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Abstract

Several machine learning applications involve the optimization of higher-order
derivatives (e.g., gradients of gradients) during training, which can be expensive
with respect to memory and computation even with automatic differentiation.
As a typical example in generative modeling, score matching (SM) involves the
optimization of the trace of a Hessian. To improve computing efficiency, we rewrite
the SM objective and its variants in terms of directional derivatives, and present
a generic strategy to efficiently approximate any-order directional derivative with
finite difference (FD). Our approximation only involves function evaluations, which
can be executed in parallel, and no gradient computations. Thus, it reduces the
total computational cost while also improving numerical stability. We provide
two instantiations by reformulating variants of SM objectives into the FD forms.
Empirically, we demonstrate that our methods produce results comparable to the
gradient-based counterparts while being much more computationally efficient.

1 Introduction

Deep generative models have achieved impressive progress on learning data distributions, with either
an explicit density function [24, 26, 46, 48] or an implicit generative process [1, 10, 75]. Among
explicit models, energy-based models (EBMs) [34, 63] define the probability density as pθ(x) =
p̃θ(x)/Zθ, where p̃θ(x) denotes the unnormalized probability and Zθ =

∫
p̃θ(x)dx is the partition

function. EBMs allow more flexible architectures [9, 11] with simpler compositionality [15, 41]
compared to other explicit generative models [46, 16], and have better stability and mode coverage in
training [30, 31, 71] compared to implicit generative models [10]. Although EBMs are appealing,
training them with maximum likelihood estimate (MLE), i.e., minimizing the KL divergence between
data and model distributions, is challenging because of the intractable partition function [20].

Score matching (SM) [21] is an alternative objective that circumvents the intractable partition function
by training unnormalized models with the Fisher divergence [23], which depends on the Hessian
trace and (Stein) score function [37] of the log-density function. SM eliminates the dependence of the
log-likelihood on Zθ by taking derivatives w.r.t. x, using the fact that∇x log pθ(x) = ∇x log p̃θ(x).
Different variants of SM have been proposed, including approximate back-propagation [25], cur-
vature propagation [39], denoising score matching (DSM) [65], a bi-level formulation for latent
variable models [3] and nonparametric estimators [35, 55, 59, 62, 74], but they may suffer from high
computational cost, biased parameter estimation, large variance, or complex implementations. Sliced
score matching (SSM) [58] alleviates these problems by providing a scalable and unbiased estimator
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with a simple implementation. However, most of these score matching methods optimize (high-order)
derivatives of the density function, e.g., the gradient of a Hessian trace w.r.t. parameters, which are
several times more computationally expensive compared to a typical end-to-end propagation, even
when using reverse-mode automatic differentiation [13, 47]. These extra computations need to be
performed in sequential order and cannot be easily accelerated by parallel computing (as discussed in
Appendix B.1). Besides, the induced repetitive usage of the same intermediate results could magnify
the stochastic variance and lead to numerical instability [60].
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Figure 1: Computing graphs of each update step.
Detailed in Sec. 2.2 (SSM) and Sec. 4 (FD-SSM).

To improve efficiency and stability, we first ob-
serve that existing scalable SM objectives (e.g.,
DSM and SSM) can be rewritten in terms of
(second-order) directional derivatives. We then
propose a generic finite-difference (FD) decom-
position for any-order directional derivative in
Sec. 3, and show an application to SM methods
in Sec. 4, eliminating the need for optimizing
on higher-order gradients. Specifically, our FD
approach only requires independent (unnormal-
ized) likelihood function evaluations, which can
be efficiently and synchronously executed in par-
allel with a simple implementation (detailed in
Sec. 3.3). This approach reduces the computational complexity of any T -th order directional deriva-
tive to O(T ), and improves numerical stability because it involves a shallower computational graph.
As we exemplify in Fig. 1, the FD reformulations decompose the inherently sequential high-order
gradient computations in SSM (left panel) into simpler, independent routines (right panel). Mathe-
matically, in Sec. 5 we show that even under stochastic optimization [51], our new FD objectives are
asymptotically consistent with their gradient-based counterparts under mild conditions. When the
generative models are unnormalized, the intractable partition function can be eliminated by the linear
combinations of log-density in the FD-form objectives. In experiments, we demonstrate the speed-up
ratios of our FD reformulations with more than 2.5× for SSM and 1.5× for DSM on different
generative models and datasets, as well as the comparable performance of the learned models.

2 Background

Explicit generative modeling aims to model the true data distribution pdata(x) with a parametric model
pθ(x), where x ∈ Rd. The learning process usually minimizes some divergence between pθ(x) and
the (empirical) data distribution (e.g., KL-divergence minimization leads to MLE). In particular,
the unnormalized generative models such as the energy-based ones [34] model the distribution as
pθ(x) = p̃θ(x)/Zθ, where p̃θ(x) is the unnormalized probability and Zθ =

∫
p̃θ(x)dx is the partition

function. Computing the integral in Zθ is usually intractable especially for high-dimensional data,
which makes it difficult to directly learn unnormalized models with MLE [9, 29].

2.1 Score matching methods

As an alternative to KL divergence, score matching (SM) [21] minimizes the Fisher divergence
between pθ(x) and pdata(x), which is equivalent to

JSM(θ) = Epdata(x)

[
tr(∇2

x log pθ(x)) +
1

2
‖∇x log pθ(x)‖22

]
(1)

up to a constant and tr(·) is the matrix trace. Note that the derivatives w.r.t. x eliminate the dependence
on the partition function, i.e.,∇x log pθ(x) = ∇x log p̃θ(x), making the objective function tractable.
However, the calculation of the trace of Hessian matrix is expensive, requiring the number of back-
propagations proportional to the data dimension [39]. To circumvent this computational difficulty,
two scalable variants of SM have been developed, to which we will apply our methods.

Denoising score matching (DSM). Vincent [65] circumvents the Hessian trace by perturbing x
with a noise distribution pσ(x̃|x) and then estimating the score of the perturbed data distribution
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pσ(x̃) =
∫
pσ(x̃|x)pdata(x)dx. When using Gaussian noise, we obtain the DSM objective as

JDSM(θ) =
1

d
Epdata(x)Epσ(x̃|x)

[∥∥∥∥∇x̃ log pθ(x̃) + x̃− x
σ2

∥∥∥∥2
2

]
, (2)

The model obtained by DSM only matches the true data distribution when the noise scale σ is small
enough. However, when σ → 0, the variance of DSM could be large or even tend to infinity [66],
requiring grid search or heuristics for choosing σ [53].

Sliced score matching (SSM). Song et al. [58] use random projections to avoid explicitly calculating
the Hessian trace, so that the training objective only involves Hessian-vector products as follows:

JSSM(θ) =
1

Cv
Epdata(x)Epv(v)

[
v>∇2

x log pθ(x)v +
1

2

(
v>∇x log pθ(x)

)2]
, (3)

where v ∼ pv(v) is the random direction, Epv(v)[vv>] � 0 and Cv = Epv(v)[‖v‖22] is a constant w.r.t.
θ. We divide the SSM loss by Cv to exclude the dependence on the scale of the projection distribution
pv(v). Here pdata(x) and pv(v) are independent. Unlike DSM, the model obtained by SSM can match
the original unperturbed data distribution, but requires more expensive, high-order derivatives.

2.2 Computational cost of gradient-based SM methods

Although SM methods can bypass the intractable partition function Zθ, they have to optimize an
objective function involving higher-order derivatives of the log-likelihood density. Even if reverse
mode automatic differentiation is used [47], existing SM methods like DSM and SSM can be
computationally expensive during training when calculating the Hessian-vector products.

Complexity of the Hessian-vector products. Let L be any loss function, and let Cal(∇L) and
Mem(∇L) denote the time and memory required to compute∇L, respectively. Then if the reverse
mode of automatic differentiation is used, the Hessian-vector product can be computed with up
to five times more time and two times more memory compared to ∇L, i.e., 5× Cal(∇L) time
and 2×Mem(∇L) memory [12, 13]. When we instantiate L = log pθ(x), we can derive that the
computations of optimizing DSM and SSM are separately dominated by the sequential operations
of ∇θ(‖∇xL‖) and ∇θ(v>∇x(v>∇xL)), as illustrated in Fig. 1 for SSM. The operations of ∇θ
and ∇x require comparable computing resources, so we can conclude that compared to directly
optimizing the log-likelihood, DSM requires up to 5× computing time and 2× memory, while SSM
requires up to 25× computing time and 4×memory [12]. For higher-order derivatives, we empirically
observe that the computing time and memory usage grow exponentially w.r.t. the order of derivatives,
i.e., the times of executing the operator v>∇, as detailed in Sec. 3.3.

3 Approximating directional derivatives via finite difference
In this section, we first rewrite the most expensive terms in the SM objectives in terms of directional
derivatives, then we provide generic and efficient formulas to approximate any T -th order directional
derivative using finite difference (FD). The proposed FD approximations decompose the sequential
and dependent computations of high-order derivatives into independent and parallelizable computing
routines, reducing the computational complexity to O(T ) and improving numerical stability.

3.1 Rewriting SM objectives in directional derivatives

Note that the objectives of SM, DSM, and SSM described in Sec. 2.1 can all be abstracted in terms of
v>∇xLθ(x) and v>∇2

xLθ(x)v. Specifically, as to SM or DSM, v is the basis vector ei along the i-th
coordinate to constitute the squared norm term ‖∇xLθ(x)‖22 =

∑d
i=1(e

>
i ∇xLθ(x))2 or the Hessian

trace term tr(∇2
xLθ(x)) =

∑d
i=1 e

>
i ∇2

xLθ(x)ei. As to SSM, v denotes the random direction.

We regard the gradient operator ∇x as a d-dimensional vector ∇x = ( ∂
∂x1

, · · · , ∂
∂xd

), and v>∇x is
an operator that first executes ∇x and then projects onto the vector v. For notation simplicity, we
denote ‖v‖2 = ε and rewrite the above terms as (higher-order) directional derivatives as follows:

v>∇x = ε
∂

∂v
; v>∇xLθ(x)=ε

∂

∂v
Lθ(x); v>∇2

xLθ(x)v=(v>∇x)2Lθ(x)=ε2
∂2

∂v2
Lθ(x). (4)

Here ∂
∂v is the directional derivative along v, and

(
v>∇x

)2
means executing v>∇x twice.
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3.2 FD decomposition for directional derivatives

We propose to adopt the FD approach, a popular tool in numerical analysis to approximate differential
operations [60], to efficiently estimate the terms in Eq. (4). Taking the first-order case as an example,
the key idea is that we can approximate ∂

∂vLθ(x) =
1
2ε (Lθ(x+v)−Lθ(x−v))+o(ε), where the

right-hand side does not involve derivatives, just function evaluations. In FD, ‖v‖2 = ε is assumed to
be a small value, but this does not affect the optimization of SM objectives. For instance, the SSM
objective in Eq. (3) can be adaptively rescaled by Cv (generally explained in Appendix B.2).

In general, to estimate the T -th order directional derivative of Lθ, which is assumed to be T times
differentiable, we first apply the multivariate Taylor’s expansion with Peano’s remainder [27] as

Lθ(x+ γv) =

T∑
t=0

γt

t!

(
v>∇x

)t Lθ(x) + o(εT ) =

T∑
t=0

γt
(
εt

t!

∂t

∂vt
Lθ(x)

)
+ o(εT ), (5)

where γ ∈ R is a certain coefficient. Then, we take a linear combination of the Taylor expansion in
Eq. (5) for different values of γ and eliminate derivative terms of order less than T . Formally, T+1
different γs are sufficient to construct a valid FD approximation (all the proofs are in Appendix A).1

Lemma 1. (Existence of o(1) estimator) If Lθ(x) is T -times-differentiable at x, then given any set
of T + 1 different real values {γi}T+1

i=1 , there exist corresponding coefficients {βi}T+1
i=1 , such that

∂T

∂vT
Lθ(x) =

T !

εT

T+1∑
i=1

βiLθ(x+ γiv) + o(1). (6)

Lemma 1 states that it is possible to approximate the T -th order directional derivative as to an o(1)
error with T+1 function evaluations. In fact, as long as Lθ(x) is (T+1)-times-differentiable at x,
we can construct a special kind of linear combination of T+1 function evaluations to reduce the
approximation error to o(ε), as stated below:

Theorem 1. (Construction of o(ε) estimator) If Lθ(x) is (T+1)-times-differentiable at x, we let
K ∈ N+ and {αk}Kk=1 be any set ofK different positive numbers, then we have the FD decomposition

∂T

∂vT
Lθ(x)=o(ε)+


T !

2εT

∑
k∈[K]

βkα
−2
k [Lθ(x+αkv)+Lθ(x−αkv)−2Lθ(x)] , when T =2K;

T !

2εT

∑
k∈[K]

βkα
−1
k [Lθ(x+αkv)−Lθ(x−αkv)] , when T =2K − 1.

(7)

The coefficients β ∈ RK is the solution of V >β = eK , where V ∈ RK×K is the Vandermonde
matrix induced by {α2

k}Kk=1, i.e., Vij = α2j−2
i , and eK ∈ RK is the K-th basis vector.

It is easy to generalize Theorem 1 to achieve approximation error o(εN ) for any N ≥ 1 with
T+N function evaluations, and we can show that the error rate o(ε) is optimal when evaluating
T+1 functions. So far we have proposed generic formulas for the FD decomposition of any-order
directional derivative. As to the application to SM objectives (detailed in Sec. 4), we can instantiate
the decomposition in Theorem 1 with K = 1, α1 = 1, and solve for β1 = 1, which leads to

v>∇xLθ(x) = ε
∂

∂v
Lθ(x) =

1

2
Lθ(x+v)−

1

2
Lθ(x−v) + o(ε2);

v>∇2
xLθ(x)v = ε2

∂2

∂v2
Lθ(x) = Lθ(x+v) + Lθ(x−v)− 2Lθ(x) + o(ε3).

(8)

In addition to generative modeling, the decomposition in Theorem 1 can potentially be used in other
settings involving higher-order derivatives, e.g., extracting local patterns with high-order directional
derivatives [72], training GANs with gradient penalty [40], or optimizing the Fisher information [5].
We leave these interesting explorations to future work.

1Similar conclusions as in Lemma 1 and Theorem 1 were previously found in the Chapter 6.5 of Isaacson
and Keller [22] under the univariate case, while we generalize them to the multivariate case.
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Remark. When Lθ(x) is modeled by a neural network, we can employ the average pooling layer
and the non-linear activation of, e.g., Softplus [73] to have an infinitely differentiable model to meet
the condition in Theorem 1. Note that Theorem 1 promises a point-wise approximation error o(ε). To
validate the error rate under expectation for training objectives, we only need to assume that pdata(x)
and Lθ(x) satisfy mild regularity conditions beyond the one in Theorem 1, which can be easily met
in practice, as detailed in Appendix B.3. Conceptually, these mild regularity conditions enable us to
substitute the Peano’s remainders with Lagrange’s ones. Moreover, this substitution results in a better
approximation error of O(ε2) for our FD decomposition, while we still use o(ε) for convenience.

3.3 Computational efficiency of the FD decomposition

Theorem 1 provides a generic approach to approximate any T -th order directional derivative by
decomposing the sequential and dependent order-by-order computations into independent function
evaluations. This decomposition reduces the computational complexity toO(T ), while the complexity
of explicitly computing high-order derivatives usually grows exponentially w.r.t. T [12], as we verify
in Fig. 2. Furthermore, due to the mutual independence among the function terms Lθ(x+ γiv), they
can be efficiently and synchronously executed in parallel via simple implementation (pseudo code is
in Appendix C.1). Since this parallelization acts on the level of operations for each data point x, it is
compatible with data or model parallelism to further accelerate the calculations.
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Figure 2: Computing time and memory usage for
calculating the T -th order directional derivative.

To empirically demonstrate the computational
efficiency of our FD decomposition, we report
the computing time and memory usage in Fig. 2
for calculating the T -th order directional deriva-
tive, i.e., ∂T

∂vT
or (v>∇x)T , either exactly or by

the FD decomposition. The function Lθ(x) is
the log-density modeled by a deep EBM and
trained on MNIST, while we use PyTorch [47]
for automatic differentiation. As shown in the
results, our FD decomposition significantly pro-
motes efficiency in respect of both speed and
memory usage, while the empirical approxima-
tion error rates are kept within 1%. When we parallelize the FD decomposition, the computing time
is almost a constant w.r.t. the order T , as long as there is enough GPU memory. In our experiments
in Sec. 6, the computational efficiency is additionally validated on the FD-reformulated SM methods.

4 Application to score matching methods

Now we can instantiate Lθ(x) in Eq. (8) as the log-density function log pθ(x) to reformulate the
gradient-based SM methods. For unnormalized models pθ(x) = p̃θ(x)/Zθ, the decomposition in
Theorem 1 can naturally circumvent Zθ by, e.g., log pθ(x+ αkv)− log pθ(x− αkv) = log p̃θ(x+
αkv)− log p̃θ(x−αkv) where the partition function term cancels out, even without taking derivatives.
Thus, the FD reformulations introduced in this section maintain the desirable property of their gradient-
based counterparts of bypassing the intractable partition function. For simplicity, we set the random
projection v to be uniformly distributed as pε(v) = U({v ∈ Rd |‖v‖ = ε}), while our conclusions
generally hold for other distributions of v with bounded support sets.

Finite-difference SSM. For SSM, the scale factor is Cv = ε2 in Eq. (3). By instantiating Lθ =
log pθ(x) in Eq. (8), we propose the finite-difference SSM (FD-SSM) objective as

JFD-SSM(θ) =
1

ε2
Epdata(x)Epε(v)

[
log pθ(x+ v) + log pθ(x− v)− 2 log pθ(x)

+
1

8
(log pθ(x+ v)− log pθ(x− v))2

]
= JSSM(θ) + o(ε).

(9)

In Fig. 1, we intuitively illustrate the computational graph to better highlight the difference between
the gradient-based objectives and their FD reformations, taking SSM as an example.

Finite-difference DSM. To construct the FD instantiation for DSM, we first cast the original objective
in Eq. (2) into sliced Wasserstein distance [49] with random projection v (detailed in Appendix B.4).
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Then we can propose the finite-difference DSM (FD-DSM) objective as

JFD-DSM(θ)=
1

4ε2
Epdata(x)Epσ(x̃|x)Epε(v)

[(
log pθ(x̃+v)−log pθ(x̃−v)+

2v>(x̃−x)
σ2

)2
]

. (10)

It is easy to verify that JFD-DSM(θ) = JDSM(θ) + o(ε), and we can generalize FD-DSM to the cases
with other noise distributions of pσ(x̃|x) using similar instantiations of Eq. (8).

Finite-difference SSMVR. Our FD reformulation can also be used for score-based generative
models [52, 57], where sθ(x) : Rd → Rd estimates ∇x log pdata(x) without modeling the likelihood
by pθ(x). In this case, we utilize the fact that Epε(v)

[
vv>

]
= ε2I

d and focus on the objective of SSM
with variance reduction (SSMVR) [58], where 1

ε2Epε(v)[(v
>sθ(x))

2] = 1
d‖sθ(x)‖

2
2 as

JSSMVR(θ) = Epdata(x)Epε(v)
[
1

ε2
v>∇xsθ(x)v +

1

2d
‖sθ(x)‖22

]
. (11)

If sθ(x) is (element-wisely) twice-differentiable at x, we have the expansion that sθ(x+ v)+ sθ(x−
v) = 2sθ(x) + o(ε) and sθ(x+ v)− sθ(x− v) = 2∇xsθ(x)v + o(ε2). Then we can construct the
finite-difference SSMVR (FD-SSMVR) for the score-based models as

JFD-SSMVR(θ)=Epdata(x)Epε(v)
[
1

8d
‖sθ(x+v)+sθ(x−v)‖22+

1

2ε2
(
v>sθ(x+v)−v>sθ(x−v)

)]
.

We can verify that JFD-SSMVR(θ) = JSSMVR(θ) + o(ε). Compared to the FD-SSM objective on the
likelihood-based models, we only use two counterparts sθ(x+ v) and sθ(x− v) in this instantiation.

5 Consistency under stochastic optimization
In practice, we usually apply mini-batch stochastic gradient descent (SGD) [51] to update the model
parameters θ. Thus beyond the expected o(ε) approximation error derived in Sec. 4, it is critical to
formally verify the consistency between the FD-form objectives and their gradient-based counterparts
under stochastic optimization. To this end, we establish a uniform convergence theorem for FD-SSM
as an example, while similar proofs can be applied to other FD instantiations as detailed in Appendix
B.5. A key insight is to show that the directions of ∇θJFD-SSM(θ) and ∇θJSSM(θ) are sufficiently
aligned under SGD, as stated in Lemma 2:
Lemma 2. (Uniform guarantee) Let S be the parameter space of θ, B be a bounded set in the space
of Rd×S , and Bε0 be the ε0-neighbourhood of B for certain ε0 > 0. Then under the condition that
log pθ(x) is four times continuously differentiable w.r.t. (x, θ) and ‖∇θJSSM(x, v; θ)‖2 > 0 in the
closure of Bε0 , we have ∀η > 0, ∃ξ > 0, such that

∠ (∇θJFD-SSM(x, v; θ),∇θJSSM(x, v; θ)) < η (12)

uniformly holds for ∀(x, θ) ∈ B, v ∈ Rd, ‖v‖2 = ε < min(ξ, ε0). Here ∠(·, ·) denotes the angle
between two vectors. The arguments x, v in the objectives indicate the losses at that point.

Note that during the training process, we do not need to define a specific bounded set B since our
models are assumed to be globally differentiable in Rd×S . This compact set only implicitly depends
on the training process and the value of ε. Based on Lemma 2 and other common assumptions in
stochastic optimization [4], FD-SSM converges to a stationary point of SSM, as stated below:
Theorem 2. (Consistency under SGD) Optimizing ∇θJFD-SSM(θ) with stochastic gradient descent,
then the model parameters θ will converge to the stationary point of JSSM(θ) under the conditions
including: (i) the assumptions for general stochastic optimization in Bottou et al. [4] hold; (ii) the
differentiability assumptions in Lemma 2 hold; (iii) ε decays to zero during training.

In the proof, we further show that the conditions (i) and (ii) largely overlap, and these assumptions
are satisfied by the models described in the remark of Sec. 3.2. As to the condition (iii), we observe
that in practice it is enough to set ε be a small constant during training, as shown in our experiments.

6 Experiments
In this section, we experiment on a diverse set of generative models, following the default settings in
previous work [36, 57, 58].2 It is worth clarifying that we use the same number of training iterations

2Our code is provided in https://github.com/taufikxu/FD-ScoreMatching.
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Table 1: Results of the DKEF model on three UCI datasets. We report the negative log-likelihood
(NLL) and the exact SM loss on the test set, as well as the training time per iteration. Under each
algorithm, we train the DKEF model for 500 epochs with the batch size of 200.

Algorithm Parkinsons RedWine WhiteWine
NLL SM loss Time NLL SM loss Time NLL SM loss Time

SSM 14.52 −123.54 110 ms 13.34 −33.28 113 ms 14.13 −38.43 105 ms
SSMVR 13.26 −193.97 111 ms 13.13 −31.19 106 ms 13.63 −39.42 111 ms
FD-SSM 13.69 −138.72 82.5 ms 13.06 −30.34 82 ms 14.10 −32.84 81.0 ms

Table 2: Results of deep EBMs on MNIST
trained for 300K iterations with the batch
size of 64. Here ? indicates non-parallelized
implementation of the FD objectives.
Algorithm SM loss Time Mem.

DSM −9.47× 104 282 ms 3.0 G
FD-DSM? −9.24× 104 191 ms 3.2 G
FD-DSM −9.27× 104 162 ms 2.7 G

SSM −2.97× 107 673 ms 5.1 G
SSMVR −3.09× 107 670 ms 5.0 G

FD-SSM? −3.36× 107 276 ms 3.7 G
FD-SSM −3.33× 107 230 ms 3.4 G

Table 3: Results of the NICE model trained for 100
epochs with the batch size of 128 on MNIST. Here †
indicates σ=0.1 [58] and †† indicates σ=1.74 [53].

Algorithm SM loss NLL Time
Approx BP −2530 ± 617 1853 ± 819 55.3 ms

CP −2049 ± 630 1626 ± 269 73.6 ms
DSM† −2820 ± 825 3398 ± 1343 35.8 ms
DSM†† −180 ± 50 3764 ± 1583 37.2 ms
SSM −2182 ± 269 2579 ± 945 59.6 ms

SSMVR −4943 ± 3191 6234 ± 3782 61.7 ms
FD-SSM −2425 ± 100 1647 ± 306 26.4 ms

MLE −1236 ± 525 791 ± 14 24.3 ms

for our FD methods as their gradient-based counterparts, while we report the time per iteration to
exclude the compiling time. More implementation and definition details are in Appendix C.2.

6.1 Energy-based generative models

Deep EBMs utilize the capacity of neural networks to define unnormalized models. The backbone
we use is an 18-layer ResNet [17] following Li et al. [36]. We validate our methods on six datasets
including MNIST [33], Fashion-MNIST [69], CelebA [38], CIFAR-10 [28], SVHN [44], and Ima-
geNet [7]. For CelebA and ImageNet, we adopt the officially cropped images and respectively resize
to 32× 32 and 128× 128. The quantitative results on MNIST are given in Table 2. As shown, our
FD formulations result in 2.9× and 1.7× speedup compared to the gradient-based SSM and DSM,
respectively, with consistent SM losses. We simply set ε = 0.1 to be a constant during training, since
we find that the performance of our FD reformulations is insensitive to a wide value range of ε. In
Fig. 4 (a) and (b), we provide the loss curve of DSM / FD-DSM and SSM / FD-SSM w.r.t. time. As
seen, FD-DSM can achieve the best model (lowest SM loss) faster, but eventually converges to higher
loss compared to DSM. In contrast, when applying FD on SSM-based methods, the improvements
are much more significant. This indicates that the random projection trick required by the FD formula
is its main downside, which may outweigh the gain on efficiency for low-order computations.

As an additional evaluation of the learned model’s performance, we consider two tasks using deep
EBMs: the first one is out-of-distribution detection, where we follow previous work [6, 43] to use
typicality as the detection metric (details in Appendix C.3), and report the AUC scores [18] and the
training time per iteration in Table 4; the second one is image generation, where we apply annealed
Langevin dynamics [36, 45, 67, 70] for inference and show the generated samples in the left of Fig. 3.

Deep kernel exponential family (DKEF) [68] is another unnormalized density estimator in the form
of log p̃(x) = f(x)+ log p0(x), with p0 be the base measure, f(x) defined as

∑N
i=1

∑Nj
j=1 ki(x, zj),

where N is the number of kernels, k(·, ·) is the Gaussian kernel function, and zj (j = 0, · · · , Nj) are
Nj inducing points. The features are extracted using a neural network and the parameters of both the
network and the kernel can be learned jointly using SM. Following the setting in Song et al. [58], we
evaluate on three UCI datasets [2] and report the results in Table 1. As done for SSM, we calculate
the tractable solution of the kernel method when training DKEF. The shared calculation leads to a
relatively lower speed-up ratio of our FD method compared to the deep EBM case. For the choice of
ε, we found that the performances are insensitive to ε: on the Parkinson dataset, the test NLLs and
their corresponding ε are: 14.17(ε = 0.1), 13.51(ε = 0.05), 14.03(ε = 0.02), 14.00(ε = 0.01).
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Table 4: Results of the out-of-distribution detection on deep EBMs.
Training time per iteration and AUC scores (M=2 in typicality).

Dataset Algorithm Time SVHN CIFAR ImageNet

SVHN DSM 673 ms 0.49 1.00 0.99
FD-DSM 305 ms 0.50 1.00 1.00

CIFAR DSM 635 ms 0.91 0.49 0.79
FD-DSM 311 ms 0.92 0.51 0.81

ImageNet DSM 1125 ms 0.95 0.87 0.49
FD-DSM 713 ms 0.95 0.89 0.49

Table 5: Results of the NCSN
model trained for 200K itera-
tions with 128 batch size on
CIFAR-10. We report time per
iteration and the FID scores.

Algorithm FID Time Mem.
SSMVR 41.2 865 ms 6.4 G

FD-SSMVR 39.5 575 ms 5.5 G

MNIST Fashion-MNIST CelebA CIFAR-10
Figure 3: Left. The generated samples from deep EBMs trained by FD-DSM on MNIST, Fashion-
MNIST and CelebA; Right. The generated samples from NCSN trained by FD-SSMVR on CIFAR-10.

6.2 Flow-based generative models

In addition to the unnormalized density estimators, SM methods can also be applied to flow-based
models, whose log-likelihood functions are tractable and can be directly trained with MLE. Follow-
ing Song et al. [58], we adopt the NICE [8] model and train it by minimizing the Fisher divergence
using different approaches including approximate back-propagation (Approx BP) [25] and curvature
propagation (CP) [39]. As in Table 3, FD-SSM achieves consistent results compared to SSM, while
the training time is nearly comparable with the direct MLE, due to parallelization. The results are
averaged over 5 runs except the SM based methods which are averaged over 10 runs. However, the
variance is still large. We hypothesis that it is because the numerical stability of the baseline methods
are relatively poor. In contrast, the variance of FD-SSM on the SM loss is much smaller, which shows
better numerical stability of the shallower computational graphs induced by the FD decomposition.

6.3 Latent variable models with implicit encoders

SM methods can be also used in score estimation [35, 54, 61]. One particular application is on
VAE [24] / WAE [64] with implicit encoders, where the gradient of the entropy term in the ELBO
w.r.t. model parameters can be estimated (more details can be found in Song et al. [58] and Shi et al.
[55]). We follow Song et al. [58] to evaluate VAE / WAE on both the MNIST and CelebA datasets
using both SSMVR and FD-SSMVR. We report the results in Table 6. The reported training time only
consists of the score estimation part, i.e., training the score model. As expected, the FD reformulation
can improve computational efficiency without sacrificing the performance. The discussions concerned
with other applications on the latent variable models can be found in Appendix B.6.

6.4 Score-based generative models

The noise conditional score network (NCSN) [57] trains a single score network sθ(x, σ) to estimate
the scores corresponding to all noise levels of σ. The noise level {σi}i∈[10] is a geometric sequence
with σ1 = 1 and σ10 = 0.01. When using the annealed Langevin dynamics for image generation, the
number of iterations under each noise level is 100 with a uniform noise as the initial sample. As to
the training approach of NCSN, Song and Ermon [57] mainly use DSM to pursue state-of-the-art
performance, while we use SSMVR to demonstrate the efficiency of our FD reformulation. We train
the models on the CIFAR-10 dataset with the batch size of 128 and compute the FID scores [19] on
50, 000 generated samples. We report the results in Table 5 and provide the generated samples in the
right panel of Fig. 3. We also provide a curve in Fig. 4 (c) showing the FID scores (on 1,000 samples)
during training. As seen, our FD methods can effectively learn different generative models.
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Table 6: The results of training implicit encoders for VAE and WAE on the MNIST and CelebA
datasets. The models are trained for 100K iterations with the batch size of 128.

Model Algorithm MNIST CelebA
NLL Time FID Time

VAE SSMVR 89.58 5.04 ms 62.76 14.9 ms
FD-SSMVR 88.96 3.98 ms 64.85 9.38 ms

WAE SSMVR 90.45 0.55 ms 54.28 1.30 ms
FD-SSMVR 90.66 0.39 ms 54.67 0.81 ms
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Figure 4: (a) Loss for DSM and FD-DSM; (b) Loss for SSM and FD-SSM; (c) FID scores on 1,000
samples (higher than those reported on 50,000 samples in Table 5) for SSMVR and FD-SSMVR.

7 Related work

In numerical analysis, the FD approaches play a central role in solving differential equations [60]. In
machine learning, there have been related efforts devoted to leveraging the FD forms, either explicitly
or implicitly. For a general scalar function L(x), we denote H(x) as the Hessian matrix, J(x) as the
gradient, and σ be a small value. LeCun [32] introduces a row-wise approximation of Hessian matrix
as Hk(x) ≈ 1

σ (J(x + σek) − J(x)), where Hk represents the k-th row of Hessian matrix and ek
is the k-th Euclidean basis vector. Rifai et al. [50] provide a FD approximation for the Frobenius
norm of Hessian matrix as ‖H(x)‖2F ≈ 1

σ2E[‖J(x + v) − J(x)‖22], where v ∼ N (0, σ2I) and
the formulas is used to regularize the unsupervised auto-encoders. Møller [42] approximates the
Hessian-vector product H(x)v by calculating the directional FD as H(x)v ≈ 1

σ (J(x+ σv)− J(x)).
Compared to our work, these previous methods mainly use the first-order terms J(x) to approximate
the second-order terms of H(x), while we utilize the linear combinations of the original function
L(x) to estimate high-order terms that exist in the Taylor’s expansion, e.g., v>H(x)v.

As to the more implicit connections to FD, the minimum probability flow (MPF) [56] is a method for
parameter estimation in probabilistic models. It is demonstrated that MPF can be connected to SM by
a FD reformulation, where we provide a concise derivation in Appendix B.7. The noise-contrastive
estimation (NCE) [14] train the unnormalized models by comparing the model distribution pθ(x)
with a noise distribution pn(x). It is proven that when we choose pn(x) = pdata(x+ v) with a small
vector v, i.e., ‖v‖ = ε, the NCE objective can be equivalent to a FD approximation for the SSM
objective as to an o(1) approximation error rate after scaling [58]. In contrast, our FD-SSM method
can achieve o(ε) approximation error with the same computational cost as NCE.

8 Conclusion

We propose to reformulate existing gradient-based SM methods using finite difference (FD), and
theoretically and empirically demonstrate the consistency and computational efficiency of the FD-
based training objectives. In addition to generative modeling, our generic FD decomposition can
potentially be used in other applications involving higher-order derivatives. However, the price paid
for this significant efficiency is that we need to work on the projected function in a certain direction,
e.g., in DSM we need to first convert it into the slice Wasserstein distance and then apply the FD
reformulation. This raises a trade-off between efficiency and variance in some cases.
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Broader Impact

This work proposes an efficient way to learn generative models and does not have a direct impact
on society. However, by reducing the computation required for training unnormalized models, it
may facilitate large-scale applications of, e.g., EBMs to real-world problems, which could have both
positive (e.g., anomaly detection and denoising) and negative (e.g., deepfakes) consequences.
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