
Supplementary Material

Index of Notation

For the convenience of the reader, we have collected the most frequently used symbols and their
meanings in the following table:
R,R+ real numbers; non-negative real numbers.
R3 ,R<×= 3-dimensional vectors; matrices of size < × =.
e8 , 0, 1 standard basis vector: 48,8 = 1 and 48, 9 = 0 for 8 ≠ 9 ; constant zero or one vectors.
a ⊕ b concatenation of vectors: if a ∈ R= and b ∈ R<, then a ⊕ b ∈ R=+<.
S,A,S∗ sets of states, actions, and core states (Section 1.1 and Assumption 2).
(, �, < number of states |S|, actions |A|, and core states |S∗ |, respectively.
B0, B, B

′, 0 planning state (Section 3) and other states ∈ S; actions ∈ A.
V, K row-stochastic matrices in R(�×(+ (Sections 1.1 and 1.2); KB0 = eB ∈ R( .
r, Â expected rewards ∈ R(� (Section 1.1); random reward ∈ [−1, 1] (Assumption 3).
W ∈ [0, 1) discount factor (Section 1.1).
{, {∗, {c value functions ( → R.
ΔS ,ΔA sets of probability distributions over states and actions.
-, 0, 0(B) probability distributions in ΔS and ΔA , respectively; policy in S → ΔA .
�, >B , >0 feature matrix ∈ R(×3; state features ∈ R3; features of planning state >B0 .
Yapprox approximation error of �: min)∈R3 ‖{∗ −�) ‖∞.
],]∗ constraint matrices in {0, 1} (1+<)�×(� and {0, 1}<�×(� (Theorems 2 and 5).
,, ,∗, ) dual variables ∈ R(1+<)�+ and ∈ R<�+ , respectively; primal variables ∈ R3 .
Λ,ΛW ,B dual spaces ⊂ R(1+<)�+ ; primal space ⊂ R3 (Theorem 2 and Lemmas 8 and 11).
‖ · ‖∗ dual norm of ‖ · ‖: defined by ‖u‖∗ = sup‖x ‖=1〈u, x〉.

A Proofs

A.1 Approximation Error for the Linearly Relaxed Approximate LP

We start by recalling and improving the approximation error bounds for the Linearly Relaxed
Approximate Linear Program (LRALP-) of Lakshminarayanan et al. [27].
Theorem 5. Suppose Assumptions 1 and 2 hold. Define the matrix ]∗ ∈ {0, 1}<�×(� with rows
[]∗]B0 = eB0 ∈ R(� (B ∈ S∗, 0 ∈ A). For any (possibly unnormalized) initial distribution - ∈ R(+ ,

+LRALP (-) ≔ min { -T�) | ) ∈ R3 , ]∗r +]∗ (WV − K)�) ≤ 0 }. (LRALP-)
The value of (LRALP-) is close to the optimal value of that initial distribution:

|+LRALP (-) − -T{∗ | ≤
10‖-‖1Yapprox

1 − W .

This result follows from Lakshminarayanan et al. [27, Theorem IV.1], which we will not reproduce
here for brevity. The error bound there is 2‖-‖1 (3Yapprox + ‖�∗ALP − �

∗
LRA‖∞)/(1 − W), defining

�∗ALP (B) ≔ min { >T
B) | ) ∈ R3 , �) ≥ {∗ },

�∗LRA (B) ≔ min { >T
B) | ) ∈ R3 , ]∗K�) ≥ ]∗K{

∗ }.
It only remains for us to bound ‖�∗ALP − �

∗
LRA‖∞, improving upon Theorem IV.2 [27]:

Lemma 6. Under the conditions of Theorem 5, ‖�∗ALP − �
∗
LRA‖∞ ≤ 2Yapprox.

Proof. ByAssumption 1, the optimal value function is well-approximated by the feature representation;
{∗ = �) + % for some ) ∈ R3 and % ∈ R( with ‖%‖∞ ≤ Yapprox. By Assumption 2, � = `�∗, so
{∗ = `�∗) + %. We use these facts after writing the linear program defining �∗ALP (B) in its dual form:

�∗ALP (B) = max { -T{∗ | - ∈ R(+ , -T� = >T
B }

= max { -T (`�∗) + %) | - ∈ R(+ , -T`�∗ = >T
B }
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By Assumption 1, there is some ( ∈ R3 such that�( = 1. If -T� = >T
B , then ‖-‖1 = -T1 = -T�( =

>T
B( = 1, which means that -T% ≤ ‖%‖∞. Replacing -T% with ‖%‖∞ in the objective increases its

value; we move the resulting constant term out of the maximization:

≤ ‖%‖∞ +max { -T`�∗) | - ∈ R(+ , -T`�∗ = >T
B }

The objective and constraints of this maximization problem depend on - only through -T`. Thus
we can replace -T` with -∗ ∈ R<+ , which can only expand the feasible set of the maximization and
increase its value:

≤ ‖%‖∞ +max { -T
∗�∗) | -∗ ∈ R<+ , -T

∗�∗ = >T
B }

The matrix [ ∈ {0, 1}<×( with rows [[B]B∈S∗ = eB can be used to “select” the core state features
from �, giving �∗ = [�:

= ‖%‖∞ +max { -T
∗[�) | -∗ ∈ R<+ , -T

∗[� = >T
B }

By a similar argument as before, we see that ‖-T
∗[‖1 = 1. We add -T

∗[% + ‖%‖∞ ≥ 0 to the objective
(increasing its value), then move the constant out:

≤ 2‖%‖∞ +max { -T
∗[�) + -T

∗[% | -∗ ∈ R<+ , -T
∗[� = >T

B }
= 2‖%‖∞ +max { -T

∗[{∗ | -∗ ∈ R<+ , -T
∗[� = >T

B }
= 2‖%‖∞ +min { >T

B) | ) ∈ R3 , [�) ≥ [{∗ },

where the last step is obtained by writing the dual of the linear program in the previous step. Now
observe that the constraint [�) ≥ [{∗ is equivalent to the constraint ]∗K�) ≥ ]∗K{∗ in the
definition of �∗LRA — both of them require that >B) ≥ {∗B for B ∈ S∗. Thus we have shown that
�∗ALP (B) − �

∗
LRA (B) ≤ 2Yapprox for all B ∈ S. We also know that �∗ALP (B) ≥ �

∗
LRA (B), since �

∗
LRA (B) is

a relaxation of �∗ALP (B). It follows that ‖�
∗
ALP − �

∗
LRA‖∞ ≤ 2Yapprox. �

A.2 Proof of Theorem 2 — Approximation Error for CoreLP

Theorem 2 (CoreLP). Suppose Assumptions 1 and 2 hold, B0 ∈ S, >0 ≔ >B0 ,] ∈ {0, 1} (1+<)�×(�
has rows []B80]B8 ∈S+ ,0∈A = eB80, and Λ ≔ {, ∈ R

(1+<)�
+ | ∑0∈A _B00 = 1}. Define

+† = max
{
,T]r

�� , ∈ Λ, >T
0 + ,

T] (WV − K)� = 0
}
. (CoreLP)

Let ,† ∈ Λ be a maximizer of (CoreLP) and let 0† ∈ ΔA be given by c† (0) = _†B00. Then

|+† − {∗ (B0) | ≤
10WYapprox

1 − W , {∗ (B0) −
∑
0∈A

c† (0) @∗ (B0, 0) ≤
20WYapprox

1 − W .

By the definition of Λ ⊂ R(1+<)�+ , we can decompose its elements as , = 0 ⊕ ,∗, with 0 ∈ ΔA as in
the statement of the theorem and ,∗ ∈ R<�+ defined by _∗,B0 = _B0 for B ∈ S∗, 0 ∈ A — in other
words, Λ � ΔA ×R<�+ . The main idea of the proof is that when , is a solution of (CoreLP), then ,∗
is a solution for the dual form of (LRALP-) from Theorem 5. To make this connection between the
two problems more precise, let us write the saddle-point forms of (LRALP-) and (CoreLP):

+LRALP (-) = max
,∗∈R<�+

min
)∈R3

[
�- (,∗, )) ≔ ,T

∗]∗r + -T�) + ,T
∗]∗ (WV − K)�)

]
(Saddle LRALP-)

+† = max
,∈Λ

min
)∈R3

[
5 (,, )) ≔ ,T]r + eT

B0�) + ,T] (WV − K)�)
]

(Saddle CoreLP)

Lemma 7 (Corresponding (LRALP-) and (CoreLP) solutions). Let , ∈ Λ ⊂ R(1+<)�+ be arbitrary
and decompose it as , = 0 ⊕ ,∗, where 0 ∈ ΔA and ,∗ ∈ R<�+ . Define the distribution -0 ∈ ΔS as

-T
0 ≔

∑
0∈A

c(0) VB00, where c(0) ≔ _B00 for 0 ∈ A.

Then, for any ) ∈ R3 , and �- (,∗, )) and 5 (,, )) as in (Saddle LRALP-) and (Saddle CoreLP),

5 (,, )) =
∑
0∈A

c(0) A (B0, 0) + �W-0 (,∗, )), where _∗,B0 = _B0 for B ∈ S∗, 0 ∈ A.
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VB00 is the next-state distribution for action 0 at state B0 — thus the distribution -0 ∈ ΔS defined
here is the expected next-state distribution when an action 0 ∼ 0 is taken at state B0. This lemma
therefore connects solutions of (CoreLP) with (LRALP-) when - = W-0 is the discounted next-state
distribution for action 0 ∼ 0.

Proof of Lemma 7. Recall that] and]∗ (defined in Theorems 2 and 5) are related — the rows of
]∗ correspond to state-action pairs in S∗ × A, to which] adds � more rows corresponding to the
actions at the current planning state B0. Thus

,T] =
∑
0∈A

c0e
T
B00 + ,

T
∗]∗, (8)

which upon multiplying by r gives

,T]r =
∑
0∈A

c0AB00 + ,T
∗]∗r. (9)

Using (8) again,

eT
B0 + ,

T] (WV − K) = eT
B0 +

∑
0∈A

c0 (WVB00 − KB00) + ,T
∗]∗ (WV − K),

=
[
eT
B0 −

∑
0∈A

c0KB00

]
+ W

[∑
0∈A

c0VB00

]
+ ,T
∗]∗ (WV − K).

The first term is zero because KB00 = eB0 for all 0 ∈ A, and the second term becomes W-0 when we
substitute the definition of -0 . We then multiply both sides by �):

eT
B0�) + ,T] (WV − K)�) = W-T

0�) + ,T
∗]∗ (WV − K)�) .

Adding this to (9) gives

,T]r + eT
B0�) + ,T] (WV − K)�) =

∑
0∈A

c0AB00 + ,T
∗]∗r + W-T

0�) + ,T
∗]∗ (WV − K)�) ,

where we substitute the definitions of 5 (,, )) and �W-c (,∗, )) to get the desired result:
5 (,, )) =

∑
0∈A

c0AB00 + �W-0 (,∗, )). �

Proof of Theorem 2. Using the decomposition Λ � ΔA ×R<�+ in (Saddle CoreLP):

+† = max
0∈ΔA

max
,∗∈R<�+

min
)∈R3

5 (0 ⊕ ,∗, )) (where 0 ⊕ ,∗ = , ∈ Λ)

= max
0∈ΔA

max
,∗∈R<�+

min
)∈R3

[∑
0∈A

c0AB00 + �W-0 (,∗, ))
]

(using Lemma 7)

= max
0∈ΔA

[∑
0∈A

c0AB00 + max
,∗∈R<�+

min
)∈R3

�W-0 (,∗, ))
]

= max
0∈ΔA

[
@† (0) ≔

∑
0∈A

c0AB00 ++LRALP (W-0)
]
. (from (Saddle LRALP-))

We now turn our attention to bounding+†. From Theorem 5, we know that |+LRALP (W-0) − W-T
0{
∗ | ≤

10WYapprox/(1 − W) for any distribution over states -0 ∈ ΔS . Through a slight abuse of notation, we
define @∗ (B0, 0) ≔

∑
0 c0 AB00 + W-T

0{
∗ as a generalization of the standard @∗ (B, 0) value function to

action distributions. Note that we will only need @∗ (B0, · ), for which this abuse is ‘sensible’. Then
for all 0 ∈ ΔA ,

|@† (0) − @∗ (B0, 0) | = |+LRALP (W-0) − W-T
0{
∗ | ≤

10WYapprox

1 − W . (10)

We also know that {∗ (B0) = max0∈ΔA @∗ (B0, 0) (the equality happens with 0∗ = e0∗ for an optimal
action 0∗). Hence,

|+† − {∗ (B0) | = |max
0∈ΔA

@† (0) − max
0∈ΔA

@∗ (B0, 0) | ≤ max
0∈ΔA
|@† (0) − @∗ (B0, 0) | ≤

10WYapprox

1 − W ,

where the last inequality follows from (10).
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For the second part of the result, let ,† be a maximizer of (CoreLP) and 0† be the action-distribution
component (as before) so that +† = @† (0†). Then, using again (10), combined with the last inequality,∑

0∈A
c† (0) @∗ (B0, 0) ≡ @∗ (B0, 0

†) ≥ @† (0†) −
10WYapprox

1 − W

= +† −
10WYapprox

1 − W

≥ {∗ (B0) −
20WYapprox

1 − W .

Reordering gives the desired result, namely that {∗ (B0)−
∑
0 c
† (0) @∗ (B0, 0) ≤ 20WYapprox/(1−W). �

A.3 Proof of Theorem 3 — Error Bounds for the CoreStoMP Algorithm

Theorem 3 (CoreStoMP). Suppose Assumptions 1, 2, and 3 hold, and define

� ≔
(9/8)

√
<

1 − W , � ≔
(9/4)

√
<(1 + 2 log � + 2W log<)
(1 − W)2

.

Let ,̂ be the result of running Algorithm 1 for ) iterations with the parameter � and the step size
[ = �−1

√
2/7) , which requires 2) (1 + (1 + <)�) simulator queries. Define 0̂ ∈ ΔA by ĉ(0) = _̂B00

(as in Theorem 2) and 0 ∼ 0̂. Then

{∗ (B0) − E[@∗ (B0, 0)] ≤
32Yapprox

1 − W + 21
2(1 − W)2

√
3<(1 + 2 log � + 2W log<)

)
.

The proof of this theorem has two main ingredients: First, in Lemma 8, we show that approximate
solutions of (Saddle CoreLP) can be used to recover near-optimal action distributions for the planning
state B0 — the approximation quality is measured by the duality gap. Second, in Lemma 11, we bound
the expected duality gap of the Stochastic Mirror-Prox algorithm when specialized to our setting.
Lemma 8 (Approximate (Saddle CoreLP) solutions). Suppose B ⊂ R3 and �B ≥ 0 are chosen such
that, for any distribution over states - ∈ ΔS , there is some ) ∈ B that is feasible for (LRALP-) and
at most �B-suboptimal. Define

ΛW ≔ {, ∈ Λ | ‖,‖1 = 1/(1 − W)}, (11)

a subset of the setΛ ⊂ R(1+<)�+ from Theorem 2. Define the B-bounded duality gap of an approximate
solution of (Saddle CoreLP) as

XB (,̂, )̂) ≔ max
,∈ΛW

5 (,, )̂) − inf
)∈B

5 (,̂, )), where ,̂ ∈ Λ and )̂ ∈ R3 . (12)

For any ,̂ ∈ Λ and )̂ ∈ R3 , let 0̂ be the action distribution component of ,̂, as in Theorem 2. Then

{∗ (B0) −
∑
0∈A

ĉ(0) @∗ (B0, 0) ≤
20WYapprox

1 − W + W�B + XB (,̂, )̂).

This lemma generalizes the second result of Theorem 2 in two ways: First, the Stochastic Mirror-Prox
algorithm does not produce exact solutions of (Saddle CoreLP); the optimization error is measured by
the duality gap — here we see the effect of a non-zero duality gap on the resulting action distribution.
Second, the primal variables ) in (Saddle CoreLP) have the unbounded domain R3 , whereas the
Stochastic Mirror-Prox algorithm requires the optimization domain to have a bounded diameter; see
Proof of Lemma 11 — Stochastic Mirror-Prox. This lemma shows that restricting ) to a large-enough
bounded set B only incurs an additional �B error. Indeed, the second issue is related to the first — an
unbounded form of the duality gap would be infinite for any approximate solution, making it useless
as a measure of optimization accuracy; the B-bounded duality gap therefore addresses both these
issues:
Claim 9. For any ,̂ ∈ Λ, )̂ ∈ R3 , ) ∈ B ⊂ R3 , and XB (,̂, )̂) being the B-bounded duality gap (12),

+† ≤ 5 (,̂, )) + XB (,̂, )̂).
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Proof. Let ,∗ ∈ Λ ⊂ R(1+<)�+ be a maximizer of (CoreLP) — this exists because the optimization is
bounded (Theorem 2). Then

0 = >T
0 + ,

∗T] (WV − K)� (since ,∗ is feasible for (CoreLP)) (13)
= >T

0)̂ + ,
∗T] (WV − K)�)̂ . (multiplying by )̂ ∈ R3)

Since, ,∗ is a maximizer of (CoreLP), +† = ,∗T]r:
+† = ,∗T]r + >T

0)̂ + ,
∗T] (WV − K)�)̂ (adding +† on l.h.s. and ,∗T]r on r.h.s.)

= 5 (,∗, )̂). (definition of 5 from (Saddle CoreLP)) (14)

Assumption 1 tells us that �( = 1 for some ( ∈ R3 — multiplying (13) by (, we see that ,∗ must
satisfy 1 + W‖,∗‖1 = ‖,∗‖1, as does any other feasible solution of (CoreLP). In particular, this means
that ‖,∗‖1 = 1/(1 − W) and so ,∗ ∈ ΛW . Using the definition of XB from (12),

X(,̂, )̂) ≥ 5 (,∗, )̂) − 5 (,̂, )) (since ,∗ ∈ ΛW and ) ∈ B)
= +† − 5 (,̂, )). (using (14)) �

Claim 10. For any ,̂∗ ∈ R<�+ and distribution over states - ∈ ΔS , suppose ) ∈ R3 is feasi-
ble for (LRALP-) and at most �B-suboptimal. Then, with �- being the objective function of
(Saddle LRALP-),

+LRALP (W-) ≥ �W- (,̂∗, )) − W�B .

Proof. Since ) is feasible for (LRALP-),]∗r +]∗ (WV − K)�) ≤ 0. Multiplying both sides of this
inequality by ,̂T

∗ ≥ 0,

,̂T
∗]∗r + ,̂T

∗]∗ (WV − K)�) ≤ 0
,̂T
∗]∗r + W-T�) + ,̂T

∗]∗ (WV − K)�) ≤ W-T�) (adding W-T�) to both sides)
�W- (,̂∗, )) ≤ W-T�) . (definition of � from (Saddle LRALP-))

Note that the choice of - does not affect the constraints of (LRALP-), only its objective function
— thus ) is feasible for the problem defining +LRALP (W-) and is W�B suboptimal: W-T�) ≤
+LRALP (W-) + W�B . Substituting this into the last inequality and rearranging gives the desired
result. �

Proof of Lemma 8. As in Lemma 7, we write ,̂ = 0̂ ⊕ ,̂∗ with 0̂ ∈ ΔA and ,̂∗ ∈ R<�+ and define
-0̂ =

∑
0 ĉ0VB00. By our assumption, there is some ) ∈ B that is feasible and at most �B-suboptimal

for (LRALP-) with - = -0̂ — this allows us to apply Claims 9 and 10 below:

{∗ (B0) ≤ +† +
10WYapprox

1 − W (Theorem 2)

≤ 5 (,̂, )) + XB (,̂, )̂) +
10WYapprox

1 − W (Claim 9)

=
∑
0∈A

ĉ0AB00 + �W-0̂ (,̂∗, )) + XB (,̂, )̂) +
10WYapprox

1 − W (Lemma 7)

≤
∑
0∈A

ĉ0AB00 ++LRALP (W-0̂) + W�B + XB (,̂, )̂) +
10WYapprox

1 − W (Claim 10)

≤
∑
0∈A

ĉ0AB00 + W-T
0̂{
∗ + W�B + XB (,̂, )̂) +

20WYapprox

1 − W (Theorem 5)

=
∑
0∈A

ĉ0@
∗ (B0, 0) + W�B + XB (,̂, )̂) +

20WYapprox

1 − W ,

where the last step used∑
0 ĉ0AB00 +W-T

0̂{
∗ =

∑
0 ĉ0 (AB00 +WVB00{

∗) = ∑
0 ĉ0@

∗ (B0, 0). Rearranging
the inequality completes the proof:

{∗ (B0) −
∑
0∈A

ĉ0@
∗ (B0, 0) ≤

20WYapprox

1 − W + W�B + XB (,̂, )̂). �
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The following lemma bounds the expected duality gap of the Stochastic Mirror-Prox algorithm when
applied to our setting. We defer the proof to Appendix A.4.
Lemma 11 (Stochastic Mirror-Prox). Using the constants � and � from Theorem 3, define

B ≔ {) ∈ R3 | ‖�∗) ‖2 ≤ �}, (15)
and let XB (,̂, )̂) be the B-bounded duality gap (12). Then the results of running Algorithm 1 for )
iterations satisfy

Yopt ≔ E[X(,̂, )̂)] ≤ 14�
√

3)
.

Proof of Theorem 3. First, observe that {∗ (B0) − @∗ (B0, 0) ≤ 2/(1 − W) for any action 0, since all the
rewards lie in [−1, 1] by Assumption 3. Thus, if Yapprox > 1/16 then 32Yapprox/(1 − W) > 2/(1 − W)
and the result is trivially true. From now on, we will assume that Yapprox ≤ 1/16.
To prove our result, we will combine Lemmas 8 and 11, for which we need to show that the set B
defined in (15) satisfies the requirements of Lemma 8. Specifically, we need to show that B contains
a feasible solution of the linear program (LRALP-) with sub-optimality bounded by a constant �B .
Note that the constraints of (LRALP-) do not depend on -, only the objective function, so the choice
of - does not affect feasibility.
Since (LRALP-) is a relaxation of the ALP (see Section 1.2), any feasible solution of the ALP is also
feasible for (LRALP-). De Farias and Van Roy [14, Theorem 2] show that the ALP has a feasible
solution �) that is close to {∗—more precisely

‖�) − {∗‖∞ ≤
2Yapprox

1 − W . (16)

Since ‖{∗‖∞ ≤ 1/(1 − W), we must have ‖�) ‖∞ ≤ (1 + 2Yapprox)/(1 − W). It follows that

‖�∗) ‖2 ≤
√
<‖�∗) ‖∞ =

√
<‖�) ‖∞ ≤

(1 + 2Yapprox)
√
<

1 − W ≤ (9/8)
√
<

1 − W = �,

where the first inequality is a property of the 2-norm, the next equality is thanks to Assumption 2, and
the last inequality is because we assumed Yapprox ≤ 1/16 — this shows that ) ∈ B. We also have

-T�) − -T{∗ ≤ ‖-‖1‖�) − {∗‖∞ ≤
2Yapprox

1 − W (using (16) and ‖-‖1 = 1)

|-T{∗ −+LRALP (-) | ≤
10Yapprox

1 − W (using Theorem 5 and ‖-‖1 = 1)

We get the value of �B by putting these two bounds together:

-T�) −+LRALP (-) ≤
12Yapprox

1 − W ≕ �B .

Lemma 8 applied to B with this value of �B gives

{∗ (B0) −
∑
0∈A

ĉ(0) @∗ (B0, 0) ≤
32WYapprox

1 − W + XB (,̂, )̂).

Taking expectations on both sides and substituting the value of Yopt = E[XB (,̂, )̂)] from Lemma 11,

{∗ (B0) − E[@∗ (B0, 0)] ≤
32WYapprox

1 − W + 14�
√

3)
.

We drop the W factor from the leading term and plug in the value of� from the statement of Theorem 3
to finish the proof. �

A.4 Proof of Lemma 11 — Stochastic Mirror-Prox

Lemma 11 (Stochastic Mirror-Prox). Using the constants � and � from Theorem 3, define
B ≔ {) ∈ R3 | ‖�∗) ‖2 ≤ �}, (15)

and let XB (,̂, )̂) be the B-bounded duality gap (12). Then the results of running Algorithm 1 for )
iterations satisfy

Yopt ≔ E[X(,̂, )̂)] ≤ 14�
√

3)
.
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Throughout this section, we will use the definitions of ΛW and B from (11) and (15), respectively. We
will also define the composite space / ≔ ΛW × B. We will use the norm ‖,‖1 for , ∈ ΛW , whose
dual norm is ‖ · ‖∞. For ) ∈ B we will use the norm ‖) ‖ ≡ ‖�) ‖2 — the corresponding dual norm
enjoys the convenient bound ‖�∗Tu‖∗ = sup‖) ‖ ≤1 u

T�∗) ≤ ‖u‖2 ≤ ‖u‖1 for any vector u.4 The last
inequality is due a general property of ?-norms: ‖u‖? ≤ ‖u‖@ whenever∞ ≥ ? ≥ @ ≥ 1.

A.4.1 Lipschitz Constants

Our first step will be to bound the Lipschitz constants associated with 5 , the objective function
of (CoreLP). In other words, we are looking for bounds on ‖ 5, ())‖∞ and ‖ 5) (,)‖∗.
First, for any ) ∈ B we have

‖ 5, ())‖∞ = ‖]r +] (WV − K)�) ‖∞
≤ ‖]r‖∞ + ‖] (WV − K)�) ‖∞ (by the triangle inequality)
≤ 1 +max

8
‖]8 (WV − K)‖1‖�) ‖∞. (by definition of ‖ · ‖∞ and Hölder’s inequality)

Now, by the property of norms, ‖�) ‖∞ ≤ ‖�) ‖2 ≤ �. Secondly, ]8V and ]8K are probability
distributions, so ‖]8 (WV − K)‖1 ≤ W‖]8V‖1 + ‖]8K‖1 = 1 + W and

‖ 5, ())‖∞ ≤ 1 + (1 + W)� ≤ 2�. (since � ≥ 1/(1 − W))

For the other gradient, we use the bound on dual norms mentioned above:

‖ 5) (,)‖∗ = ‖(>T
B0 + ,

T] (WV − K))�‖∗
≤ ‖eT

B0 ‖1 + ‖,
T] (WV − K)‖1

≤ 1 + 1 + W
1 − W =

2
1 − W ,

where the last inequality uses the fact that (1 − W), is a probability distribution, as are the rows of],
V, and K.

A.4.2 Gradient Estimator Variance

Next, we will bound the variance in the stochastic estimators 5̂, ()) and 5̂) (,) defined in (6) and (7),
respectively, compared to the true gradients 5, ()) and 5) (,) defined in (4) and (5), respectively.

First, we bound E[‖ 5̂, ()) − 5, ())‖2∞] for any ) ∈ B by bounding its components. For any state
B ∈ S+, action 0 ∈ A, and reward Â , we have

| [ 5̂, ())]B0 − [ 5, ())]B0 |
= | (Â + W>T

B′) − >T
B)) − (AB0 + WVB0�) − >T

B)) | (for some random B′ ∼ VB0)
≤ |Â − AB0 | + W |>T

B′) − VB0�) | (by the triangle inequality)
≤ 2 + W | (eT

B′ − VB0)�) | (bounded rewards)
≤ 2 + W‖eT

B′ − VB0‖1‖�) ‖∞ (using Hölder’s inequality)
≤ 2 + 2W� (since ‖�) ‖∞ ≤ ‖�) ‖2 ≤ �)
≤ 2�. (since � ≥ 1/(1 − W))

It follows that ‖ 5̂, ()) − 5, ())‖2∞ ≤ (2�)2, and the same bound must hold for the expectation.
We will now bound the other gradient, using the following property of Euclidean norms: for any
vector-valued random variable h with mean h̄, E[‖h − h̄‖2] = E[‖h‖2] − ‖ h̄‖2 ≤ E[‖h‖2]. Then,
for a random choice of state B ∈ S+, action 0 ∈ A, and next state B′ ∼ VB0:

E[‖ 5̂) (,) − 5) (,)‖2∗ ] = E
[(>T

0 + ‖,‖1 (W>B′ − >B)) − (>T
0 + ,

T] (WV − K)�)
2
∗
]

=

(
1

1 − W

)2
E

[(W>B′ − >B) − (,/‖,‖1)T] (WV − K)�
2
∗
]

4More generally, ‖/‖∗ = inf{‖(‖2 | /T = (T�∗}, which is non-zero when / ≠ 0 and�∗ has full column rank.
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Now, since (B, 0) ∼ ,/‖,‖1 and B′ ∼ VB0, we have E[W>B′ − >B] = (,/‖,‖1)T] (WV − K)�, so by
the above property of variance for vector-valued random variables,

≤
(

1
1 − W

)2
E[‖W>B′ − >B ‖2∗ ]

=

(
1

1 − W

)2
E[‖(WeB′ − eB)�‖2∗ ]

≤
(

1 + W
1 − W

)2
≤

(
2

1 − W

)2
.

A.4.3 Distance-Generating Functions

The Stochastic Mirror-Prox algorithm requires strongly convex distance-generating functions for ΛW
and B with respect to their respective norms. A function l : X → R (with domain X ⊂ R=) is said
to be f-strongly convex (where f > 0 is called the modulus of convexity) with respect to a norm ‖ · ‖
on X if any of the following conditions hold for all x, ~ ∈ X

(i) For all U ∈ [0, 1], Ul(x) + (1 − U)l(~) ≥ l(Ux + (1 − U)~) + fU(1 − U)‖G − ~‖2/2.
(ii) l is convex and l(x) ≥ l(~) + 〈∇l(~), x − ~〉 + f‖x − ~‖2/2.
(iii) X is convex and 〈∇l(x) − ∇l(~), x − ~〉 ≥ f‖x − ~‖2.

Condition (i) is the definition of strong convexity; note that it reduces to convexity when f = 0.
Conditions (ii) and (iii) are equivalent to the definition under appropriate differentiability conditions on
l that hold in our setting and when x, ~ are in the interior of X; see Yu [44] for details. Juditsky et al.
[22] uses “strongly convex” to mean that a function is 1-strongly convex according to condition (iii).
Define the divergence function:

�l (x, ~) ≔ l(x) − l(~) − 〈∇l(~), x − ~〉.
When l is convex, one can see that �l is always non-negative, and by condition (ii) the f-strong
convexity of l is equivalent to �l (x, ~) ≥ f‖x − ~‖2/2. We will use this equivalence to establish
the strong convexity of our distance-generating functions below. An important operation related to
distance-generating functions is the proximal projection onto X with respect to l:

Πl (x, /) ≔ arg min
~∈X

�l (~, x) + 〈/, ~〉, / ∈ R=.

The center of X with respect to l is defined as x0 ≔ arg minx∈X l(x) and the diameter of X is
ΩX ≔ sup~∈X

√
2�l (~, x0).

A strongly convex distance-generating function can be thought of as a generalization of the squared
norm ‖ · ‖2 — the corresponding divergence generalizes the squared distance function ‖x − ~‖2;
unlike the squared distance, however, the divergence may not be symmetric. Indeed, when ‖ · ‖ is
an Euclidean norm, and only for such norms, the function l(x) = ‖x‖2/2 is 1-strongly convex [44,
Proposition 2]. In this special case, the divergence is �l (x, ~) = ‖x − ~‖2/2 and the proximal
projection is simply the Euclidean projection: Πl (x, /) = arg min~∈X ‖x + / − ~‖.
Thus, since the domainB of the primal variables ) is equipped with the Euclidean norm ‖) ‖ ≡ ‖�) ‖2,
we will use the 1-strongly convex distance-generating function lB ()) = ‖) ‖2/2. Since B is the
Euclidean ball under this norm, the center of B is )0 = 0 and its “diameter” (actually the radius, in
this case) is ΩB = �; )0 is used as the initial value of ) in Algorithm 1. The proximal projection is

ΠB () , /) = arg min
)′∈B

‖) + / − ) ′‖ = ) + /
max{1, ‖) + /‖/�} .

For the dual variables , ∈ ΛW , our distance-generating function is a modification of the unnormalized
negentropy ℎ(,) = ∑

8 _8 (log_8 − 1). It is well-known that this function is 1-strongly convex on
the set {, ≥ 0 | ‖,‖1 ≤ 1} [e.g., 44, Theorem 5]. To achieve 1-strong convexity on ΛW (where
‖,‖1 = 1/(1 − W) > 1), we use a modified form of this function:

ℎW (,) ≔
ℎ((1 − W),)
(1 − W)2

.
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It follows that ∇ℎW (,) = [∇ℎ((1 − W),)]/(1 − W). Thus, defining �Λ (,′, ,) ≔ �ℎW (,′, ,), we have

�Λ (,′, ,) =
(

1
1 − W

) [
ℎ((1 − W),′)

1 − W − ℎ((1 − W),)
1 − W − 〈∇ℎ((1 − W),), ,′ − ,〉

]
=

(
1

1 − W

) [
ℎ((1 − W),′)

1 − W − ℎ((1 − W),)
1 − W − 〈∇ℎ((1 − W),), (1 − W),

′ − (1 − W),〉
1 − W

]
Now, since (1 − W),, (1 − W),′ ∈ ΔS+×A and ℎ is strongly convex on this set, we have

�Λ (,′, ,) ≥
(

1
1 − W

)2 ‖(1 − W), − (1 − W),′‖21
2

=
‖, − ,′‖21

2
.

Thus we have shown that ℎW is 1-strongly convex on ΛW . By the properties of the negentropy
function, we can verify that ℎW (,) is minimized for ,0 = 1A/� ⊕ W1<�/(1 − W)<�, i.e. the uniform
distribution over actions concatenated with the scaled uniform distribution over state-action pairs
in S∗ × A — this value is used as the initializer in Algorithm 1. Conversely, ℎW (,) is maximized
for ,̄ = e0 ⊕ WeB′0′/(1 − W), i.e. when ,̄ is concentrated on (B0, 0) for some 0 ∈ A and some
(B′, 0′) ∈ S∗ × A. We can verify through a short calculation that

�Λ (,̄, ,0) =
ℓ

(1 − W)2
, where ℓ ≔ log � + W log<

ΩΛ =

√
2�Λ (,̄, ,0) =

√
2ℓ

1 − W .

Finally, the proximal projection onto ΛW with respect to ℎW is

ΠΛ (,, 1) =
,̃0

‖,̃0‖1
⊕ W,̃∗

(1 − W)‖,̃∗‖1
, where ,̃ ≔ exp(log , + 1),

where ,̃B0 ≔ [_̃B00]0∈A and ,̃∗ ≔ [_̃B0]B∈S∗ ,0∈A , so that ,̃ = ,̃B0 ⊕ ,̃∗.

A.4.4 The Composite Space

We will now gather together the preceding results and use them to construct a norm and distance-
generating function on the composite optimization domain / = ΛW ×B ⊂ R(1+<)� ⊕R3 . We closely
follow the construction of Juditsky et al. [22, §4.2]. First, we define the squared norm:

‖, ⊕ ) ‖2 ≔ Ω−2
Λ ‖,‖

2
1 +Ω

−2
B ‖) ‖

2 =

(
1 − W
√

2ℓ
‖,‖1

)2
+

(
1
�
‖) ‖

)2
.

The corresponding squared dual norm is

‖1 ⊕ /‖2∗ ≔ Ω2
Λ‖,‖

2
∞ +Ω2

B ‖) ‖
2
∗ =

( √
2ℓ

1 − W ‖,‖∞
)2
+ (�‖) ‖)2.

Define the operator � (,, )) ≔ − 5, ()) ⊕ 5) (,). Its Lipschitz constant with respect to this norm is

‖� (,, ))‖∗ =

√
2ℓ‖ 5, ())‖2∞
(1 − W)2

+ �2‖ 5) (,)‖2∗

≤

√
8ℓ�2

(1 − W)2
+

(
2�

1 − W

)2

=
2�
√

1 + 2ℓ
1 − W = �.

Similarly, define the estimator �̂ (,, )) ≔ − 5̂, ()) ⊕ 5̂) (,). Its variance enjoys

E[‖�̂ (,, )) − � (,, ))‖2∗ ] ≤ �2.

We do not repeat the calculation because it is identical to the previous one, since the variances of our
estimators have the same bounds as their squared Lipschitz constants.
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Finally, we construct the composite distance-generating function:

l/ (,, )) ≔
(1 − W)2ℎW (,)

2ℓ
+ ‖) ‖

2

2�2 .

We can verify that this function is 1-strongly convex on / with respect to the norm defined above, and
that the diameter of / under this function is Ω ≤

√
2.

Proof of Lemma 11. We apply the result of Juditsky et al. [22, Corollary 1] to our setting, where
the Lipschitz constant of � is �, the variance of �̂ is �2, and the diameter of / is Ω ≤

√
2. Then

the result tells us that a suitable learning rate is [ = �−1
√

2/7) , as specified in Theorem 3, and the
resulting bound on the expected duality gap after ) iterations is

Yopt ≔ E[XB (,̂, )̂)] ≤
14�
√

3)
. �
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