +

m∑
i=1

√
2L
∥∥V k,h+1 − V k,h+1

∥∥
2,P̂k(x)√

Ni,k(x)

+

m∑
i=1

m∑
j=i+1

11HL

√
SiSj

Ni,k(x)Nj,k(x)
+

m∑
i=1

13HL

3Ni,k(x)

≤
m∑
i=1

φi,k(P (x), V ∗h+1, x) +

m∑
i=1

2
√

2L
∥∥V k,h+1 − V k,h+1

∥∥
2,P̂k(x)√

Ni,k(x)

+

m∑
i=1

3
√

2HL√
Ni,k(x)

m∑
j=1

1√
Nj,k(x)

+

m∑
i=1

m∑
j=i+1

11HL

√
SiSj

Ni,k(x)Nj,k(x)
+

m∑
i=1

13HL

3Ni,k(x)

≤
m∑
i=1

φi,k(P (x), V ∗h+1, x) +

m∑
i=1

2
√

2L
∥∥V k,h+1 − V k,h+1

∥∥
2,P̂k(x)√

Ni,k(x)

+

m∑
i=1

m∑
j=i+1

20HL

√
SiSj

Ni,k(x)Nj,k(x)
+

m∑
i=1

9HL

Ni,k(x)

where the first inequality is due to Lemma 25. Substituting the definition of φi,k into the above bound
on bk,h(x), we have

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)bk,h(x)

.
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

(
m∑
i=1

√
L
∥∥V k,h+1 − V k,h+1

∥∥
2,P̂k(x)√

Ni,k(x)
(B.11)

+

m∑
i=1

gi(P (x), V ∗h+1)√
Ni,k(x)

+

m∑
i=1

HL

Ni,k(x)
+

m∑
i=1

m∑
j=i+1

HL

√
SiSj

Ni,k(x)Nj,k(x)

)
. (B.12)
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By the Cauchy-Schwarz inequality and the inequality that
√
a+ b ≤

√
a+
√
b for all a, b ≥ 0, we

bound the term in (B.11) by
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

∥∥V k,h+1 − V k,h+1

∥∥
2,P̂k(x)√

Ni,k(x)

≤

√√√√ K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)

Ni,k(x)
·

√√√√ K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
∥∥V k,h+1 − V k,h+1

∥∥2

2,P̂k(x)

≤2
√
X[Ii]L ·


√√√√ K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
∥∥V k,h+1 − V k,h+1

∥∥2

2,P (x)
(B.13)

+

√√√√ K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
〈
P̂k(x)− P (x), (V k,h+1 − V k,h+1)2

〉, (B.14)

where the term in (B.13) is bounded, due to Lemma 29, by
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
∥∥V k,h+1 − V k,h+1

∥∥2

2,P (x)
. G1,

and the term in (B.14) is bounded, due to Lemma 34, by
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
〈
P̂k(x)− P (x), (V k,h+1 − V k,h+1)2

〉

≤H
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
∣∣∣〈P̂k(x)− P (x), V k,h+1 − V k,h+1

〉∣∣∣
.m3H3(max

i
Si)

1.5 max
i
X[Ii]L

2.5 +mlH2.5(max
i
Si)

0.5(max
i
X[Ii])

0.5(max
i
X[Ji])

0.5L2.5.

By the proof of Lemma 31, the same bounds as those on the cumulative transition estimation error
applies to (B.12). Combining the above bounds on (B.11) and (B.12), we obtain the first bound that

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)bk,h(x)

.
m∑
i=1

√
C∗iX[Ii]T +m2H max

i
Si max

i
X[Ii]L

2 +m
√

max
i
X[Ii]L

√
G1

+m
√

max
i
X[Ii]L

√
m3H3(max

i
Si)1.5 max

i
X[Ii]L2.5

+m
√

max
i
X[Ii]L

√
mlH2.5(max

i
Si)0.5(max

i
X[Ii])0.5(max

i
X[Ji])0.5L2.5

.
m∑
i=1

√
C∗iX[Ii]T +m2H max

i
Si max

i
X[Ii]L

2

+m(max
i
X[Ii])

0.5L0.5m2H2 max
i
Si(max

i
X[Ii])

0.5L1.5

+m(max
i
X[Ii])

0.5L0.5lH1.5(max
i
X[Ji])

0.5L1.5

+m(max
i
X[Ii])

0.5L0.5m1.5H1.5(max
i
Si)

0.75(max
i
X[Ii])

0.5L1.25

+m(max
i
X[Ii])

0.5L0.5m0.5l0.5H1.25(max
i
Si)

0.25(max
i
X[Ii])

0.25(max
i
X[Ji])

0.25L1.25

.
m∑
i=1

√
C∗iX[Ii]T +m3H2 max

i
Si max

i
X[Ii]L

2

+m1.5lH1.5(max
i
Si)

0.25(max
i
X[Ii])

0.75(max
i
X[Ji])

0.5L2,
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and the second bound that
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)bk,h(x)

.
m∑
i=1

√
Cπi X[Ii]T +

m∑
i=1

H
√
X[Ii]L

√
Regret(K)

+m3H2 max
i
Si max

i
X[Ii]L

2 +m1.5lH1.5(max
i
Si)

0.25(max
i
X[Ii])

0.75(max
i
X[Ji])

0.5L2.

Lemma 33 (Cumulative reward estimation error and optimism, Bernstein-style). For F-EULER,
outside the failure event B, the sum over time of the reward estimation error and optimism satisfies
that

K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)2βk(xk,h) .
l∑
i=1

√
RiX[Ji]TL+

l∑
i=1

X[Ji]L
2,

and that
K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)2βk(xk,h) .
l∑
i=1

√
G2X[Ji]KL+

l∑
i=1

X[Ji]L
2.

Proof. The treatment of the cumulative βk,h(x) is essentially the same as the proof of Lemma 8
in [44]. Recall thatRi := maxx∈X {Var[ri(x)]}. Outside the failure event B (specifically, B6),

K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)βk(xk,h)

=

K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)

l∑
i=1

(√
2S[r̂i(x)]L

Mi,k(x)
+

14L

3Mi,k(x)

)

≤
K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)

l∑
i=1

(√
2Var(ri(x))L

Mi,k(x)
+

√
4L

Mi,k(x)
+

14L

3Mi,k(x)

)

.
√
L

l∑
i=1

√√√√ K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)

Mi,k(x)

√√√√ K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)Var(ri(x)) +X[Ji]L
2 (B.15)

.
l∑
i=1

√
RiX[Ji]TL+X[Ji]L

2,

where the second inequality is due to the Cauchy-Schwarz inequality, and the last inequality is due to
Lemma 15.

Let sk,h ∈ S denote the state at step h of episode k and xk,h = (sk,h, πk(sk,h, h)). Recall that∑H
h=1 ri(xk,h) ≤ G for any sequence {xk,h}Hh=1. To obtain the second bound, consider

Var

[
H∑
h=1

ri(xk,h)

∣∣∣∣∣{sk,h}Hh=1

]
≤ E

( H∑
h=1

ri(xk,h)

)2
∣∣∣∣∣∣{sk,h}Hh=1

 ≤ G2.

Take the expectation over the trajectory {sk,h}Hh=1 yields

E{sk,h}Hh=1

[
Var

[
H∑
h=1

ri(xk,h)

∣∣∣∣∣{sk,h}Hh=1

]]
≤ G2.

Since ri(·) has independent randomness in different steps, in an alternative notation and taking sum
over k ∈ [K], we have

K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)Var(ri(x)) ≤ KG2.
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Substituting the above into (B.15) yields

K∑
k=1

H∑
h=1

∑
x∈Λk

wk,h(x)2βk(xk,h) .
l∑
i=1

√
G2X[Ji]KL+

l∑
i=1

X[Ji]L
2.

Lemma 34 (Cumulative correction term, Bernstein-style). For F-EULER, outside the failure event
B, the sum over time of the correction term satisfies that

K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
〈
P̂k(x)− P (x), V k,h+1 − V ∗h+1

〉

≤
K∑
k=1

H∑
h=1

∑
x∈Lk

wk,h(x)
∣∣∣〈P̂k(x)− P (x), V k,h+1 − V ∗h+1

〉∣∣∣
.m3H2(max

i
Si)

1.5 max
i
X[Ii]L

2.5 +mlH1.5(max
i
Si)

0.5(max
i
X[Ii])

0.5(max
i
X[Ji])

0.5L2.5.

Proof. Replacing the failure event F by B and the lower-order term G0 by G1, the proof of the
bound on the cumulative correction term for F-UCBVI (Lemma 22) carries over. Note that the second
term in the bound here has an extra

√
L factor due to the difference between G0 and G1.

B.4 Regret bounds

The following lemma is useful in deriving the problem-dependent regret bounds of F-EULER.

Lemma 35 (Component variance bound). For any finite set S =
⊗m

i=1 Si, any probability mass
function P =

∏m
i=1 Pi ∈ ∆(S) where Pi ∈ ∆(Si) for i ∈ [m], and any vector V ∈ RS ,

VarPi
EP−i

[V ] ≤ VarP [V ].

Proof. By the definition of variance,

VarP [V ]−VarPiEP−i [V ] = EP [V 2]− (EP [V ])
2 − EPi

[(
EP−i [V ]

)2]
+ (EP [V ])

2

= EPi

[
VarP−i [V ]

]
≥ 0.

B.4.1 Proof of Theorem 2

Proof. To prove Theorem 2, we actually need to show four combinations of the bounds therein.

39



Outside the failure event B, combining Lemmas 18, 31, 32, 33 and 34, for F-EULER, we obtain

Regret(K) .
m∑
i=1

√
C∗iX[Ii]T +m3H2 max

i
Si max

i
X[Ii]L

2

+m1.5lH1.5(max
i
Si)

0.25(max
i
X[Ii])

0.75(max
i
X[Ji])

0.5L2,

+

l∑
i=1

√
RiX[Ji]TL+

l∑
i=1

X[Ji]L
2

+m3H2(max
i
Si)

1.5 max
i
X[Ii]L

2.5

+mlH1.5(max
i
Si)

0.5(max
i
X[Ii])

0.5(max
i
X[Ji])

0.5L2.5

+H2
m∑
i=1

X[Ii]L+H2
l∑
i=1

X[Ji]L

.
m∑
i=1

√
C∗iX[Ii]T +

l∑
i=1

√
RiX[Ji]TL+m3H2(max

i
Si)

1.5 max
i
X[Ii]L

2.5

+m1.5lH2(max
i
Si)

0.5(max
i
X[Ii])

0.75 max
i
X[Ji]L

2.5,

and similarly,

Regret(K) .
m∑
i=1

√
C∗iX[Ii]T +

l∑
i=1

√
G2X[Ji]KL+m3H2(max

i
Si)

1.5 max
i
X[Ii]L

2.5

+m1.5lH2(max
i
Si)

0.5(max
i
X[Ii])

0.75 max
i
X[Ji]L

2.5.

By definition,

C∗i =
1

T

K∑
k=1

H∑
h=1

Eπk
[g2
i (P, V ∗h+1)|sk,1] ≤ (2

√
L)2Qi = 4QiL.

Substituting the above bound on C∗i into the above two regret bounds, we obtain two combinations of
the bounds in Theorem 2. Specifically, assuming T ≥ poly(m, l,maxi Si,maxiX[Ii], H), we have

Regret(K) = Õ(

m∑
i=1

√
QiX[Ii]T +

l∑
i=1

√
RiX[Ji]T ),

Regret(K) = Õ(

m∑
i=1

√
QiX[Ii]T +

l∑
i=1

√
GX[Ji]K).

For other two combinations of the regret bounds of F-EULER, outside the failure event B, combining
Lemmas 18, 31, 32, 33 and 34 yet with the alternative bounds in Lemmas 31 and 32, we obtain

Regret(K) .
m∑
i=1

√
Cπi X[Ii]T +

m∑
i=1

H
√
X[Ii]L

√
Regret(K) +

l∑
i=1

√
RiX[Ji]TL

+m3H2(max
i
Si)

1.5 max
i
X[Ii]L

2.5

+m1.5lH2(max
i
Si)

0.5(max
i
X[Ii])

0.75 max
i
X[Ji]L

2.5,

(B.16)

and

Regret(K) .
m∑
i=1

√
Cπi X[Ii]T +

m∑
i=1

H
√
X[Ii]L

√
Regret(K) +

l∑
i=1

√
G2X[Ji]KL

+m3H2(max
i
Si)

1.5 max
i
X[Ii]L

2.5

+m1.5lH2(max
i
Si)

0.5(max
i
X[Ii])

0.75 max
i
X[Ji]L

2.5.

(B.17)
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For inequality y . A
√
y +B, the solution is

√
y .

A+
√
A2 + 4B

2
. A+

√
B,

which yields y . A2 + B + 2A2
√
B . A2 + B, where the last inequality is due to the AM-GM

inequality. Applying the above solution to (B.16) and (B.17) yields

Regret(K) .
m∑
i=1

√
Cπi X[Ii]T +

l∑
i=1

√
RiX[Ji]TL+m3H2(max

i
Si)

1.5 max
i
X[Ii]L

2.5

(B.18)

+m1.5lH2(max
i
Si)

0.5(max
i
X[Ii])

0.75 max
i
X[Ji]L

2.5. (B.19)

and

Regret(K) .
m∑
i=1

√
Cπi X[Ii]T +

l∑
i=1

√
G2X[Ji]KL+m3H2(max

i
Si)

1.5 max
i
X[Ii]L

2.5

(B.20)

+m1.5lH2(max
i
Si)

0.5(max
i
X[Ii])

0.75 max
i
X[Ji]L

2.5. (B.21)

With xk,h = (sk,h, πk(sk,h, h)) where sk,h ∈ S denotes the state in step h of episode k, by definition,

Cπi =
1

T

K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)g2
i (P (x), V πk

h+1)

=
4L

T

K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)VarPi(x)EP−i(x)[V
πk

h+1]

≤ 4L

T

K∑
k=1

H∑
h=1

∑
x∈X

wk,h(x)VarP (x)[V
πk

h+1]

=
4L

T

K∑
k=1

H∑
h=1

Eπk

[
VarP (xk,h)[V

πk

h+1|sk,h]
∣∣sk,1]

≤ 4L

T

K∑
k=1

Eπk

( H∑
h=1

R(xk,h)− V πk
1 (sk,1)

)2
∣∣∣∣∣∣sk,1


≤ 4KG2L

T
=

4G2L

H
,

where the first inequality is due to the component variance bound (Lemma 35), the second inequality
is due to a law of total variance argument (see Lemma 15 in [44] for a proof). Substituting the
above bound on Cπi into (B.18) and (B.20), we obtain the other two combinations of the bounds in
Theorem 2. Specifically, assuming T ≥ poly(m, l,maxi Si,maxiX[Ii], H), we have

Regret(K) = Õ(

m∑
i=1

√
GX[Ii]K +

l∑
i=1

√
RiX[Ji]T ),

Regret(K) = Õ(

m∑
i=1

√
GX[Ii]K +

l∑
i=1

√
GX[Ji]K).

To accommodate the case of known rewards, it suffices to remove the parts related to reward estimation
and reward bonuses in both the algorithm and the analysis, which yields the regret bound

min

{
Õ

(
m∑
i=1

√
QiX[Ii]T

)
, Õ

(
m∑
i=1

√
GX[Ii]K

)}
.
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B.4.2 Proof of Corollary 3

Proof. Since r(x) ∈ [0, 1] and R(x) ∈ [0, 1] for all x ∈ X , we have G ≤ H and Ri =
maxx∈X [Var(ri(x))] ≤ 1 for all i ∈ [l]. Then by Theorem 2, for F-EULER,

Regret(K) .
m∑
i=1

√
G2X[Ii]KL+

l∑
i=1

√
RiX[Ji]TL+m3H2(max

i
Si)

1.5 max
i
X[Ii]L

2.5

+m1.5lH2(max
i
Si)

0.5(max
i
X[Ii])

0.75 max
i
X[Ji]L

2.5

.
m∑
i=1

√
HX[Ii]TL+

l∑
i=1

√
X[Ji]TL+m3H2(max

i
Si)

1.5 max
i
X[Ii]L

2.5

+m1.5lH2(max
i
Si)

0.5(max
i
X[Ii])

0.75 max
i
X[Ji]L

2.5.

Assuming T ≥ poly(m, l,maxi Si,maxiX[Ii], H), we further have

Regret(K) = Õ

(
m∑
i=1

√
HX[Ii]T +

l∑
i=1

√
X[Ji]T

)
.

In the case of known rewards, again, by removing the parts related to reward estimation and reward
bonuses in both the algorithm and the analysis, we obtain the regret bound Õ(

∑m
i=1

√
HX[Ii]T ).
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C Lower bounds for FMDPs

C.1 Proof for degenerate case 1 (Proposition 4)

Proof. Without loss of generality, assume argmaxiX[Ji
′] = 1. Let the reward function depends

only on X [J1
′]. Then for arbitrary transition, learning in this FMDP can be converted to an MAB

problem with X[J1
′] arms, whose regret in T steps has the lower bound Ω(

√
X[J1

′]T ) [26].

C.2 Proof for degenerate case 2 (Proposition 5)

Proof. The construction is essentially the same as that in the proof of Proposition 4. Without loss of
generality, assume argmaxiX[Ji] = 1. Let the reward function depends only on X [J1]. Then for
arbitrary transition, learning in this FMDP can be converted to an MAB problem with X[J1] arms,
whose regret in T steps has the lower bound Ω(

√
X[J1]T ) [26].

C.3 Proof for the nondegenerate case (Theorem 6)

Proof. The proof of this lower bound relies on the Ω(
√
HSAT ) regret for nonfactored MDPs. The

basic idea to prove the Ω(
√
HSAT ) regret bound in [21] is to construct an MDP with 3 states (an

initial state, two states with reward 0 and 1, respectively) and A actions, where the state remains
unchanged in the following H − 1 steps after one step of transition. This MDP is equivalent to
an MAB with A arms, which has the lower bound Ω((H − 1)

√
AK). Making S/3 copies of this

MAB-like MDP and restarting at each copy uniformly at random yield the expected regret lower
bound Ω(

√
HSAT ).

Here, without loss of generality, assume argmaxiX[Ii] = 1. Then we only consider the transition of
S1 and neglect the rest. Let the reward function depends only on S1. Let the transition of S1 depend
only on S1 and X [I1

′], where I1′ = I1∩{m+ 1, · · · , n} contains only the action component indices.
Learning in this component can then be converted to learning in a nonfactored MDP with S1 states
and X[I1

′] actions, which has Ω(
√
HS1X[I1

′]T ) regret lower bound.

Now consider the other state components in X [I1], which we denote by S ′1 = X [I1 ∩ ([m]\{i})],
where “\” denotes set subtraction. Then X[I1] = X ′[I1] · S′1 · S1. Make S′1 copies of the above
FMDP, and restart at each copy uniformly at random, so that each copy is expected to run T/S′1
steps (K/S′1 episodes). The regret lower bound is then given by Ω(S′1

√
HS1X ′[I1]T/S′1) =

Ω(
√
HX[I1]T ).

C.4 Proof for the general lower bound for the normal factored structure (Theorem 7)

Proof. Refer to the number of intermediate state components in an influence loop as its length.
For a state component with the loop property, define its minimum influence loop as the one with
the minimum length. Without loss of generality, assume argmaxi∈I X[Ii] = 1 and the minimum
influence loop of the first state component to be

S1 → S2 → · · · → Su−1 → Su → S1. (C.1)

Since the above influence loop is minimum, we have i 6∈ I1 for all i ∈ {2, · · · , u − 1}. Let
I1,s := I1 ∩ ([m]\{u}) and I1,a := I1 ∩ {m+ 1, · · · , n} be the state parts (excluding u) and action
parts of the scope index sets of S1, respectively. Then X[I1] = SuX[I1,s]X[I1,a]. Note that in the
proof below, we can actually relax the assumption that Si ≥ 3 for all i to the assumption that Su ≥ 3
and Si ≥ 2 for all i ∈ [u−1]. In the case where S1 has the self-loop property, the proof below carries
over by letting u = 1.

For the space Si in the loop (C.1), we define two special values si+, s
i
− ∈ Si as positive and negative

state component values, respectively. Let the reward function be the indicator function of whether at
least one of the state components in the loop takes its positive value, i.e., for x = (s, a),

R(x) := max
i∈[u]
{I(s[i] = si+)}.

Construct the transition of s[1] with dependence only on Su and X [I1,a]. If s[u] = su+ (or su−,
respectively), then s[1] follows s[u] in the next step and transitions to s1

+ (or s1
−, respectively)
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deterministically. Otherwise, s[1] also transitions to s1
+ or s1

−, but with probabilities specified by
the action components in X [I1,a]. Construct the transition of the intermediate state components
s[i], i ∈ {2, · · · , u} with dependence only on s[i− 1]. If s[i− 1] = si−1

+ , then in the next step s[i]
transitions to si+; otherwise s[i] transitions to si−. The transitions of other state components are
arbitrary and irrelevant to the regret. Therefore, after the first step, the positive and negative state
component values shift their places in a cyclic way within the influence loop.

For initialization, we choose s[u] to be arbitrary in Su\{su+, su−}, s[i] to be arbitrary in Si\{si+} for
i ∈ [u− 1], and s[I1,s] to be arbitrary in X [I1,s], where we apply the scope operation (Definition 1)
to s. The initializations of other state components are arbitrary and irrelevant to the regret. In this
way, after the first step of transition, there can be zero or one positive state component values in the
influence loop, depending on the action components in X [I1,a]. Moreover, the number of positive
state components in the loop remains the same for H − 1 steps until the end of the episode.

Therefore, for any s[u] ∈ Su\{su+, su−} and any s[Ii] ∈ X [I1,s], learning in the above FMDP
can be converted to an MAB problem with X[I1,a] actions where the reward is (H − 1) if s1

+ is
reached at the second time step and 0 otherwise. The regret of such an MAB has the lower bound
Ω((H − 1)

√
X[I1,a]T ) = Ω(

√
HX[I1,a]T ) [26]. Splitting Su\{su+, su−} and X [I1,s] to make

(Su − 2)X[I1,s] copies of this MAB-like FMDP and restarting at each copy uniformly at random, we
obtain the lower bound on regret

Ω

(
(Su − 2)X[I1,s]

√
HX[I1,a]

⌊
T

(Su − 2)X[I1,s]

⌋)
= Ω(

√
HX[I1]T ).

Note that making Su/3 copies is unnecessary since different copies can share su+ and su−.
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D Lower bound for MDPs via the JAO MDP construction

As pointed out in [1], “they (the Õ(
√
HSAT ) upper bounds) help to establish the information-

theoretic lower bound of reinforcement learning at Ω(
√
HSAT ). . . . Moving from this big picture

insight to an analytically rigorous bound is non-trivial.” A rigorous Ω(
√
HSAT ) lower bound

proof is possible [21] by constructing MAB-like MDPs [8]. In the meantime, the MDP literature
suggests that the JAO MDP [20], which establishes the minimax lower bound for nonepisodic MDPs,
also establishes the minimax lower bound for episodic MDPs. We look into this problem in detail,
and find that a direct episodic extension of the JAO MDP actually establishes the lower bound at
Ω(
√
HSAT/ log T ), missing a log factor. It is not clear whether this result can be further improved

with the same construction. The rest of this section introduces our derivation, which we recommend
reading in comparison with [20, Section 6].

Recall that the JAO MDP is an MDP with two states s0, s1 and A′ = b(A − 1)/2c actions. The
transition probability from s1 to s0 is δ for all actions, and the transition probability from s0 to s1 is
δ for all actions except that it is δ + ε for one special action a∗. The reward is 1 for each step at s1

and 0 otherwise. By making S′ = bS/2c copies of the JAO MDP one extends the construction to S
or (S − 1) states, which then reduces to a two-state JAO MDP with S′A′ actions. In the episodic
setting, we simply start the MDP at s0 for each episode. The symbols δ, ε, A′ have the same meanings
as they do in [20], and we use S′ to replace k in [20]. Let Ea,Eunif denote the expectation under
a ∈ [S′A′] being the better action a∗ and there being no better action respectively, and Pa,Punif
denote the corresponding probability measures. Let E∗ denote the expectation under a uniformly
random choice of the better action. Hence, E∗[f ] = 1

S′A′

∑S′A′

a=1 Ea[f ]. Let N1, N0, N
∗
0 denote the

number of visits to state s1, to state s0 and to state-action pair (s0, a
∗) respectively. We use another

subscript k to denote the corresponding quantity in the kth episode.

Step 1 Let H ′ = 1/δ.

Ea[N1,k] ≤ Ea[N0,k] + εH ′Ea[N∗0,k]− 1

2δ
+

(1− 2δ)H

2δ
.

Proof. Here we adopt a more refined analysis compared to that in [20], where we consider the
probability of the last state, because a constant deviation in each episode results in a relaxation on the
order of O(K) in total.

Ea[N1,k] =

H∑
h=2

Pa(sk,h = s1|sk,h−1 = s0) · Pa(sk,h−1 = s0)

+

H∑
h=2

Pa(sk,h = s1|sk,h−1 = s1) · Pa(sk,h−1 = s1)

= δ

H∑
h=2

Pa(sk,h−1 = s0, ak,h−1 6= a) + (δ + ε)

H∑
h=2

Pa(sk,h−1 = s0, ak,h−1 = a)

+ (1− δ)
H∑
h=2

Pa(sk,h−1 = s1)

= δEa[N0,k −N∗0,k] + (δ + ε)Ea[N∗0,k] + (1− δ)Ea[N1,k]− δPa(sk,H = s0)− (1− δ)Pa(sk,H = s1).

Note that

Pa(sk,H = s1) ≥ Punif(sk,H = s1) =
1

2
− 1

2
(1− 2δ)H−1.

Then for δ < 1
2 ,

δPa(sk,H = s0) + (1− δ)Pa(sk,H = s1) = δ(1− Pa(sk,H = s1)) + (1− δ)Pa(sk,H = s1)

≥ δ(1

2
+

1

2
(1− 2δ)H−1) + (1− δ)1

2
− 1

2
(1− 2δ)H−1

=
1

2
− (1− 2δ)H

2
.
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Hence,

Ea[N1,k] ≤ δEa[N0,k −N∗0,k] + (δ + ε)Ea[N∗0,k] + (1− δ)Ea[N1,k]− 1

2
+

(1− 2δ)H

2
.

By rearranging the terms,

Ea[N1,k] ≤ Ea[N0,k] + εH ′Ea[N∗0,k]− 1

2δ
+

(1− 2δ)H

2δ
,

where we use H ′ = 1
δ .

Step 2 Let R denote the cumulative reward by a given algorithm through K episodes. Then
assuming Ea[N0] ≤ Eunif[N0], by Step 1 we have

Ea[R] = Ea[N1] =

K∑
k=1

Ea[N1,k] ≤ KH −
K∑
k=1

Eunif[N1,k] + εH ′
K∑
k=1

Ea[N∗0,k]− K

2δ
+K

(1− 2δ)H

2δ
.

(D.1)

Step 3 Independent of the above two steps,

Eunif[N1,k] =

H∑
t=1

Punif(st = s1) =

H∑
t=1

1

2
+ (1− 2δ)t−1(0− 1

2
) =

H

2
− 1− (1− 2δ)H

4δ
≥ H −H ′

2
.

(D.2)

Therefore,

Eunif[N0,k] ≤ H +H ′

2
. (D.3)

Step 4 Substituting (D.2) in Step 3 into (D.1) in Step 2 yields

Ea[R] ≤ KH

2
+ εH ′

K∑
k=1

Ea[N∗0,k]− K

4δ
+K

(1− 2δ)H

4δ
.

Therefore,

E∗[R] =
1

S′A′

S′A′∑
a=1

Ea[R] ≤ KH

2
+

εH ′

S′A′

S′A′∑
a=1

K∑
k=1

Ea[N∗0,k]− K

4δ
+K

(1− 2δ)H

4δ
.

Step 5

E∗[R] ≤ KH

2
+
εKH ′

S′A′

(
H +H ′

2
+
εH
√
H ′

2

√
S′A′(H ′ +H)K

)
− K

4δ
+K

(1− 2δ)H

4δ
.

Proof. To be more explicit, let N0,k,a denote the number where action a is chosen in state s0 at the
kth episode. Then by Lemma 13 in [20], we have

K∑
k=1

S′A′∑
a=1

Ea[N∗0,k] =

S′A′∑
a=1

Ea

[
K∑
k=1

N0,k,a

]
≤
S′A′∑
a=1

Eunif

[
K∑
k=1

N0,k,a

]
+

S′A′∑
a=1

εKH
√
H ′

√√√√2Eunif

[
K∑
k=1

N0,k,a

]
.

Since
∑S′A′

a=1 Eunif[N0,k,a] ≤ H+H′

2 by (D.2) in Step 3,

K∑
k=1

S′A′∑
a=1

Ea[N∗0,k] ≤ KH +H ′

2
+
εKH

√
H ′

2

√
S′A′K(H +H ′).

Substituting the above into the bound on E∗[R] in Step 4 concludes the proof.
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Step 6 Now we determine the optimal value V ∗1 (s0) we aim to compare. Let V ∗H+1 = [0, 0]>.
Then the optimal value function is given by the iteration V ∗h = B +AV ∗h+1, where

A =

[
1− δ − ε δ + ε

δ 1− δ

]
, B =

[
0
1

]
.

Iteratively, by matrix diagonalization,

V ∗1 = B +AV ∗2 = B +A(B +AV ∗3 ) = · · · = (

H−1∑
h=0

Ah)B = U(

H−1∑
h=0

Λh)UB,

where U = [1,− δ+εδ ; 1, 1] and Λ = diag(1, 1− 2δ − ε). Hence,

V ∗1 (s0) =
δ + ε

2δ + ε
H − δ + ε

(2δ + ε)2

(
1− (1− 2δ − ε)H

)
.

Note that here we compute the exact optimal value because the episodic resetting causes a constant
difference than the stationary optimal value in the infinite-horizon setting in each episode, which
accumulates to the order of O(K) in total, similar to Step 1.

Step 7 Since

δ + ε

(2δ + ε)2
=

δ + ε

4δ(δ + ε) + ε2
≤ 1

4δ
,

we have

Regret(K) = KV ∗1 (s0)− E∗[R]

≥ δ + ε

2δ + ε
KH − KH

2
− εKH ′

S′A′

(
H +H ′

2
+
εH
√
H ′

2

√
S′A′K(H ′ +H)

)
︸ ︷︷ ︸

standard as in [20]

−K

(
(δ + ε)

(
1− (1− 2δ − ε)H

)
(2δ + ε)2

− 1

4δ
+

(1− 2δ)H

4δ

)
︸ ︷︷ ︸

new challenge in the episodic setting

≥ ε

4δ + 2ε
T − εTH ′

2S′A′

(
1 +

H ′

H

)
− ε2TH ′

2S′A′

√
H ′S′A′KH

(√
1 +

H ′

H

)
︸ ︷︷ ︸

Θ(
√
H′S′A′T )

− K

4δ

(
(1− 2δ)H − (1− 2δ − ε)H

)
︸ ︷︷ ︸

Θ(KH′(1− 2
H′ )

H)

,

where Θ(
√
H ′S′A′T ) in the last line is obtained by taking ε = Θ(

√
S′A′

H′T ) = Θ(
√

δS′A′

T ). The
logic of taking such an ε is to let the first term be on the order of the third term, i.e.,

ε

4δ + 2ε
T = Θ

(
ε2TH ′

2S′A′

√
H ′S′A′KH

)
.

The new challenge in the episodic setting results from the episodic resetting of each episode and a
different definition of regret. By taking H = H ′ logKH = H ′ log T , we have

KH ′(1− 2

H ′
)H ≤ KH ′ 1

elogKH
=
H ′

H
=

1

log T
= o(
√
H ′S′A′T ).

Hence, we obtain the Ω(
√
HSAT/ log T ) = Ω̃(

√
HSAT ) lower bound. Note that taking H ′ =

H/ log T is reasonable, because none of the parameters is exponential in others in our consideration.
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E Concentration inequalities

In this section, we provide a summary of some important concentration inequalities that are frequently
invoked in this work. In what follows, P(·) denotes an appropriate probability measure.

Lemma 36 (Concentration on L1-norm of probability distributions). Let P be a probability mass
function on a finite set Y with cardinality Y . Let y = [y1, · · · , yn] be n i.i.d. samples from P . Let
P̂y be the empirical distribution based on the observed samples. Then for all ε > 0

P(‖P − P̂y‖1 ≥ ε) ≤ 2Y exp

{
−nε

2

2

}
.

Alternatively, with probability at least 1− δ,

‖P − P̂y‖1 ≤

√
2Y log 2 + 2 log 1

δ

n
≤
√

2Y

n
log

2

δ

Proof. This lemma is a relaxation of Theorem 2.1 in [41].

Lemma 37 (Hoeffding’s inequality). Given n independent random variables such that xi ∈ [a, b]
a.s., then for all ε ≥ 0,

P

(∣∣∣∣∣
n∑
i=1

(xi − E[xi])

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

{
− 2ε2

n(b− a)2

}
.

Alternatively, with probability at least 1− δ,∣∣∣∣∣ 1n
n∑
i=1

(xi − E[xi])

∣∣∣∣∣ ≤
√

(b− a)2

2n
log

2

δ
.

Proof. See e.g., Proposition 2.5 in [40] for the one-sided Hoeffding’s inequality, applying which to
−xi yields the other side.

Lemma 38 (One-sided Bernstein’s inequality). Given n independent random variables such that
xi ≤ b a.s., then for all ε ≥ 0,

P

(
n∑
i=1

(xi − E[xi]) ≥ nε

)
≤ exp

{
− nε2

2(V + bε
3 )

}
,

where V = 1
n

∑n
i=1 E[x2

i ]. Alternatively, with probability at least 1− δ,

1

n

n∑
i=1

(xi − E[xi]) ≤
b log 1

δ

3n
+

√
(
b log 1

δ

3n
)2 +

2V log 1
δ

n
≤

2b log 1
δ

3n
+

√
2V log 1

δ

n
. (E.1)

Proof. See e.g., Proposition 2.14 in [40].

For random variables xi ∈ [0, b], applying the one-sided Bernstein’s inequality to xi − E[xi], we can
replace V in (E.1) by the average variance σ2 = 1

n

∑n
i=1 Var(xi). Moreover, applying the one-sided

Bernstein’s inequality to −xi + E[xi] yields the other side of the bound in terms of σ2. By the union
bound, we have that with probability at least 1− δ,∣∣∣∣∣ 1n

n∑
i=1

(xi − E[xi])

∣∣∣∣∣ ≤ 2b log 1
δ

3n
+

√
2σ2 log 1

δ

n
,

which is what we actually use in this work.
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Lemma 39 (Empirical Bernstein’s inequality). Given n independent random variables such that
xi ≤ 1 a.s.. Let S = 1

n(n−1)

∑n
i=1

∑n
j=1

(xi−xj)2

2 be the sample variance. Then with probability at
least 1− δ,

1

n

n∑
i=1

(E[xi]− xi) ≤

√
2S log 2

δ

n
+

7 log 2
δ

3(n− 1)
.

Proof. See Theorem 11 in [27].
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