A Details from section 2

Proof of Lemma 1. By definition we have

$$
\begin{aligned}
\mathcal{R}_{T}(\boldsymbol{u})=\sum_{t=1}^{T}\left\langle\boldsymbol{w}_{t}-\boldsymbol{u}, \boldsymbol{g}_{t}\right\rangle & =\sum_{t=1}^{T}\left\langle\boldsymbol{z}_{t}, \boldsymbol{g}_{t}\right\rangle\left(v_{t}-\|\boldsymbol{u}\|\right)+\|\boldsymbol{u}\| \sum_{t=1}^{T}\left\langle\boldsymbol{z}_{t}-\frac{\boldsymbol{u}}{\|\boldsymbol{u}\|}, \boldsymbol{g}_{t}\right\rangle \\
& =\mathcal{R}_{T}^{\mathcal{V}}(\|\boldsymbol{u}\|)+\|\boldsymbol{u}\| \mathcal{R}_{T}^{\mathcal{Z}}\left(\frac{\boldsymbol{u}}{\|\boldsymbol{u}\|}\right) .
\end{aligned}
$$

B Details from section 3

Proof of Theorem 2. For any fixed $\boldsymbol{u} \in \mathcal{W}$, let $r=\max _{\frac{r^{\prime} u}{\|u\|} \in \mathcal{W}} r^{\prime}$. Note that by definition we have $\frac{\|\boldsymbol{u}\|}{r} \in[0,1]$ and $\frac{r \boldsymbol{u}}{\|\boldsymbol{u}\|} \in \mathcal{W}$. Therefore, similar to the proof of Lemma 1, we decompose the regret against \boldsymbol{u} as:

$$
\mathcal{R}_{T}(\boldsymbol{u})=\sum_{t=1}^{T}\left\langle\boldsymbol{w}_{t}-\boldsymbol{u}, \boldsymbol{g}_{t}\right\rangle=\sum_{t=1}^{T}\left\langle\boldsymbol{z}_{t}, \boldsymbol{g}_{t}\right\rangle\left(v_{t}-\frac{\|\boldsymbol{u}\|}{r}\right)+\frac{\|\boldsymbol{u}\|}{r} \sum_{t=1}^{T}\left\langle\boldsymbol{z}_{t}-\frac{r \boldsymbol{u}}{\|\boldsymbol{u}\|}, \boldsymbol{g}_{t}\right\rangle,
$$

which, by the guarantees of $\mathcal{A}_{\mathcal{V}}$ and $\mathcal{A}_{\mathcal{Z}},{ }^{3}$ is bounded in expectation by

$$
\widetilde{O}\left(\frac{\|\boldsymbol{u}\|}{r} L \sqrt{T}+\frac{\|\boldsymbol{u}\|}{r} d L \sqrt{T}\right)
$$

Finally noticing $\frac{1}{c} \leq r$ by the definition of c finishes the proof.

C Details from section 4

Proof of Lemma 3. Denote by $\tilde{\boldsymbol{w}}_{t}=v_{t} \boldsymbol{z}_{t}$. By Jensen's inequality we have

$$
\begin{align*}
\sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\boldsymbol{u})\right] & =\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}^{v_{t}}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\boldsymbol{u})\right]+\sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}\left(\boldsymbol{w}_{t}\right)-\ell_{t}^{v_{t}}\left(\boldsymbol{w}_{t}\right)\right] \tag{5}\\
& \leq \sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\boldsymbol{u})\right]
\end{align*}
$$

We now continue under the assumption that ℓ_{t} is L-Lipschitz. After completing the proof of the first equation of Lemma 3 we use the β-smoothness assumption to prove the second equation of Lemma 3.

[^0]Using the L-Lipschitz assumption we proceed:

$$
\begin{aligned}
\sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\boldsymbol{u})\right] \leq & \sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}\left(\boldsymbol{w}_{t}\right)-\ell_{t}^{v_{t}}(\boldsymbol{u})\right]+\sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}(\boldsymbol{u})-\ell_{t}(\boldsymbol{u})\right] \\
\leq & \sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}\left(\boldsymbol{w}_{t}\right)-\ell_{t}^{v_{t}}(\boldsymbol{u})\right]+\mathbb{E}\left[L\left|v_{t}\right|\left\|\delta \boldsymbol{s}_{t}\right\|_{2}\right] \\
\leq & \sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}\left(\boldsymbol{w}_{t}\right)-\ell_{t}^{v_{t}}(\boldsymbol{u})\right]+\mathbb{E}\left[\delta L\left|v_{t}\right|\right] \\
= & \sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}\left(\tilde{\boldsymbol{w}}_{t}\right)-\ell_{t}^{v_{t}}(\boldsymbol{u})\right]+\mathbb{E}\left[\delta L\left|v_{t}\right|\right] \\
& +\sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}\left(\boldsymbol{w}_{t}\right)-\ell_{t}^{v_{t}}\left(\tilde{\boldsymbol{w}}_{t}\right)\right] \\
\leq & \sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}\left(\tilde{\boldsymbol{w}}_{t}\right)-\ell_{t}^{v_{t}}(\boldsymbol{u})\right]+2 \mathbb{E}\left[\delta L\left|v_{t}\right|\right]
\end{aligned}
$$

Now, by using the L-Lipschitz assumption once more we find that

$$
\begin{equation*}
\sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}((1-\alpha) \boldsymbol{u})-\ell_{t}^{v_{t}}(\boldsymbol{u})\right] \leq \alpha\|\boldsymbol{u}\|_{2} T L \tag{6}
\end{equation*}
$$

By using equation (6), the convexity of $\ell_{t}^{v_{t}}$, and Lemma 2 we continue with:

$$
\begin{aligned}
\sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\boldsymbol{u})\right] \leq & \sum_{t=1}^{T} \mathbb{E}\left[\left\langle\tilde{\boldsymbol{w}}_{t}-(1-\alpha) \boldsymbol{u}, \hat{\boldsymbol{g}}_{t}\right\rangle\right]+2 \mathbb{E}\left[\delta L\left|v_{t}\right|\right]+\alpha\|\boldsymbol{u}\|_{2} T L \\
= & \sum_{t=1}^{T} \mathbb{E}\left[\left(v_{t}-\frac{\|\boldsymbol{u}\|}{r}\right)\left\langle\boldsymbol{z}_{t}, \hat{\boldsymbol{g}}_{t}\right\rangle\right]+\mathbb{E}\left[\frac{\|\boldsymbol{u}\|}{r}\left\langle\boldsymbol{z}_{t}-\tilde{\boldsymbol{u}}, \hat{\boldsymbol{g}}_{t}\right\rangle\right] \\
& +\sum_{t=1}^{T} 2 \mathbb{E}\left[\delta L\left|v_{t}\right|\right]+\alpha\|\boldsymbol{u}\|_{2} T L \\
= & \sum_{t=1}^{T} \mathbb{E}\left[\bar{\ell}_{t}\left(v_{t}\right)-\bar{\ell}_{t}\left(\frac{\|\boldsymbol{u}\|}{r}\right)\right]+\sum_{t=1}^{T} \frac{\|\boldsymbol{u}\|}{r} \mathbb{E}\left[\left\langle\boldsymbol{z}_{t}-\tilde{\boldsymbol{u}}, \hat{\boldsymbol{g}}_{t}\right\rangle\right] \\
& +2 T \delta L \frac{\|\boldsymbol{u}\|}{r}+\alpha\|\boldsymbol{u}\|_{2} T L
\end{aligned}
$$

where $\bar{\ell}_{t}(v)=v\left\langle\boldsymbol{z}_{t}, \hat{\boldsymbol{g}}_{t}\right\rangle+2 \delta L|v|$ as defined in Algorithm 5, $\tilde{\boldsymbol{u}}=\frac{r}{\|\boldsymbol{u}\|}(1-\alpha) \boldsymbol{u}$, and $r>0$ is such that $\frac{\boldsymbol{u r}}{\|\boldsymbol{u}\|} \in \mathcal{Z}$.

Finally, by using the convexity of $\bar{\ell}_{t}$, plugging in the guarantee of $\mathcal{A} \mathcal{V}$, and using Theorem 6 we conclude the proof of the first equation of Lemma 3:

$$
\begin{aligned}
& \sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\boldsymbol{u})\right] \\
& \leq 2 T \delta L \frac{\|\boldsymbol{u}\|}{r}+\mathbb{E}\left[\sum_{t=1}^{T}\left(v_{t}-\frac{\|\boldsymbol{u}\|}{r}\right) \partial \bar{\ell}_{t}\left(v_{t}\right)\right]+\frac{\|\boldsymbol{u}\|}{r} \mathbb{E}\left[\sum_{t=1}^{T}\left\langle\boldsymbol{z}_{t}-\tilde{\boldsymbol{u}}, \hat{\boldsymbol{g}}_{t}\right\rangle\right]+\alpha\|\boldsymbol{u}\|_{2} T L \\
& =\widetilde{O}\left(1+T \delta L \frac{\|\boldsymbol{u}\|}{r}+\frac{\|\boldsymbol{u}\|}{r} L_{\mathcal{V}} \sqrt{T}+\frac{\|\boldsymbol{u}\| d L}{r \delta} \sqrt{T}+\alpha\|\boldsymbol{u}\|_{2} T L\right)
\end{aligned}
$$

Next, we continue from equation (5) under the smoothness condition. Using the definition of smoothness we find

$$
\begin{aligned}
\sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\boldsymbol{u})\right] \leq & \sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}\left(\boldsymbol{w}_{t}\right)-\ell_{t}^{v_{t}}(\boldsymbol{u})\right]+\sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}(\boldsymbol{u})-\ell_{t}(\boldsymbol{u})\right] \\
\leq & \sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}\left(\boldsymbol{w}_{t}\right)-\ell_{t}^{v_{t}}(\boldsymbol{u})\right]+\mathbb{E}\left[\frac{1}{2} \beta\left|v_{t}\right|^{2}\left\|\delta \boldsymbol{s}_{t}\right\|_{2}^{2}\right] \\
= & \sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}\left(\boldsymbol{w}_{t}\right)-\ell_{t}^{v_{t}}(\boldsymbol{u})\right]+\mathbb{E}\left[\frac{1}{2} \delta^{2}\left|v_{t}\right|^{2} \beta\right] \\
= & \sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}\left(\tilde{\boldsymbol{w}}_{t}\right)-\ell_{t}^{v_{t}}(\boldsymbol{u})\right]+\mathbb{E}\left[\frac{1}{2} \delta^{2}\left|v_{t}\right|^{2} \beta\right] \\
& +\sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}\left(\boldsymbol{w}_{t}\right)-\ell_{t}^{v_{t}}\left(\tilde{\boldsymbol{w}}_{t}\right)\right] \\
\leq & \sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}^{v_{t}}\left(\tilde{\boldsymbol{w}}_{t}\right)-\ell_{t}^{v_{t}}(\boldsymbol{u})\right]+\mathbb{E}\left[\beta \delta^{2}\left|v_{t}\right|^{2}\right]
\end{aligned}
$$

Using equation (6), the convexity of $\ell_{t}^{v_{t}}$, and Lemma 2 we continue with:

$$
\begin{aligned}
& \sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\boldsymbol{u})\right] \\
& \leq \sum_{t=1}^{T} \mathbb{E}\left[\left\langle\tilde{\boldsymbol{w}}_{t}-(1-\alpha) \boldsymbol{u}, \hat{\boldsymbol{g}}_{t}\right\rangle\right]+\mathbb{E}\left[\beta \delta^{2}\left|v_{t}\right|^{2}\right]+\alpha\|\boldsymbol{u}\|_{2} T L \\
& =\sum_{t=1}^{T} \mathbb{E}\left[\left(v_{t}-\frac{\|\boldsymbol{u}\|}{r}\right)\left\langle\boldsymbol{z}_{t}, \hat{\boldsymbol{g}}_{t}\right\rangle\right]+\mathbb{E}\left[\beta \delta^{2}\left|v_{t}\right|^{2}\right]+\sum_{t=1}^{T} \frac{\|\boldsymbol{u}\|}{r} \mathbb{E}\left[\left\langle\boldsymbol{z}_{t}-\tilde{\boldsymbol{u}}, \hat{\boldsymbol{g}}_{t}\right\rangle\right]+\alpha\|\boldsymbol{u}\|_{2} T L \\
& =T \beta \delta^{2}\left(\frac{\|\boldsymbol{u}\|}{r}\right)^{2}+\sum_{t=1}^{T} \mathbb{E}\left[\bar{\ell}_{t}\left(v_{t}\right)-\bar{\ell}_{t}\left(\frac{\|\boldsymbol{u}\|}{r}\right)\right]+\sum_{t=1}^{T} \frac{\|\boldsymbol{u}\|}{r} \mathbb{E}\left[\left\langle\boldsymbol{z}_{t}-\tilde{\boldsymbol{u}}, \hat{\boldsymbol{g}}_{t}\right\rangle\right]+\alpha\|\boldsymbol{u}\|_{2} T L
\end{aligned}
$$

where $\bar{\ell}_{t}(v)=v\left\langle\boldsymbol{z}_{t}, \hat{\boldsymbol{g}}_{t}\right\rangle+\beta \delta^{2} v^{2}$ as defined in Algorithm 5. Finally, by using the convexity of $\bar{\ell}_{t}$, plugging in the guarantee of $\mathcal{A}_{\mathcal{V}}$, and using Theorem 6 we conclude the proof:

$$
\begin{aligned}
& \sum_{t=1}^{T} \mathbb{E}\left[\ell_{t}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\boldsymbol{u})\right] \\
& \leq T \beta \delta^{2}\left(\frac{\|\boldsymbol{u}\|}{r}\right)^{2}+\mathbb{E}\left[\sum_{t=1}^{T}\left(v_{t}-\frac{\|\boldsymbol{u}\|}{r}\right) \partial \bar{\ell}_{t}\left(v_{t}\right)\right]+\frac{\|\boldsymbol{u}\|}{r} \mathbb{E}\left[\sum_{t=1}^{T}\left\langle z_{t}-\tilde{\boldsymbol{u}}, \hat{\boldsymbol{g}}_{t}\right\rangle\right]+\alpha\|\boldsymbol{u}\|_{2} T L \\
& =\widetilde{O}\left(1+T \beta \delta^{2}\left(\frac{\|\boldsymbol{u}\|}{r}\right)^{2}+\frac{\|\boldsymbol{u}\|}{r} L_{\mathcal{V}} \sqrt{T}+\frac{\|\boldsymbol{u}\|}{r} \frac{d L}{\delta} \sqrt{T}+\alpha\|\boldsymbol{u}\|_{2} T L\right)
\end{aligned}
$$

Theorem 6. Suppose that $\ell_{t}(\mathbf{0})=0$, that ℓ_{t} is L-Lipschitz for all t, and that $\mathcal{Z} \subseteq \mathbb{B}$. For $\boldsymbol{u} \in(1-\alpha) \mathcal{Z}$, Online Gradient Descent on $(1-\alpha) \mathcal{Z}$ with learning rate $\eta=\sqrt{\frac{\delta^{2}}{(d L)^{2} 4 T}}$ satisfies

$$
\mathbb{E}\left[\sum_{t=1}^{T}\left\langle\boldsymbol{z}_{t}-\boldsymbol{u}, \hat{\boldsymbol{g}}_{t}\right\rangle\right] \leq 2 \frac{d L}{\delta} \sqrt{T}
$$

Proof. The proof essentially follows from the work of Zinkevich [27], Flaxman et al. [13] and using the assumptions that $\ell_{t}(\mathbf{0})=0$ and that ℓ_{t} is L-Lipschitz. We start by bounding the norm of the
gradient estimate:

$$
\begin{align*}
\left\|\hat{\boldsymbol{g}}_{t}\right\|_{2} & =\frac{d}{v_{t} \delta}\left|\ell_{t}\left(\boldsymbol{w}_{t}\right)\right|\left\|\boldsymbol{s}_{t}\right\|_{2} \\
& =\frac{d}{v_{t} \delta}\left|\ell_{t}\left(v_{t}\left(\boldsymbol{z}_{t}+\delta \boldsymbol{s}_{t}\right)\right)-\ell_{t}(\mathbf{0})\right| \tag{7}\\
& \leq \frac{d L\left\|\boldsymbol{z}_{t}+\delta \boldsymbol{s}_{t}\right\|_{2}}{\delta} \leq \frac{d L(1-\alpha+\delta)}{\delta}
\end{align*}
$$

By using equation (7) and the regret bound of Online Gradient Descent [27] we find that

$$
\begin{aligned}
\sum_{t=1}^{T}\left\langle\boldsymbol{z}_{t}, \hat{\boldsymbol{g}}_{t}\right\rangle-\min _{\boldsymbol{z} \in(1-\alpha) \mathcal{Z}} \sum_{t=1}^{T}\left\langle\boldsymbol{z}, \hat{\boldsymbol{g}}_{t}\right\rangle & \leq \frac{(1-\alpha)}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\hat{\boldsymbol{g}}_{t}\right\|_{2}^{2} \\
& \leq \frac{(1-\alpha)}{2 \eta}+\frac{\eta}{2}\left(\frac{d L(1-\alpha+\delta)}{\delta}\right)^{2} T \\
& \leq \frac{1}{2 \eta}+2 \eta\left(\frac{d L}{\delta}\right)^{2} T
\end{aligned}
$$

Plugging in $\eta=\sqrt{\frac{\delta^{2}}{(d L)^{2} 4 T}}$ completes the proof.

C. 1 Details of section 4.1

Proof of Theorem 3. First, since $\ell_{t}(\mathbf{0})=0, \ell_{t}$ is L-Lipschitz, and $\boldsymbol{z}_{t} \in(1-\alpha) \mathcal{Z}=(1-\alpha) \mathbb{B}$ we have that

$$
\begin{equation*}
\left\langle\boldsymbol{z}_{t}, \hat{\boldsymbol{g}}_{t}\right\rangle \leq\left\|\boldsymbol{z}_{t}\right\|_{2}\left\|\hat{\boldsymbol{g}}_{t}\right\|_{2} \leq(1-\alpha) \frac{d L(1-\alpha+\delta)}{\delta} \leq \frac{2 d L}{\delta} \tag{8}
\end{equation*}
$$

where the first inequality is the Cauchy-Schwarz inequality and the second is due to equation (7). Since $\left|\partial \bar{\ell}_{t}\left(v_{t}\right)\right| \leq\left|\left\langle\boldsymbol{z}_{t}, \hat{\boldsymbol{g}}_{t}\right\rangle\right|+2 \delta L=L_{\mathcal{V}}$ we can use Lemma 3 to find

$$
\mathbb{E}\left[\mathcal{R}_{T}(\boldsymbol{u})\right]=\widetilde{O}\left(\delta T L\|\boldsymbol{u}\|+\|\boldsymbol{u}\| \frac{d L}{\delta} \sqrt{T}+\alpha T L\|\boldsymbol{u}\|_{2}\right)
$$

Plugging in $\alpha=0$ and $\delta=\min \left\{1, \sqrt{d} T^{-\frac{1}{4}}\right\}$ completes the proof.
Proof of Theorem 4. By equation (8) $\left|\left\langle\boldsymbol{z}_{t}, \hat{\boldsymbol{g}}_{t}\right\rangle\right| \leq \frac{2 d L}{\delta}$. Since $v_{t} \leq \frac{1}{\delta^{3}}$ we have that

$$
\left|\partial \bar{\ell}_{t}\left(v_{t}\right)\right| \leq \frac{d L}{\delta}+2\left|v_{t}\right| \beta \delta^{2} \leq \frac{d L+2 \beta}{\delta} \leq \frac{\beta(d L+2)}{\delta}
$$

If $\|\boldsymbol{u}\|_{2} \leq \frac{1}{\delta^{3}}$ applying Lemma 3 with $\alpha=0$ gives us

$$
\begin{equation*}
\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\boldsymbol{u})\right]=\widetilde{O}\left(1+T \beta \delta^{2}\|\boldsymbol{u}\|^{2}+\|\boldsymbol{u}\| \frac{d L \beta}{\delta} \sqrt{T}\right) \tag{9}
\end{equation*}
$$

If $\|\boldsymbol{u}\|_{2}>\frac{1}{\delta^{3}}$ then using the Lipschitz assumption on ℓ_{t} and equation (9) with $\boldsymbol{u}=\mathbf{0}$ gives us

$$
\begin{align*}
\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\boldsymbol{u})\right]= & \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\mathbf{0})+\ell_{t}(\mathbf{0})-\ell_{t}(\boldsymbol{u})\right] \tag{10}\\
& =\widetilde{O}\left(1+\|\boldsymbol{u}\|_{2} L T\right) \\
& =\widetilde{O}\left(1+\|\boldsymbol{u}\|_{2}^{2} \delta^{3} L T\right),
\end{align*}
$$

where we used that $\|\boldsymbol{u}\|_{2} \geq \frac{1}{\delta^{3}}$. Adding equations (9) and (10) gives

$$
\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\boldsymbol{u})\right]=\widetilde{O}\left(1+\|\boldsymbol{u}\|_{2}^{2} \delta^{3} L T+T \beta \delta^{2}\|\boldsymbol{u}\|^{2}+\|\boldsymbol{u}\| \frac{\beta d L}{\delta} \sqrt{T}\right)
$$

Setting $\delta=\min \left\{1,(d L)^{1 / 3} T^{-1 / 6}\right\}$ gives us

$$
\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\boldsymbol{u})\right]=\widetilde{O}\left(1+\max \left\{\|\boldsymbol{u}\|^{2},\|\boldsymbol{u}\|\right\} \beta(d L T)^{\frac{2}{3}}+\max \left\{\|\boldsymbol{u}\|_{2}^{2},\|\boldsymbol{u}\|\right\} d L^{2} \beta \sqrt{T}\right)
$$

C. 2 Details of section 4.2

Proof of Theorem 5. First, to see that $\boldsymbol{z}_{t}+\delta \boldsymbol{s}_{t} \in \mathcal{W}$ recall that by assumption $\mathcal{W} \subseteq \mathbb{B}$. Since $\alpha=\delta$ we have that $\boldsymbol{z}_{t}+\delta \boldsymbol{s}_{t} \in(1-\alpha) \mathcal{W}+\delta \mathbb{S} \subseteq(1-\delta) \mathcal{W}+\delta \mathcal{W}=\mathcal{W}$. For any fixed $\boldsymbol{u} \in \mathcal{W}$, let $r=\max _{\frac{r^{\prime} u}{\|\boldsymbol{u}\|} \in \mathcal{W}} r^{\prime}$. Note that by definition we have $\frac{\|\boldsymbol{u}\|}{r} \in[0,1]$ and $\frac{r \boldsymbol{u}}{\|\boldsymbol{u}\|} \in \mathcal{W}$. By using equation (8) we can see that $\left|\partial \bar{\ell}_{t}\left(v_{t}\right)\right| \leq \frac{d L}{\delta}+2 \delta L$. By definition, $\frac{1}{r} \leq c$. This implies that the regret of $\mathcal{A}_{\mathcal{V}}$ is $\widetilde{O}\left(1+\frac{\|\boldsymbol{u}\|}{r} \frac{d L}{\delta} \sqrt{T}\right)$. Applying Lemma 3 with the parameters above we find

$$
\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\boldsymbol{u})\right]=\widetilde{O}\left(1+\left(\|\boldsymbol{u}\|_{2}+c\|\boldsymbol{u}\|\right) T L \delta+c\|\boldsymbol{u}\| \delta L \sqrt{T}+c\|\boldsymbol{u}\| \frac{d L}{\delta} \sqrt{T}\right)
$$

Finally, setting $\delta=\min \left\{1, \sqrt{d} T^{-1 / 4}\right\}$ completes the proof:

$$
\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(\boldsymbol{w}_{t}\right)-\ell_{t}(\boldsymbol{u})\right]=\widetilde{O}\left(1+\left(\|\boldsymbol{u}\|_{2}+c\|\boldsymbol{u}\|\right) \sqrt{d} T^{3 / 4}+c\|\boldsymbol{u}\| d L \sqrt{T}\right)
$$

[^0]: ${ }^{3}$ Note that the condition $\left|\left\langle z_{t}, g_{t}\right\rangle\right| \leq 1$ in Algorithm 4 indeed holds in this case since $\mathcal{Z}=\mathcal{W} \subseteq \mathbb{B}$ and $\left\|g_{t}\right\|_{2} \leq L$ by the Lipschitzness condition.

