
Appendix

A Versatility of the neuron model

In our neuron model, depending on the decay coefficients αV , αI , the shape of the post-synaptic
potential induced by a single spike can be varied. Figure A1 shows some examples cases of commonly
used neuron models that can be implemented using our neuron model.

t

ε(
t)

(a) αV , αI = 1, 0
t

ε(
t)

(b) αV , αI = 0.95, 0
t

ε(
t)

(c) αV = αI = 0.95
t

ε(
t)

(d) αV , αI = 1, 0.95
t

ε(
t)

(e) αV = αI = 1

Figure A1: Various types of neuron models can be expressed by the neuron model we used, including (a) simple
IF neuron, (b) LIF neuron without decaying synaptic current, (c) biologically-plausible alpha synaptic function
[8, 11], (d) non-leaky neuron with exponential PSP [9], and (e) non-leaky neuron with linear PSP [6].

B Functional equivalence of the RNN-like description and the SRM-based
description of the model

From the RNN-like description of the model (Equation 1 to 3), we can infer that the post-synaptic
potential induced by Si[t], the spike activation of presynaptic neuron i at time step t, to Vj [ta], the
potential of a postsynaptic neuron j at later time step ta > t, can be transmitted only via Ij [t]. Then
Ij [t] forwards the influence to Ij [t+ 1] and Vj [t], and it continues with Ijs and Vjs along the way.

If there is no spike activation Sj [x] = 1 between t and ta (t < x < ta), this influence can reach to Vj [ta],
and by the time it reaches, the amount of the influence from Si[t] becomes wi,jβIβV

∑ta−t
k=0 α

k
Iα

ta−t−k
V .

If there is the spike activation Sj [x] = 1 between t and ta (t < x < ta), this influence cannot be
transmitted to Vj [ta] since Sj [x] cuts off the signals that Ij [x+ 1] and Vj [x+ 1] receive.

If we express this relationship between Si[t] and Vj [ta] with a single kernel function ε[τ] =
βIβV

∑τ
k=0 α

k
Iα

τ−k
V and the causal set Ti,j,t = {τ |t̂last

j [t] < τ ≤ t, Si[τ] = 1}, it becomes the SRM-
based description (Equation 4 and 5).

C RNN-like activation-based method

From the RNN-like description of the model (Equation 1 to 3), following BPTT-like back-propagation
can be derived

∂L

∂Vj [t]
=

∂L

∂Sj [t]

∂Sj [t]

∂Vj [t]
+

∂L

∂Vj [t+ 1]

∂Vj [t+ 1]

∂Vj [t]
(11)

∂L

∂Ij [t]
=

∂L

∂Vj [t]

∂Vj [t]

∂Ij [t]
+

∂L

∂Ij [t+ 1]

∂Ij [t+ 1]

∂Ij [t]
(12)

∂L

∂Sj [t]
=

∂L

∂Ik[t]

∂Ik[t]

∂Sj [t]
+

∂L

∂Ij [t+ 1]

∂Ij [t+ 1]

∂Sj [t]
+

∂L

∂Vj [t+ 1]

∂Vj [t+ 1]

∂Sj [t]
(13)

∂Sj [t]

∂Vj [t]
= σ(Vj [t]),

∂Vj [t+ 1]

∂Vj [t]
= αV (1 − Sj [t]) (14)

∂Vj [t]

∂Ij [t]
= βV ,

∂Ij [t+ 1]

∂Ij [t]
= αI(1 − Sj [t]) (15)

∂Ik[t]

∂Sj [t]
= βIwk,j ,

∂Ij [t+ 1]

∂Sj [t]
= −αIIj [t],

∂Vj [t+ 1]

∂Sj [t]
= −αV Vj [t] (16)

12

that results in the gradients for the parameter update as

∂L

∂wi,j
=
∑
t

{
∂L

∂Ij [t]
βISi[t]

}
,

∂L

∂Vbias,j
=
∑
t

{
∂L

∂Vj [t]
βbias

}
(17)

D Interpreting SRM-based activation-based back-propagation with
RNN-like description

The forward passes of the RNN-like description and the SRM-based description are functionally
equivalent, but corresponding back-propagation methods derived from them are slightly different.

The SRM-based back-propagation can be summarized using the relationship between the potentials
as follows.

∂Vj [ta]

∂Vi[t]
=

{
wi,jσ(Vi(t)ε[ta − t] if t > tlast

j [ta]

0 else
(18)

where the kernel function is given as ε[τ] = βIβV
∑τ
k=0 α

k
Iα

τ−k
V

Similar to the derivation in Appendix B, following back-propagation formula can provide the same
functionality as the SRM-based back-propagation.

∂L

∂Vj [t]
=

∂L

∂Sj [t]

∂Sj [t]

∂Vj [t]
(19)

∂L

∂V dep
j [t]

=
∂L

∂Vj [t]
+

∂L

∂V dep
j [t+ 1]

∂V dep
j [t+ 1]

∂V dep
j [t]

(20)

∂L

∂Ij [t]
=

∂L

∂V dep
j [t]

∂V dep
j [t]

∂Ij [t]
+

∂L

∂Ij [t+ 1]

∂Ij [t+ 1]

∂Ij [t]
(21)

∂L

∂Sj [t]
=

∂L

∂Ik[t]

∂Ik[t]

∂Sj [t]
(22)

∂Sj [t]

∂Vj [t]
= σ(Vj [t]),

∂V dep
j [t+ 1]

∂V dep
j [t]

= αV (1 − Sj [t]), (23)

∂V dep
j [t]

∂Ij [t]
= βV ,

∂Ij [t+ 1]

∂Ij [t]
= αI(1 − Sj [t]), (24)

∂Ik[t]

∂Sj [t]
= βIwk,j (25)

where V dep is introduced to consider temporal dependency between V [t]s of the same neuron at
different time steps.

Those formula are almost identical to the RNN-like back-propagation (Equation 11 to 16) except how
∂L
∂S

is propagated (Equation 13 and 22). The only difference is whether the reset paths (red dashed
arrows in Figure 2a, represented as ∂Ij [t+1]

∂Sj [t]
and ∂Vj [t+1]

∂Sj [t]
) are considered in back-propagation or not.

E Implementation details of the learning methods

For the activation-based method and ANTLR, we used the surrogate derivative using exponential
function σ(v) = ασ exp(−βσ|θ − v|) as in [11]. For the timing-based method and ANTLR, the
approximated time derivative V ∗[τ] and ε∗[τ] were calculated as V [τ]−V [τ−1] and (ε[τ+1]−ε[τ−1])/2
respectively.

Algorithm 1, 2, 3 show the detailed procedure for back-propagation of the activation-based method,
the timing-based method, and ANTLR, respectively; ∂L

∂X is represented as δX for better readability,
and W l represents a weight matrix between layer l and layer l + 1. Note that ∂L

∂S
[t] and ∂L

∂t̂
[t] are

calculated considering the loss function used (Table 1). Vdep from Appendix D was used in all

13

methods to reduce the total number of computations by not using ε explicitly. For the same reason,
we did not implement the for loop related to ε∗ (Algorithm 2 and 3) in the actual implementation and
used auxiliary variables similar to Vdep.

Algorithm 1: The activation-based back-propagation
for t = T − 1 to 0 do

for l = L− 1 to 0 do
if l = L− 1 then

δSl[t]← ∂L
∂So

[t];
else

δSl[t]←
∑
W lδIl+1[t];

end
δV l[t]← σ(V l[t])δSl[t];
δV ldep[t]← δV l[t] + αV (1− Sl[t])δV ldep[t+ 1];
δIl[t]← βV δV

l
dep[t] + αI(1− Sl[t])δIl[t+ 1];

end
end

Algorithm 2: The timing-based back-propagation
for t = T − 1 to 0 do

for l = L− 1 to 0 do
if l = L− 1 then

δt̂l[t]← ∂L
∂t̂o

[t];
else

for τ = −1 to T − t+ 1 do
δt̂l[t]← δt̂l[t] +

∑
W lε∗[τ]δV l+1[t+ τ]);

end
end
if Sl[t] = 1 then

δV l[t]← −δt̂l[t]/V l∗[t];
else

δV l[t]← 0;
end

end
end

Algorithm 3: ANTLR back-propagation
for t = T − 1 to 0 do

for l = L− 1 to 0 do
if l = L− 1 then

δSl[t]← ∂L
∂So

[t];
δt̂l[t]← ∂L

∂t̂o
[t];

else
δSl[t]←

∑
W lδIl+1[t];

for τ = −1 to T − t+ 1 do
δt̂l[t]← δt̂l[t] +

∑
W lε∗[τ]δV l+1[t+ τ]);

end
end
δV l[t]← λactσ(V l[t])δSl[t];
if Sl[t] = 1 then

δV l[t]← δV l[t]− λtimδt̂
l[t]/V l∗[t];

end
δV ldep[t]← δV l[t] + αV (1− Sl[t])δV ldep[t+ 1];
δIl[t]← βV δV

l
dep[t] + αI(1− Sl[t])δIl[t+ 1];

end
end

14

F Experimental settings

Hyper-parameters used for loss landscape estimation (Section 3.4) and random spike-train matching
task (Section 4.1) are listed in Table A1. For latency-coded MNIST task and N-MNIST task, we grid-
searched several hyper-parameter options and reported the results of the ones that provided highest
valid accuracy (averaged over 16 trials). Table A2 and Table A3 show searched hyper-parameter
options and the ones used for the final results.

Some of the hyper-parameters were not mentioned in the paper. grad_clip is for clipping the
parameter gradients before update. init_bias_center was used as a binary option that initialize
the bias with large value to ease the generation of spikes at earlier training iterations. kappa_exp is
for the exponential filter used for the spike-train loss. ste_alpha and ste_beta are coefficients for
the surrogate derivative described in Appendix E.

Name Value

alpha_v, alpha_i 0.95, 0.95
grad_clip 1e5

init_bias_center 0
kappa_exp 0.95

learning_rate 1e-3
optimizer ‘sgd’
ste_alpha 0.3
ste_beta 1

Table A1: Hyper-parameters used for loss landscape estimation (Section 3.4) and random spike-train matching
task (Section 4.1)

Hyper-parameter Searched options Chosen for
Activation Timing ANTLR

alpha_v, alpha_i (0.95, 0.95), (0.99, 0.99) (0.99, 0.99) (0.99, 0.99) (0.99, 0.99)
beta_softmax 0.5, 1, 2 - 1 1

epoch 10 10 10 10
grad_clip 1e6, 10, 1 1e6 1e6 1e6

init_bias_center 0, 1 0 1 1
learning_rate 1e-2, 1e-3, 1e-4 1e-3 1e-4 1e-3

max_target_spikes 1 1 - -
optimizer ‘adam’ ‘adam’ ‘adam’ ‘adam’
ste_alpha 0.3, 1 1 - 1
ste_beta 1, 3 3 - 3

weight_decay 0, 1e-3, 1e-4 0 0 0

Table A2: Hyper-parameters searched and chosen for latency-coded MNIST task (Section 4.2)

Hyper-parameter Searched options Chosen for
Activation Timing ANTLR

alpha_v, alpha_i (0.95, 0.95), (0.99, 0.99) (0.99, 0.99) (0.99, 0.99) (0.99, 0.99)
beta_softmax 1/6, 1/3, 2/3 - 1/3 (1/6∗) 1/6

epoch 5 5 5 5
grad_clip 1e6, 10, 1 10 (1∗) 1 1

init_bias_center 0 0 0 0
learning_rate 1e-2, 1e-3, 1e-4 1e-3 1e-4 1e-3

max_target_spikes 1, 3, 10 (1∗) 10 (1∗) - -
optimizer ‘adam’ ‘adam’ ‘adam’ ‘adam’
ste_alpha 0.3, 1 1 - 1
ste_beta 1, 3 3 - 3

weight_decay 0, 1e-3, 1e-4 0 0 0

Table A3: Hyper-parameters searched and chosen for N-MNIST task (∗hyper-parameters used in the case with
the single-spike coding if they are different) (Section 4.3)

15

G Experiments with a higher number of target spikes

Even for the same type of learning method, different experiment settings such as the number of target
spike can change the accuracy and the number of spikes results. We compared previous results of
fully-connected SNNs on N-MNIST classification tasks with our experimental results with different
number of target spikes (Table A4).

Table A4: Comparison of fully-connected SNNs on N-MNIST

Method Type∗ Test Accuracy [%] Loss∗∗ # Target spikes # Spikes/sample

Lee et al. [27] S 98.66 C not fixed N/A
Jin et al. [26] S 98.84±0.02 C 35 / 5 N/A
SLAYER [10] A 98.89±0.06 C 60 / 10 N/A
STBP [11] A 98.78 C 300 / 0 N/A

SRM-based∗∗∗ A 97.73±0.14 C 10 / 0 436±17
ANTLR A&T 97.73±0.09 C 10 / 0 415±14

SRM-based∗∗∗ A 98.30±0.06 C 60 / 10 6536±120
ANTLR A&T 98.05±0.10 C 60 / 10 6638±130
* A (activation-based), T (timing-based), and S (scalar-mediated, refer to Section 5), ** C (count loss) and L

(latency loss), *** Our implementation of existing approaches

Compared to 10/0 target spike numbers that we used in this work, using more target spikes can
improve the accuracy result but also increases the number of spikes used for inference. It implies that
previous works with high accuracy were benefited from the large amount of spike usage. Therefore,
it is not fair to compare learning methods solely by accuracy results without considering the number
of spikes. Note that accuracy result of ANTLR is not better than the activation-based method when a
lot of spikes are used and the timing of individual spike carries almost no information.

16

