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A Table Comparing to the Existing Literature

The comparison of our results to those in the existing literature, as discussed in Section 1.1, is
outlined in Table 1. In the table, we write µ = E[f(g)g] for g ∼ N (0, 1). We use K to represent
the structured set of interest, and Σnk to represent the set of k-sparse vectors in Rn. For Projected
Back Projection (PBP) [26], the reconstructed vector is x̂ := PK

(
1
mATy

)
, where PK is the

projection operator onto K. In addition, ∂K represents the boundary of K. Letting q : Rn → R
be the density of the random measurement vector a and assume that q is differentiable, we write
Sq(a) = −∇q(a)

q(a) . For thresholded Empirical Risk Minimization (ERM), the reconstructed vector
is x̂ := arg minx∈G(Bk2 (r)) ‖x‖22 − 2

m

∑m
i=1 ŷi 〈Sq(ai),x〉, where ŷi := sign(yi) · |yi| ∧ τ for some

thresholding parameter τ . We recall that GMW stands for Gaussian Mean Width (cf., Appendix E)
and LEP stands for Local Embedding Property (cf., Definition 3). Interested readers may refer
to [40, Table 1] for a summary of further relevant results.

B Omitted Details and Additional Auxiliary Results for Proving Theorem 1
(Non-Uniform Recovery)

In this section, we fill in the missing details for proving Theorem 1, including a statement of the
concentration bound used to establish Lemma 2, and a proof for Lemma 3. We first provide some
useful additional auxiliary results that are general, and then some that are specific to our setup.

B.1 General Auxiliary Results

We have the following basic concentration inequality, which is used in the proof of Lemma 2.

Lemma 4. ([34, Lemma 1.3]) Fix fixed x ∈ Rn, we have for any ε ∈ (0, 1) that

P
(

(1− ε)‖x‖22 ≤
∥∥∥ 1√

m
Ax
∥∥∥2

2
≤ (1 + ε)‖x‖22

)
≥ 1− 2e−ε

2(1−ε)m/4. (36)

The following definition formally introduces the notion of an ε-net, also known as a covering set.

Definition 4. Let (X , d) be a metric space, and fix ε > 0. A subset S ⊆ X is said be an ε-net of X if,
for all x ∈ X , there exists some s ∈ S such that d(x, s) ≤ ε. The minimal cardinality of an ε-net of
X is denoted by N ∗(X , ε) and is called the covering number of X (with parameter ε).

Alongside the sub-Gaussian notion in Definition 1, we use the following definition of a sub-
exponential random variable and sub-exponential norm.

Definition 5. A random variable X is said to be sub-exponential if there exists a positive constant C
such that (E [|X|p])

1
p ≤ Cp for all p ≥ 1. The sub-exponential norm of X is defined as

‖X‖ψ1
= sup

p≥1
p−1 (E [|X|p])

1
p . (37)

The product of two sub-Gaussian random variables is sub-exponential, as stated in the following.

Lemma 5. ([36, Lemma 2.7.7]) Let X and Y be sub-Gaussian random variables (not necessarily
independent). Then XY is sub-exponential, and satisfies

‖XY ‖ψ1
≤ ‖X‖ψ2

‖Y ‖ψ2
. (38)
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In our setting, since we assume that yi is sub-Gaussian and 〈ai,x∗〉 ∼ N (0, 1), Lemma 5 reveals
that the random variable yi〈ai,x∗〉 is sub-exponential, and has the same distribution as f(g)g with
g ∼ N (0, 1), yielding

µ = E[f(g)g] ≤ E[|f(g)g|] ≤ ‖f(g)g‖ψ1
≤ Cψ (39)

for some absolute constant C > 0. In addition, we have the following concentration inequality for
sums of independent sub-exponential random variables.
Lemma 6. ([35, Proposition 5.16]) Let X1, . . . , XN be independent centered sub-exponential ran-
dom variables, and K = maxi ‖Xi‖ψ1

. Then for every α = [α1, . . . , αN ]T ∈ RN and ε ≥ 0, it
holds that

P
(∣∣∣ N∑

i=1

αiXi

∣∣∣ ≥ ε) ≤ 2 exp

(
−c ·min

( ε2

K2‖α‖22
,

ε

K‖α‖∞

))
. (40)

B.2 Auxiliary Results for Our Setup

In the remainder of this appendix, we consider the setup described in Section 2. Based on Lemma 6,
we have the following.
Lemma 7. Fix any x̄ ∈ Sn−1 and let ȳ := f(Ax̄). For any t > 0, if m = Ω (t+ log n), then with
probability 1− e−Ω(t), we have∥∥∥∥ 1

m
AT (ȳ − µAx̄)

∥∥∥∥
∞
≤ O

(
ψ

√
t+ log n

m

)
. (41)

Proof. For any fixed j ∈ [n], let Xj be the j-th entry of 1
mAT (ȳ − µAx̄). We have

Xj =
1

m

m∑
i=1

aij(ȳi − µ〈ai, x̄〉) =
1

m

m∑
i=1

Xij , (42)

where Xij := aij(ȳi − µ〈ai, x̄〉). We proceed by showing that {Xij}i∈[m] are i.i.d. sub-exponential
random variables.

Since ai ∼ N (0, In), we have Cov[aij , 〈ai, x̄〉] = x̄j . For i ∈ [m], letting g := 〈ai, x̄〉 ∼ N (0, 1),

we find that aij ∼ N (0, 1) can be written as aij = x̄jg +
√

1− x̄2
jh, where h ∼ N (0, 1) is

independent of g. Thus, Xij = aij(ȳi − µ〈ai, x̄〉) = (x̄jg +
√

1− x̄2
jh)(f(g) − µg), and hence

E[Xij ] = x̄jE[f(g)g − µg2] = µ− µ = 0. In addition, from Lemma 5 and (39), we obtain

‖Xij‖ψ1 ≤ C ′‖f(g)− µg‖ψ2 ≤ C ′′ψ. (43)

For fixed c′ > 0, letting εj = c′‖X1j‖ψ1

√
t+logn
m and ε = maxj εj , we have from Lemma 6 that

P(|Xj | ≥ ε) ≤ P(|Xj | ≥ εj) (44)

= P

(
1

m

∣∣∣∣∣
m∑
i=1

Xij

∣∣∣∣∣ ≥ εj
)

(45)

≤ 2 exp

(
−cmin

(
mε2j
‖X1j‖2ψ1

,
mεj
‖X1j‖ψ1

))
(46)

≤ exp (−Ω(t+ log n)) , (47)

where (47) uses m = Ω (t+ log n) and the choice of εj . For sufficiently large c′, we can make the
implied constant to Ω(·) in (47) greater than one, and taking the union bound over j ∈ [n] gives

P
(∥∥∥∥ 1

m
AT (ȳ − µAx̄)

∥∥∥∥
∞
≥ ε
)
≤ n exp (−Ω(t+ log n)) = e−Ω(t) (48)

as desired.
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In addition, we have the following useful lemma.
Lemma 8. Fix any x̄ ∈ Sn−1 and let ȳ := f(Ax̄). For any fixed u ∈ Rn, the random variable
U := 1

m

〈
u,AT (ȳ − µAx̄)

〉
has zero mean and is sub-exponential. Moreover, for any ξ > 0, if

m = Ω(ξ2), then with probability 1− e−Ω(ξ2), we have

|U | ≤ ξψ‖u‖2√
m

. (49)

Proof. When u is the zero vector, the result is trivial, so we only consider u 6= 0. Following similar
steps to the proof of Lemma 7, we write〈

u,AT (ȳ − µAx̄)
〉

=

n∑
j=1

uj

m∑
i=1

aij(ȳi − µ〈ai, x̄〉) (50)

=

m∑
i=1

(ȳi − µ〈ai, x̄〉)
n∑
j=1

ujaij (51)

= ‖u‖2
m∑
i=1

(ȳi − µ〈ai, x̄〉)〈ai, ū〉 (52)

= ‖u‖2
m∑
i=1

Ui, (53)

where ū = u
‖u‖2 and Ui := (ȳi − µ〈ai, x̄〉)〈ai, ū〉. We proceed by showing that U1, . . . , Um are

i.i.d. sub-exponential random variables. Note that 〈ai, ū〉 ∼ N (0, 1), and Cov[〈ai, ū〉, 〈ai, x̄〉] =
〈x̄, ū〉. Fixing i ∈ [m] and letting g := 〈ai, x̄〉 ∼ N (0, 1), we find that 〈ai, ū〉 can be written as
〈ai, ū〉 = 〈x̄, ū〉g +

√
1− 〈x̄, ū〉2h, where h ∼ N (0, 1) is independent of g. Therefore, we obtain

E[Ui] = E [(ȳi − µ〈ai, x̄〉)〈ai, ū〉] = 〈x̄, ū〉E[f(g)g − µg2] = 0. (54)

In addition, from Lemma 5 and (39), we derive

‖Ui‖ψ1 ≤ C ′‖f(g)− µg‖ψ2 ≤ C ′′ψ. (55)

Letting ε = c′ ξψ‖u‖2√
m

, we deduce from Lemma 6 that

P(|U | ≥ ε) = P

(
‖u‖2
m

∣∣∣∣∣
m∑
i=1

Ui

∣∣∣∣∣ ≥ ε
)

(56)

≤ 2 exp

(
−cmin

(
mε2

‖Ui‖2ψ1
‖u‖22

,
mε

‖Ui‖ψ1‖u‖2

))
(57)

≤ e−Ω(ξ2), (58)

where (58) follows from m = Ω(ξ2) and the choice of ε.

Based on the above results, we are now in a positive to prove Lemma 3.

B.3 Proof of Lemma 3 (Main Auxiliary Result for Proving Theorem 1)

We utilize ideas from [2] based on forming a chain of nets. Specifically, for a positive integer l, let
M = M0 ⊆ M1 ⊆ . . . ⊆ Ml be a chain of nets of Bk2 (r) such that Mi is a δi

L -net with δi = δ
2i .

There exists such a chain of nets with [35, Lemma 5.2]

log |Mi| ≤ k log
4Lr

δi
. (59)

By the L-Lipschitz assumption on G, we have for any i ∈ [l] that G(Mi) is a δi-net of G(Bk2 (r)).
We write x̃ as

x̃ = (x̃− x̃l) + (x̃l − x̃l−1) + . . .+ (x̃1 − x̃0) + x̃0, (60)
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where x̃i ∈ G(Mi) for all i ∈ [l], and ‖x̃−x̃l‖2 ≤ δ
2l

, ‖x̃i−x̃i−1‖2 ≤ δ
2i−1 for all i ∈ [l]. Therefore,

the triangle inequality gives

‖x̃− x̃0‖2 < 2δ. (61)

We decompose 1
m 〈A

T (ȳ − µAx̄), x̃− µx̄〉 into three terms:〈
1

m
AT (ȳ − µAx̄), x̃− µx̄

〉
=

〈
1

m
AT (ȳ − µAx̄), x̃0 − µx̄

〉
+

l∑
i=1

〈
1

m
AT (ȳ − µAx̄), x̃i − x̃i−1

〉
+

〈
1

m
AT (ȳ − µAx̄), x̃− x̃l

〉
. (62)

We derive upper bounds for these terms separately:

1. For any t ∈ Rn, from Lemma 8, we have that for any ξ > 0, if m = Ω
(
ξ2
)
, then with

probability 1− e−Ω(ξ2),〈
1

m
AT (ȳ − µAx̄), t− µx̄

〉
≤ ξψ√

m
‖t− µx̄‖2. (63)

Recall that log |G(M)| = log |M | ≤ k log 4Lr
δ . We set ξ = C

√
k log Lr

δ in (63), where C is a

certain positive constant, and let m = Ω
(
ξ2
)

= Ω
(
k log Lr

δ

)
. By the union bound over G(M),

we have that with probability 1− e−Ω(k log Lr
δ ), for all t ∈ G(M),

〈
1

m
AT (ȳ − µAx̄), t− µx̄

〉
≤ O

ψ
√
k log Lr

δ

m

 ‖t− µx̄‖2. (64)

Therefore, with probability 1− e−Ω(k log Lr
δ ), the first term in (62) can be upper bounded by

〈
1

m
AT (ȳ − µAx̄), x̃0 − µx̄

〉
≤ O

ψ
√
k log Lr

δ

m

 ‖x̃0 − µx̄‖2 (65)

≤ O

ψ
√
k log Lr

δ

m

 (‖x̃− µx̄‖2 + 2δ), (66)

where (66) uses (61) and the triangle inequality.
2. From Lemma 8, similarly to (63), and applying the union bound, we obtain that for all i ∈ [l]

with corresponding ξi > 0 and all (ti−1, ti) pairs in G(Mi−1)×G(Mi), if m = Ω
(
maxi ξ

2
i

)
,

then with probability at least 1−
∑l
i=1 |Mi−1| · |Mi|e−

ξ2i
2 ,〈

1

m
AT (ȳ − µAx̄), ti − ti−1

〉
≤ ξiψ√

m
‖ti − ti−1‖2. (67)

Since (59) gives log (|Mi| · |Mi−1|) ≤ 2ik + 2k log 4Lr
δ , if we set ξi = C ′

√
ik + k log Lr

δ

with C ′ sufficiently large, we obtain

l∑
i=1

|Mi−1| · |Mi|e−
ξ2i
2 =

l∑
i=1

e−Ω(ik+k log Lr
δ ) = e−Ω(k log Lr

δ )
l∑
i=1

e−Ω(ik) = e−Ω(k log Lr
δ ).

(68)
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Recall that ‖x̃i−x̃i−1‖2 ≤ δ
2i−1 for all i ∈ [l]. Then, we obtain that ifm = Ω

(
k
(
l + log Lr

δ

))
,

with probability 1− e−Ω(k log Lr
δ ), the second term in (62) can be upper bounded by

l∑
i=1

〈
1

m
AT (ȳ − µAx̄), x̃i − x̃i−1

〉
≤ ψ√

m

l∑
i=1

ξi‖x̃i − x̃i−1‖2 (69)

≤ C ′ψ
l∑
i=1

√
ik + k log Lr

δ

m
× δ

2i−1
(70)

≤ C ′ψδ
√
k

m

l∑
i=1

√
i+
√

log Lr
δ

2i−1
(71)

= O

ψδ
√
k log Lr

δ

m

 , (72)

where (70) substitutes the choice of ξi, (71) uses
√
a+ b ≤

√
a +
√
b, and (72) uses the

assumption Lr = Ω(δn) and the fact that
∑∞
i=1

√
i

2i−1 is finite.
3. With m = Ω

(
k log Lr

δ

)
, if we set t = Ω(k log Lr

δ ) in Lemma 7, we obtain with probability

1− e−Ω(k log Lr
δ ) that ∥∥∥∥ 1

m
AT (ȳ − µAx̄)

∥∥∥∥
∞
≤ O

ψ
√
k log Lr

δ

m

 . (73)

Then, setting l = dlog2 ne, with probability 1 − e−Ω(k log Lr
δ ), the third term in (62) can be

upper bounded as follows:〈
1

m
AT (ȳ − µAx̄), x̃− x̃l

〉
≤
∥∥∥∥ 1

m
AT (ȳ − µAx̄)

∥∥∥∥
∞
‖x̃− x̃l‖1 (74)

≤ O

ψ
√
k log Lr

δ

m

√n‖x̃− x̃l‖2 (75)

≤ O

ψ
√
k log Lr

δ

m

√n× δ

2l
(76)

= O

ψδ
√
k log Lr

δ

m

 , (77)

where (74) uses Hölder’s inequality, (75) uses ‖v‖1 ≤
√
n‖v‖2 for v ∈ Rn, (76) uses the

definition of x̃l, and (77) uses l = dlog2 ne.

By the assumption Lr = Ω(δn), the choice l = dlog2 ne leads to m = Ω
(
k
(
l + log Lr

δ

))
=

Ω
(
k log Lr

δ

)
. Substituting (66), (72), and (77) into (62), we obtain that when m = Ω

(
k log Lr

δ

)
,

with probability 1− e−Ω(k log Lr
δ ),〈

1

m
AT (ȳ − µAx̄), x̃− µx̄

〉
≤ O

ψ
√
k log Lr

δ

m

 ‖x̃− µx̄‖2 +O

δψ
√
k log Lr

δ

m

 . (78)

This completes the proof of Lemma 3.

C Omitted Proofs from Section 4 (Other Extensions)
C.1 Proof Outline for Corollary 2 (Bounded Sparse Vectors)
For fixed ν > 0, let Sν := Σnk ∩ νBn2 , where Σnk represents the set of k-sparse vectors in Rn. We
know that for any δ > 0, there exists a δ-net Mν of Sν with |Mν | ≤

(
n
k

) (
ν
δ

)k ≤ ( enνkδ )k =

18



exp
(
O
(
k log νn

δk

))
[1]. Using this observation and following the proof of Theorem 1, we can derive

the Corollary 2 for the case that the signal comes from the set of bounded k-sparse vectors.

C.2 Proof of Corollary 3 (General Covariance Matrices)

We can write ai as ai =
√

Σbi with bi ∼ N (0, In). Letting5 A =
[
aT1 ; aT2 ; . . . ; aTm

]
∈ Rm×n and

B =
[
bT1 ; . . . ; bTm

]
∈ Rm×n, we have

x̂ = arg min
x∈K
‖y −Ax‖2

⇔ x̂ = arg min
x∈K
‖y −B

√
Σx‖2 (79)

⇔
√

Σx̂ = arg min
x∈
√

ΣK
‖y −Bx‖2. (80)

Define Ĝ as Ĝ(z) =
√

ΣG(z) for all z ∈ Bk2 (r). Then, it is straightforward to establish that Ĝ is

L̂-Lipschitz with L̂ = ‖Σ‖
1
2
2→2L. In addition, we have y = f(Ax∗) = f(B

√
Σx∗), ‖

√
Σx∗‖2 = 1

and µ
(√

Σx∗
)
∈
√

ΣK = Ĝ(Bk2 (r)). Applying Theorem 1, we obtain that when ‖Σ‖
1
2
2→2Lr =

Ω(εψn) and m = Ω
(
k
ε2 log

‖Σ‖
1
2
2→2Lr
εψ

)
, with probability 1− e−Ω(ε2m),

‖
√

Σx̂− µ
√

Σx∗‖2 ≤ ψε+ τ, (81)
as desired.

D Alternative Model for Binary Measurements
For binary observations, the following measurement model is considered in various works [4, 24, 43,
44]: The response variables, yi ∈ {−1, 1}, i ∈ [m], are drawn independently at random according to
some distribution satisfying

E[yi|ai] = θ(aTi x∗), (82)
for some deterministic function θ with −1 ≤ θ(z) ≤ 1. In this section, we provide a result related to
Theorem 1 for this model, again considering the case that ai ∼ N (0, In) and x∗ ∈ K ∩ Sn−1 with
K = G(Bk2 (r)) for some L-Lipschitz generative model G.

The model (82) is a special case of (3) in which f(g) ∈ {−1, 1} and E[f(g)] = θ(g). Using this
interpretation and the tower property of expectation, we readily find that

µ = E[E[f(g)g | g]] = E[θ(g)g] (83)
with g ∼ N (0, 1). In addition, we have for any i ∈ [m] that

E[yia
T
i x∗] = E[E[yia

T
i x∗|ai]] = E[(aTi x∗)θ(aTi x∗)] = µ, (84)

and it is straightforward to show that [43, Lemma 4]
E[yiai] = µx∗. (85)

Let ỹ ∈ {−1, 1}m be a vector of corrupted observations satisfying 1√
m
‖y − ỹ‖2 ≤ τ . To derive an

estimator for x∗, we seek x̂ maximizing ỹT (Ax) over x ∈ K = G(Bk2 (r)), i.e.,

x̂ := arg max
x∈K

ỹT (Ax). (86)

As was done in previous works such as [24, 43], we assume that the considered low-dimensional
set is contained in the unit Euclidean ball, i.e., K ⊆ Bn2 . In this section, we establish the following
theorem, which is similar to Theorem 1. Although the ideas are similar, the model assumptions and
the algorithms used are slightly different, so the results are both of interest.
Theorem 3. Consider any x∗ ∈ K ∩ Sn−1 with K = G(Bk2 (r)) ⊆ Bn2 for some L-Lipschitz

generative model G : Bk2 (r) → Rn, along with y generated from the model (82) with ai
i.i.d.∼

N (0, In), and an arbitrary corrupted vector ỹ with 1√
m
‖ỹ−y‖2 ≤ τ . For any ε > 0, if Lr = Ω(εn)

and m = Ω
(
k
ε2 log Lr

ε

)
, then with probability 1− e−Ω(ε2m), any solution x̂ to (86) satisfies

‖x∗ − x̂‖2 ≤
ε+ τ

µ
. (87)

The proof is mostly similar to that of Theorem 1, so we only outline the differences in the following.
5For matrices V1 ∈ RF1×N and V2 ∈ RF2×N , we let [V1;V2] denote the vertical concatenation.
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D.1 Auxiliary Results
In the remainder of this appendix, we assume that the binary vector y is generated according
to (82). Note that for binary measurements, the relevant random variables are sub-Gaussian, and
thus we only need concentration inequalities for sub-Gaussian random variables, instead of those
for sub-exponential random variables. According to [35, Proposition 5.10], we have the following
concentration inequality for sub-Gaussian random variables.
Lemma 9. (Hoeffding-type inequality [35, Proposition 5.10]) Let X1, . . . , XN be independent
zero-mean sub-Gaussian random variables, and let K = maxi ‖Xi‖ψ2

. Then, for any α =
[α1, α2, . . . , αN ]T ∈ RN and any t ≥ 0, it holds that

P

(∣∣∣ N∑
i=1

αiXi

∣∣∣ ≥ t) ≤ exp

(
1− ct2

K2‖α‖22

)
, (88)

where c > 0 is a constant.

By Lemma 9 and the equality E[yiai] = λx∗, we arrive at the following lemma, which is similar to
Lemma 7.
Lemma 10. [43, Lemma 3] With probability at least 1− e1−t, we have∥∥∥∥ 1

m
ATy − λx∗

∥∥∥∥
∞
≤ c
√
t+ log n

m
(89)

for a certain constant c > 0.

The following lemma is proved similarly to Lemma 8, so the details are omitted.
Lemma 11. For any u ∈ Rn, the random variable U :=

〈
1
mATy − λx∗,u

〉
is sub-Gaussian with

zero mean. Moreover, for any ξ > 0, with probability 1− e−Ω(ξ2), we have

|U | ≤ ξ‖u‖2√
m

. (90)

Finally, based on Lemmas 10 and 11, and by using a chain of nets similarly to (59)–(60), we derive the
following analog of Lemma 3, whose proof is again omitted due to similarity. Note that Lemmas 10
and 11 are only used to derive Lemma 12, and they are not directly used in the proof of Theorem 3.
Lemma 12. For any δ > 0, if Lr = Ω(δn) and m = Ω

(
k log Lr

δ

)
, then with probability 1 −

e−Ω(k log Lr
δ ), it holds that〈

1

m
ATy − λx∗, x̂− x∗

〉
≤ O

√k log Lr
δ

m

 ‖x∗ − x̂‖2 +O

δ
√
k log Lr

δ

m

 . (91)

D.2 Proof Outline for Theorem 3
Because x̂ maximizes ỹT (Ax) within K and we assume x∗ ∈ K, we obtain

ỹT (Ax̂) ≥ ỹT (Ax∗), (92)
which gives the following after some simple manipulations:

〈µx∗,x∗ − x̂〉 ≤
〈

1

m
AT ỹ − µx∗, x̂− x∗

〉
. (93)

Using ‖x̂‖2 ≤ 1 and ‖x∗‖2 = 1, we derive a lower bound for 〈µx∗,x∗ − x̂〉, i.e.,
µ

2
‖x̂− x∗‖22 ≤ 〈µx∗,x∗ − x̂〉. (94)

Once this result is in place, the analysis proceeds similarly to that of Theorem 1: Similar to (19),
we derive an upper bound for the adversarial noise term, and using Lemma 12 (which is similar to
Lemma 3) to derive the following analog of (20):〈

1

m
AT ỹ − µx∗, x̂− x∗

〉
≤

τ +

√
k log Lr

δ

m

 ‖x∗ − x̂‖2 +O

τδ + δ

√
k log Lr

δ

m

 . (95)

Combining (94) and (95), and using similar steps to those following (23) in the proof of Theorem 1,
we derive the desired upper bound for ‖x∗ − x̂‖2. The details are omitted to avoid repetition.
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E Relation to the Gaussian Mean Width
The (global) Gaussian mean width (GMW) of a set K is defined as

ω(K) := E
[

sup
x∈K−K

〈g,x〉
]
, (96)

where K − K := {s − t : s ∈ K, t ∈ K} and g ∼ N (0, In). The GMW of K is a geometric
parameter, and is useful for understanding the effective dimension of K in estimation problems. In
various related works such as [25, 26], the sample complexity derived depends directly on the GMW
or its local variants. For example, if K ⊆ Rn is compact and star shaped, then by [26, Eq. (2.1)],
m = O

(ω(K)2

ε4

)
measurements suffice for ε-accurate recovery.

According to [24], the GMW satisfies the following properties:

1. If K = Bn2 or K = Sn−1, then ω(K) = E[‖g‖2] ≤
(
E
[
‖g‖22

])1/2
=
√
n;

2. If K is a finite set contained in Bn2 , then ω(K) ≤ C
√

log |K|.

Using these observations, we obtain the following lemma.
Lemma 13. Fix r > 0, and let G be an L-Lipschitz generative model with Lr = Ω(1), and let
K = G(Bk2 (r)) ⊆ Bn2 . Then, we have

ω(K)2 = Θ

(
k log

Lr
√
n√
k

)
. (97)

Proof. As we stated in (59), for any δ > 0, there exists a setM ⊆ Bk2 (r) being a δ
L -net ofBk2 (r) with

log |M | ≤ k log 4Lr
δ , andG(M) is a δ-net ofK. For any x ∈ K−K, there exists s ∈ G(M)−G(M)

with ‖x− s‖2 ≤ 2δ; hence,

〈g,x〉 ≤ 〈g, s〉+ ‖g‖2‖x− s‖2 ≤ 〈g, s〉+ 2δ‖g‖2. (98)

As a result, we have

ω(K) = E
[

sup
x∈K−K

〈g,x〉
]

(99)

≤ ω(G(M)) + 2δE[‖g‖2] (100)

≤ C
√
k log

4Lr

δ
+ 2δ
√
n. (101)

By a similar argument, we also have

ω(K) ≥ C
√
k log

4Lr

δ
− 2δ
√
n. (102)

Setting δ =
√

k
n and applying the assumption Lr = Ω(1), we obtain the desired result.

We emphasize that the above analysis assumes that G(Bk2 (r)) ⊆ Bn2 , and in the absence of such an
assumption, the Gaussian mean width ω(K) will generally grow linearly with the radius.

Returning to the sample complexity m = O
(
k
ε2 log Lr

ψε

)
in Theorem 1, we find that this reduces

to m = O
(ω(K)2

ε2

)
in broad scaling regimes. For instance, this is the case when ψ is constant,

Lr = nΩ(1) (as is typical for neural networks [2]), and ε decays no faster than polynomially in n.

F Local Embedding Property (LEP) for the 1-bit Model

For v,v′ ∈ Rm, let dH(v,v′) := 1
m

∑m
i=1 1{vi 6= v′i} denote the (normalized) Hamming distance.

Note that when f(x) = sign(x), we obtain µ = E[f(g)g] =
√

2
π and ψ = 1. We have the following

lemma, which essentially states that for all x, s ∈ Sn−1, if x is close to s in `2-norm, then sign(Ax)
is close to sign(As) in Hamming distance.
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Lemma 14. (Adapted from [17, Corollary 2]) For fixed ε ∈ (0, 1), if m = Ω
(
k
ε log Lr

µε2

)
, with

probability 1 − e−Ω(εm), for all x1,x2 ∈ Sn−1 with µ1x1, µ2x2 ∈ K, where µ1, µ2 = Θ(µ), it
holds that

‖x1 − x2‖2 ≤ ε⇒ dH(sign(Ax1), sign(Ax2)) ≤ O(ε). (103)

Note that each entry of |sign(Ax1) − sign(Ax2)| is either 2 or 0. Hence, if (103) is satisfied, we
have

1√
m
‖sign(Ax1)− sign(Ax2)‖2 = 2

√
dH(sign(Ax1), sign(Ax2)) ≤ O(

√
ε). (104)

That is, setting β = 1
2 , we have that f(x) = sign(x) satisfies Assumption 1 in Section 5 with

MLEP(δ, β) = O
(
k
δ log Lr

µδ2

)
and PLEP(δ, β) = 1− e−Ω(δm).

G Proof of Theorem 2 (Uniform Recovery)
We briefly repeat the argument at the start of the proof of Lemma 3: For fixed δ ∈ (0, 1) and a
positive integer l, let M = M0 ⊆ M1 ⊆ . . . ⊆ Ml be a chain of nets of Bk2 (r) such that Mi is a
δi
L -net with δi = δ

2i . There exists such a chain of nets with

log |Mi| ≤ k log
4Lr

δi
. (105)

By the L-Lipschitz assumption on G, we have for any i ∈ [l] that G(Mi) is a δi-net of G(Bk2 (r)).
We write µx∗ and x̂ as

µx∗ = (µx∗ − µx∗l ) + (µx∗l − µx∗l−1) + . . .+ (µx∗1 − µx∗0) + µx∗0, (106)
x̂ = (x̂− x̂l) + (x̂l − x̂l−1) + . . .+ (x̂1 − x̂0) + x̂0, (107)

where x̂i, µx∗i ∈ G(Mi) for all i ∈ [l], and ‖x̂−x̂l‖2 ≤ δ
2l

, ‖µx∗−µx∗l ‖2 ≤ δ
2l

, and ‖x̂i−x̂i−1‖2 ≤
δ

2i−1 , ‖µx∗i − µx∗i−1‖2 ≤ δ
2i−1 for all i ∈ [l]. Therefore, the triangle inequality gives

‖x̂− x̂0‖2 < 2δ, ‖µx∗ − µx∗0‖2 < 2δ. (108)

In analogy with (62), we write〈
1

m
AT (ỹ − µAx∗), x̂− µx∗

〉
=

〈
1

m
AT (ỹ − y), x̂− µx∗

〉
+

〈
1

m
AT

(
y − f

(
A

x∗0
‖x∗0‖2

))
, x̂− µx∗

〉
+

〈
1

m
AT

(
f

(
A

x∗0
‖x∗0‖2

)
− µA

x∗0
‖x∗0‖2

)
, x̂− µx∗

〉
+

〈
1

m
ATµA

(
x∗0
‖x∗0‖2

− x∗
)
, x̂− µx∗

〉
(109)

and proceed by deriving uniform upper bounds for the four terms in (109) separately. In the following,
we assume thatm = Ω

(
k log Lr

δ

)
; we will later choose δ such that this reduces tom = Ω

(
k log Lr

ε

)
,

as in the theorem statement.

1. A uniform upper bound for
〈

1
mAT (ỹ − y), x̂− µx∗

〉
: Recall that from (19), we have〈

1

m
AT (y − ỹ), x̂− µx∗

〉
≤
∥∥∥∥ 1√

m
(y − ỹ)

∥∥∥∥
2

×
∥∥∥∥ 1√

m
A(x̂− µx∗)

∥∥∥∥
2

(110)

≤ τO(‖x̂− µx∗‖2 + δ). (111)

This inequality holds uniformly for all x̂, µx∗ ∈ K, since it is based on the uniform result in
Lemma 2.

2. A uniform upper bound for
〈

1
mAT

(
y − f

(
A

x∗0
‖x∗0‖2

))
, x̂− µx∗

〉
: From (108), we have

‖x∗ − x∗0‖2 ≤ 2δ
µ . Because ‖x∗‖2 = 1 and ‖x∗ − x∗0‖2 ≥ |‖x∗0‖2 − ‖x∗‖2|, we obtain∥∥∥∥x∗0 − x∗0

‖x∗0‖2

∥∥∥∥
2

=

∥∥∥∥x∗0(‖x∗0‖2 − 1)

‖x∗0‖2

∥∥∥∥
2

≤
∣∣‖x∗0‖2 − 1

∣∣ ≤ 2δ

µ
, (112)
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and the triangle inequality gives ∥∥∥∥x∗ − x∗0
‖x∗0‖2

∥∥∥∥
2

≤ 4δ

µ
. (113)

If we choose δ ≤ c′µ for sufficiently small c′, then we obtain ‖x∗0‖2 ∈ [1 − η0, 1 + η0] for
arbitrarily small η0, which implies that c x∗0

‖x∗0‖2
∈ K for some c ∈ [µ− η, µ+ η] and arbitrarily

small η > 0 (since µx∗0 ∈ K and µ = Θ(1)). Hence, considering Assumption 1, we observe
that the high-probability LEP condition (34) therein (along with µ = Θ(1)) implies

1√
m

∥∥∥∥y − f (A
x∗0
‖x∗0‖2

)∥∥∥∥
2

=
1√
m

∥∥∥∥f(Ax∗)− f
(

A
x∗0
‖x∗0‖2

)∥∥∥∥
2

≤ O
(
δβ
)
, (114)

Then, similarly to the derivation of (111), we have that if m ≥ MLEP(δ, β) + Ω
(
k log Lr

δ

)
,

then with probability 1− PLEP(δ, β)− e−Ω(m),〈
1

m
AT

(
y − f

(
A

x∗0
‖x∗0‖2

))
, x̂− µx∗

〉
≤
∥∥∥∥ 1√

m

(
y − f

(
A

x∗0
‖x∗0‖2

))∥∥∥∥
2

×
∥∥∥∥ 1√

m
A(x̂− µx∗)

∥∥∥∥
2

(115)

≤ O(δβ)×O(‖x̂− µx∗‖2 + δ) (116)

= O(δβ‖x̂− µx∗‖2 + δβ+1). (117)

3. A uniform upper bound for
〈

1
mAT

(
f
(
A

x∗0
‖x∗0‖2

)
− µA

x∗0
‖x∗0‖2

)
, x̂− µx∗

〉
: For brevity, let

s0 = 1
mAT

(
f
(
A

x∗0
‖x∗0‖2

)
− µA

x∗0
‖x∗0‖2

)
. We have

〈s0, x̂− µx∗〉 =

〈
s0, x̂− µ

x∗0
‖x∗0‖2

〉
+

〈
s0, µ

(
x∗0
‖x∗0‖2

− x∗
)〉

. (118)

By Lemma 3 and the union bound over G(M) (for x∗0), we obtain with probability 1 −
|M |e−Ω(k log Lr

δ ) = 1− e−Ω(k log Lr
δ ) that〈

s0, x̂− µ
x∗0
‖x∗0‖2

〉
≤ O

√k log Lr
δ

m

∥∥∥∥x̂− µ x∗0
‖x∗0‖2

∥∥∥∥
2

+O

δ
√
k log Lr

δ

m

 (119)

≤ O

√k log Lr
δ

m

 (‖x̂− µx∗‖2 + 4δ) +O

δ
√
k log Lr

δ

m

 (120)

= O

√k log Lr
δ

m

 ‖x̂− µx∗‖2 +O

δ
√
k log Lr

δ

m

 , (121)

where (120) follows from the triangle inequality and (113). In addition, we have〈
s0, µ

(
x∗0
‖x∗0‖2

− x∗
)〉

=

〈
s0, µ

(
x∗0
‖x∗0‖2

− x∗0

)〉
+ 〈s0, µ(x∗l − x∗)〉+

l∑
i=1

〈
s0, µ(x∗i−1 − x∗i )

〉
. (122)

Then, by Lemma 8 and the union bound over G(M) (for x∗0), we obtain with probability
1− e−Ω(k log Lr

δ ) that〈
s0, µ

(
x∗0
‖x∗0‖2

− x∗0

)〉
≤ O

√k log Lr
δ

m

µ

∥∥∥∥ x∗0
‖x∗0‖2

− x∗0

∥∥∥∥
2

≤ O

δ
√
k log Lr

δ

m

 ,

(123)
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where the last inequality uses (112). Similar to that in the proof of Lemma 3, we set l = dlog2 ne.
By (77), the union bound over G(M) (for x∗0), and the assumption ψ = Θ(1), we obtain with
probability 1− e−Ω(k log Lr

δ ) that

〈s0, µ(x∗l − x∗)〉 ≤ O

δ
√
k log Lr

δ

m

 . (124)

In addition, by (72) and a union bound over both G(M) and over G(Mi−1)×G(Mi) for all
i ∈ [l], we obtain with probability 1− e−Ω(k log Lr

δ ) that

l∑
i=1

〈
s0, µ(x∗i−1 − x∗i )

〉
≤ O

δ
√
k log Lr

δ

m

 . (125)

Substituting (121)–(125) into (118), we obtain

〈s0, x̂− µx∗〉 ≤ O

δ +

√
k log Lr

δ

m

 ‖x̂− µx∗‖2 +O

δ
√
k log Lr

δ

m

 . (126)

4. A uniform upper bound for
〈

1
mATµA

(
x∗0
‖x∗0‖2

− x∗
)
, x̂− µx∗

〉
: From Lemma 2, we have

that when m = Ω
(
k log Lr

δ

)
, with probability 1− e−Ω(m),〈

1

m
ATµA

(
x∗0
‖x∗0‖2

− x∗
)
, x̂− µx∗

〉
≤
∥∥∥∥ 1√

m
µA

(
x∗0
‖x∗0‖2

− x∗
)∥∥∥∥

2

∥∥∥∥ 1√
m

A(x̂− µx∗)

∥∥∥∥
2

(127)

≤ O(δ)O(‖x̂− µx∗‖2 + δ) = O
(
δ‖x̂− µx∗‖2 + δ2

)
. (128)

Having bounded the four terms, we now substitute (111), (117), (126), and (128) into (109), and
deduce that ifm ≥MLEP(δ, β)+Ω

(
k log Lr

δ

)
, then with probability at least 1−e−Ω(m)−PLEP(δ, β),

it holds uniformly (in both µx∗ and x̂) that〈
1

m
AT (y − µAx∗), x̂− µx∗

〉

≤ O

τ + δβ +

√
k log Lr

δ

m

 ‖x̂− µx∗‖2 +O

δτ + δ

√
k log Lr

δ

m
+ δ1+β

 . (129)

Then, similarly to (23), we derive that if m ≥MLEP(δ, β) + Ω
(
k log Lr

δ

)
, then with probability at

least 1− e−Ω(m) − PLEP(δ, β), it holds uniformly that

‖µx∗ − x̂‖22 ≤ O

τ + δβ +

√
k log Lr

δ

m

 ‖x̂− µx∗‖2 +O

δτ + δ

√
k log Lr

δ

m
+ δ1+β

 ,

(130)

where we used the fact that δβ + δ = O(δβ), since β ≤ 1.

Considering the parameter ε in the theorem statement, we now set δ = ε1/β (i.e., ε = δβ), meaning
that the previous requirement m = Ω

(
k
ε2 log Lr

δ

)
reduces to m = Ω

(
k
ε2 log Lr

ε1/β

)
= Ω

(
k
ε2 log Lr

ε

)
.

In addition,
√

k log Lr
δ

m = O(ε). Since ε ≤ 1 and β ≤ 1, we have

O

τ + δβ +

√
k log Lr

δ

m

 ‖x̂− µx∗‖2 +O

δτ + δ

√
k log Lr

δ

m
+ δ1+β


= O(τ + ε)‖x̂− µx∗‖2 +O

(
ε1/βτ + ε1+1/β

)
(131)

= O(τ + ε)‖x̂− µx∗‖2 +O
(
(ε+ τ)2

)
. (132)
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Substituting into (130) and considering two cases depending on which term in (132) is larger, we
obtain that if m ≥ MLEP(ε1/β , β) + Ω

(
k
ε2 log Lr

ε

)
, then with probability at least 1 − e−Ω(m) −

PLEP(ε1/β , β), it holds uniformly that

‖µx∗ − x̂‖2 ≤ O(τ + ε). (133)
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