
A Example 1

Consider a deterministic MDP with two states x0 and x1 and two actions a and b, where x0 is the
initial state. Suppose the baseline policy π′ always chooses action a.

x0 x1
a

b a,b

We show that for most future task distributions, the future task auxiliary reward induces an interference
incentive: staying in x0 has a higher no-reward value than following the baseline policy.

The optimal value function V ∗i for future task i with goal state xi (i ∈ {0, 1}) is V ∗i (xi) = 1,
V ∗1 (x0) = γ and V ∗0 (x1) = 0. Then the no-reward value function for the baseline policy is

Wπ′(x0) = raux(x0)+(γ+γ2+. . . )raux(x1) = raux(x0)+
γ

1− γ
·(1−γ)βF (1) = raux(x0)+γβF (1)

and the no-reward value function for the policy πint that always takes action b is

Wπint(x0) = raux(x0) +
γ

1− γ
raux(x0) = raux(x0) + γβ(F (0) + γF (1))

The future task agent has an interference incentive if the baseline policy is not optimal for the future
task reward, i.e. Wπ′(x0) < Wπint(x0). This happens iff F (0) > (1 − γ)F (1), i.e. if the task
distribution does not highly favor task 1 over task 0.

B Proofs

B.1 Proof of Proposition 1

Proposition 1 (Value function convergence). The following formula for the optimal value function
satisfies the goal condition V ∗i (st, s

′
t) = ri(st, s

′
t) = 1 and Bellman equation (4):

V ∗i (st, s
′
t) = E

[
γmax(Ni(st),Ni(s

′
t))

]
=

∞∑
n=0

P(Ni(st) = n)

∞∑
n′=0

P(Ni(s′t) = n′)γmax(n,n′) (5)

Proof. Goal condition. If both agents have reached the goal state (st = s′t = gi), then Ni(st) =
Ni(s

′
t) = 0, so formula (5) gives V ∗i (st, s

′
t) = 1 as desired.

Bellman equation. We show that formula (5) is a fixed point for the Bellman equation (4).

If st 6= gi, and thus P(Ni(st) = 0) = 0, we note that
∞∑
m=0

P(Ni(st) = m)γmax(m,k) =

∞∑
n=0

P(Ni(st) = n+ 1)γmax(n+1,k)

=max
at∈A

∑
st+1

p(st+1|st, at)
∞∑
n=0

P(Ni(st+1) = n)γmax(n+1,k) (6)

if we decompose the trajectory to the goal state into the first transition (st, at, st+1) and the rest of
the trajectory starting from st+1. This holds analogously for the reference transition (s′t, a

′
t, s
′
t+1).

Now we plug in formula (5) on the right side (RS) of the Bellman equation. If st 6= gi and s′t 6= gi:

RS =ri(st, s
′
t) + γ max

at∈A

∑
st+1∈S

p(st+1|st, at)
∑

s′t+1∈S

p(s′t+1|s′t, a′t)V ∗i (st+1, s
′
t+1)

=0 + γ max
at∈A

∑
st+1∈S

p(st+1|st, at)
∑

s′t+1∈S

p(s′t+1|s′t, a′t)·

∞∑
n=0

P(Ni(st+1) = n)

∞∑
n′=0

P(Ni(s′t+1) = n′)γmax(n,n′) [plugging in (5)]
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=max
at∈A

∑
st+1∈S

p(st+1|st, at)
∞∑
n=0

P(Ni(st+1) = n) · [moving γ, rearranging sums]

∑
s′t+1∈S

p(s′t+1|s′t, a′t)
∞∑
n′=0

P(Ni(s′t+1) = n′)γmax(n+1,n′+1)

=max
at∈A

∑
st+1∈S

p(st+1|st, at)
∞∑
n=0

P(Ni(st+1) = n)·

∞∑
m′=0

P(Ni(s′t) = m′)γmax(n+1,m′) [using (6) with m′ = n′ + 1]

=

∞∑
m=0

P(Ni(st) = m)

∞∑
m′=0

P(Ni(s′t) = m′)γmax(m,m′) [using (6) with m = n+ 1]

which is the same as plugging in formula (5) on the left side.

If s′t = gi, we have:

RS =ri(st, gi) + γ max
at∈A

∑
st+1∈S

p(st+1|st, at)V ∗i (st+1, gi)

=0 + γ max
at∈A

∑
st+1∈S

p(st+1|st, at)
∞∑
n=0

P(Ni(st+1) = n)γmax(n,0) [plugging in (5)]

=

∞∑
m=0

P(Ni(st+1) = m)γmax(m,0) [using (6) with m = n+ 1]

If st = gi, we have:

RS =ri(gi, s
′
t) + γ

∑
s′t+1∈S

p(st+1|s′t, a′t)V ∗i (gi, s′t+1)

=0 + γ
∑

s′t+1∈S

p(s′t+1|s′t, a′t)
∞∑
n′=0

P(Ni(s′t+1) = n′)γmax(0,n′) [plugging in (5)]

=

∞∑
m′=0

P(Ni(s′t+1) = m′)γmax(0,m′) [using (6) with m′ = n′ + 1]

which is the same as plugging in formula (5) on the left side.

B.2 Proof of Proposition 2

Proposition 2 (Avoiding interference). For any policy π in a deterministic environment, the baseline
policy π′ has the same or higher no-reward value: Wπ(s0) ≤Wπ′(s0).

Proof. Suppose policy π is in state sk at time k. Then,

Wπ(s0) =

∞∑
T=0

γT raux(sk)

=

∞∑
T=0

γT (1− γ)β
∑
i

F (i)V ∗i (sT , s
′
T )

=

∞∑
T=0

γT (1− γ)β
∑
i

F (i)γmax(Ni(sT ),Ni(s
′
T ))
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≤
∑
T

γT (1− γ)β
∑
i

F (i)γNi(s
′
T )

=

∞∑
T=0

γT (1− γ)β
∑
i

F (i)V ∗i (s
′
T , s
′
T )

=

∞∑
T=0

γT raux(s
′
T )

=Wπ′(s0)

C Interference in the stochastic case

If the environment is stochastic, the outcome of running the baseline policy varies. For example,
suppose the agent is in a room, following a baseline policy of doing nothing (staying in one location
in the room). A human walks into the room, and 10% of the time they knock over a vase. We want
the agent to avoid interfering with the human in those 10% of cases, and also to avoid breaking the
vase the other 90% of the time. This indicates that we want to compare the agent’s effects to a specific
counterfactual (either the human was going to walk in or not) rather than an average of all possible
counterfactuals sampled from the stochastic environment (10% probability of the human walking
in). Thus, we would like the baseline policy to be optimal for any deterministic instantiation of the
stochastic environment (e.g. by conditioning on the random seed). Then the auxiliary reward, which
is a function of the baseline state, will depend on the random seed.

Thus, the definition of interference could be refined as follows: there is an interference incentive
if the baseline policy is not optimal from the initial state, conditioning on the random seed of the
environment. However, it is unclear how this could be implemented in practice outside simulated
environments.

D Stepwise application of the baseline policy

D.1 Inaction rollouts

sT s′T

s̃′T+1

s̃′T+2

. . .

˜sT+1

s̃T+2

. . .

Figure D.1: Inaction rollouts from the current state sT and baseline state s′T , obtained by applying
the baseline policy to those states: ˜sT+1 = π′(sT ), etc. If the previous action aT−1 drops the vase
from the building, then the vase breaks in the inaction rollout from sT but not in the inaction rollout
from s′T .

D.2 Offsetting incentives

Unlike the initial mode, the stepwise mode avoids incentives for offsetting behavior, where the agent
undoes its own actions towards the objective [10]. For example, consider a variant of the Sushi
environment without a goal state, where the object on the belt is a vase that falls off and breaks if it
reaches the end of the belt, and agent receives a reward for taking the vase off the belt.

Then the initial mode gives the agent an incentive to take the vase off the belt (collecting the reward)
and then offset this action by putting the vase back on the belt. This type of offsetting is undesirable,
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