A Implementation details

A.1 Reconstruction model

As stated in the main text, our reconstruction model is the standard 16-channel U-Net baseline
provided in the fastMRI repository pulled in November 2019.* Hyperparameters are left unchanged,
except for a switch of optimiser from RMSProp to Adam [21], and training for the full 50 epochs
rather than doing early stopping based on the validation set.

The input to the model consists of (real-valued) so-called zero-filled images, obtained by applying
the inverse Fourier transform to subsampled k-space and taking the complex norm of the resulting
image. The full k-space is obtained from the ground truth images by Fourier transform after cropping
to (128 x 128) pixels for Knee data, and (256 x 256) pixels for Brain data. Note that we crop in
image space - rather than k-space - which reduces computation while preserving image detail. We
train on accelerations (4, 4,4, 6, 6, 8), with center fractions (0.25,0.167,0.125,0.167,0.125,0.125).
This means masks contain a low-frequency (central) k-space region that is always sampled, and have
up to half of the budget randomly sampled in the remainder of k-space. The random sampling is done
so that the reconstruction model learns to reconstruct for a wide variety of masks [47]. In contrast to
our policy models, we only have to train the reconstruction model once for each data set, and so we
train on all the available training volumes. We use these models pretrained in our further pipeline.
The model has 837,635 parameters.

A.2 Policy model architecture

We use slightly different policy model architecture for the Knee and Brain model, primarily to keep
the number of parameters similar. No changes are made to the model architecture when switching
between the Base and Long horizon setting.

A.2.1 Knee model architecture

Starting from the (128 x 128) reconstructed image, an initial (1 x 1) convolution is applied to
upsample to 16 channels. We follow this by instance normalisation and ReLU activation. We further
employ four convolutional blocks, each consisting of a zero-padded (3 x 3) convolution layer that
doubles the number of channels, followed by an instance normalisation, ReLU activation, and (2 x 2)
max-pooling layer.

The resulting (8 x 8 x 256) tensor is flattened and fed through a dense layer of 256 neurons,
followed by a leaky-ReLU activation with slope 0.01. This is followed by another such layer and
activation, before a final dense layer with 128 neurons and a Softmax operation to turn the output
into probabilities corresponding to the columns in k-space. The model has 4,685,568 parameters.

As mentioned in the main text, reconstructions are initialised by obtaining low-frequency (center)
columns of k-space equal to the initialisation budget. This corresponds to 16 columns for acceleration
8 and to 4 columns for acceleration 32. After initialisation, the process described in section 4 is
performed, setting ¢ = 8 samples for both estimators. For the size 128 images used in this work, this
process corresponds to respectively 16 and 28 acquisition steps, ending at an acceleration factor of 4
for both settings. Models are trained for 50 epochs using a batch size of 16. A single gradient step is
performed after accumulating gradients for a full acquisition trajectory.

A.2.2 Brain model architecture

The differences between the Brain and Knee policy model architectures are slight: the Brain model
uses five convolutional blocks of the type described rather than four, and the initial upsampling is to 8
channels, rather than 16. Because the Brain model input is of size the (256 x 256), these choices
ensure the feature representation after the final convolutional block has size (8 x 8 x 256) as well.
The model has 4,719,552 parameters.

As with the Knee model, we train the Brain model starting with accelerations 8 and 32, acquiring a
further 16 and 28 k-space columns with our policy, for the Base and Long horizon cases respectively.
Note that since the Brain images are larger, the final state does not correspond to the acceleration

*https://github.com/facebookresearch/fastMRI/tree/a55a1b129eb1d98ec9df26bfa2617a3b8c¢957d21
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factor 4 of the Knee setting. Instead, we end up with % + 16 =48 and % + 28 = 36 columns for

the Base and Long horizon settings respectively, corresponding to acceleration factors of % = 5%

and % = 7%. This choice was made due to computational concern, as training the Brain models

takes up to three times as long as training Knee models, and requires more RAM (see section B.1).

A.3 Policy model hyperparameters

Hyperparameter tuning with random search on Knee data found little performance differences using
larger models or longer training. The most influential hyperparameters proved to be learning rate,
batch size, and number of samples per acquisition step. Values of the latter two are constrained by
memory considerations during training of non-greedy models (see section B.1), and were set to their
highest reasonable values of 16 and 8 respectively. Learning rate was further tuned by hand for both
Knee models individually. We did not do any additional hyperparameter tuning for the Brain models,
opting to use the exact same settings as we used for the Knee models.

The Greedy and NGreedy models are both trained with a learning rate of 5e—5. The learning rate
is decayed once by a factor 10 after 40 epochs for the Greedy model, and decayed a factor 2 every
10 epochs for the NGreedy model, for a total decay rate of 16. Training was done using the Adam
optimiser with no weight decay. The v = 0.9 model is trained with the same parameter settings as
the NGreedy model. Individual test scores of the runs presented in Table 1 of the main text were
computed by averaging scores of 8 trajectories.

As it is always known which k-space columns have already been measured, we artificially set the
probabilities for these columns to 0 during training and evaluation. This ensures the model is focused
on the task of finding the optimal policy, rather than also trying to learn which measurement have
already been done given only the reconstructed input image to go on. We have experimented with
instead feeding this as extra information to the policy model, but this tended to destabilise training.

A.4 AlphaZero hyperparameters

The AlphaZero model architecture used is as defined in Figure 6 of [19], with 32 channels rather than
the original 64, as we saw no performance differences in initial experiments. It was implemented
using the research code provided to us in private communication. Training used the original 540
rounds, but model training was early-stopped when the final SSIM (after the last acquisition step)
on the validation set flattened out. Due to computational constraints, we were unable to do a proper
hyperparameter search, and as such have left the remaining hyperparameters unchanged from their
default values: brief experimentation with slightly changed hyperparameter settings showed no
obvious performance differences.

Individual test scores of the runs presented in Table 1 of the main text were computed by averaging
scores of 8 trajectories, the same as for the Greedy and NGreedy policy gradient models. The model
has 27,558,849 parameters, about five to six times more than our policy models.

A.5 Policy gradient model pseudocode

In Algorithm 1 we provide pseudocode for a training epoch of our policy gradient models. As
illustrated by Figure 2 of the main text, the greedy and non-greedy estimators (5) and (4) compute
different reward baselines. In the pseudocode this is controlled by the IsGreedy argument.
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Policy model train epoch

Algorithm parameters: number of trajectories g, discount factor v, IsGreedy True/False,
number of acquisition steps 7'
Initialise reconstruction model G, initial mask Uy, train dataset D containing batches of
ground truth MR images «, metric 7 (e.g. SSIM)
foreach batch in D do
Compute initial reconstructions gg < G(Up F'x)
Compute initial metric vg < 7(go, x)
fort e {1,...,T} do
Compute policy 7(-|g:—1) given the current reconstruction
Sample q actions a; from 7(-|g;—1)
Obtain probabilities p; < m(at|gi—1)
if IsGreedy then
| Append these actions to g copies of U;_; to form Uy
else
if £ = 1 then
\ Append these actions to q copies of U;_; to form Uy
else
| Append these g actions to the g instances of U;_; in memory to form U,
end if
end if
Compute next-step reconstructions g; <— G(U;Fx)
Compute metrics v; < 7(gs, x)
Compute rewards r; < vy — Vi1
Store log probabilities log(p;) of actions, and rewards r;
if IsGreedy then
Compute loss according to Equation (5)
Store gradient updates (e.g. loss.backward() in PyTorch)
Randomly select one of the ¢ copies of Uy to continue with
else
if t = T then
Compute loss according to Equation (4)
Store gradient updates
end if
Continue with all g instances of Uy
end if
Update policy model weights using stored gradient updates (e.g. optimizer.step()
in PyTorch)
end for
end foreach
Algorithm 1: Pseudocode for a train epoch of the policy gradient models.

A.6 Lack of comparison to Zhang ef al. (2019)

Ideally, we would wish to compare our method to the greedy acquisition method of [48]. Unfortu-
nately, there are a number of reasons that make this infeasible, which we discuss here.

As mentioned in the main text (Section 2), the approach in [48] requires joint training of the
reconstruction network with an evaluator network that guides acquisition through a similarity score
between ground truth and fantasised k-space. Joint training is crucial, as the reconstruction network
must be incentivised to produce reconstructions that have consistent k-space representation for
evaluator based acquisition to perform well. This contrasts with our method, where joint training
is optional, and our acquisition function is directly (reinforcement) learned using policy gradients
on image-space input. This also poses a challenge for making a fair comparison (using the same
reconstruction model): the reconstruction model in [48] is incentivised to care about features that are
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not necessarily relevant to our policy, and our reconstruction method is not necessarily incentivised
to care about features that are crucial to their evaluator.

To explore these differences we performed a proxy comparison using our reconstruction model and
replacing their evaluator score with the true spectral map score computed from ground truth images.
Using ground truth test images makes this an oracle method - infeasible in practice - but provides an
upper bound for the performance of [48] under our reconstruction model, as we now use true spectral
map scores, rather than the estimate learned by the evaluator network. However, this oracle method
performed far worse than our models, suggesting that the strategy in [48] indeed depends heavily on
reconstruction model design choices that force consistency of k-space, as well as on joint training
with the evaluator. We also note that there is no code available for [48], further complicating attempts
at a fair comparison.

A.7 Dynamic range and SSIM

SSIM hyperparameters are kept to their original values in [44]. The dynamic range is a dataset
dependent hyperparameter of the SSIM metric that encodes the value range of a particular image. For
an MRI slice the dynamic range is typically chosen to be maximum pixel value in the corresponding
ground truth volume [47].

A.8 PSNR evaluation

We have used the Structural Similarity Index Measure (SSIM) [44] as a reward signal in this work.
The SSIM is a differentiable metric that typically corresponds to human evaluations of image quality
more closely than common alternatives [22]. One such alternative is the Peak Signal-to-Noise Ratio
(PSNR). While we do not train on this metric, it may still be insightful to evaluate the trained models
by it.

Interestingly however, evaluating the SSIM non-adaptive and adaptive oracles on Knee data with
PSNR, results in scores of 27.21, 27.50 on the base horizon, and 25.59, 26.13 on the long horizon
task respectively. In contrast, SSIM scores were clearly higher for the Knee data long horizon
task, and indeed this is what one would expect for oracles. This suggests that SSIM and PSNR
care about distinct features (notably, PSNR seems to favour more low-frequency columns), which
complicates drawing conclusions from PSNR evaluations of SSIM optimised methods: verification
of reconstruction quality by human experts seems necessary in order to draw further conclusions.
Because of this complication, we have opted not to report PSNR scores, though note that the provided
code does provide PSNR evaluations.

B Further analysis

B.1 Comparison of computational load

As the architecture for the Greedy and NGreedy models is equivalent, differences in computational
load required for training the models stem from variations due to the different optimisation objectives.
As the Greedy model requires only looking ahead a single acquisition step, we are only required to
store the cumulative gradient of the full acquisition trajectory. The NGreedy model however requires
storing individual gradient information for all parallel acquisition trajectories and all acquisition steps,
as the full return is only known after performing the last measurement of the budget.

These memory requirements constrain the batch size significantly for the NGreedy model - approxi-
mately linearly in length of the optimisation horizon - adding to gradient variance. To circumvent this
issue and make a proper comparison with the Greedy model, we accumulate gradients for multiple
batches, doing an optimisation step only when the effective batch size has reached that of the Greedy
model (dividing the accumulated gradients by the number of batches used to accumulate them to
properly mimic training over larger batches). However, this procedure effectively increases the
number of batches treated sequentially by a factor equal to the ratio in batch size, slowing down
training correspondingly.

We note that the memory burden of the NGreedy model may also be heavily reduced by storing (state,
action, reward)-transition tuples for every trajectory encountered during an episode, and discarding
model gradients at this step. Then, when the episode has concluded, the full return as well as the log
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Table 3: Approximate training times in days for policy models on GTX1080Ti GPUs. Number of
GPUs used in parallel given in brackets.

Base horizon Long horizon
Greedy NGreedy Greedy NGreedy

Knee 10(1) 15() 15(01) 200
Brain 20(1) 3.0(2) 45(1) 50
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Figure 5: Visualisation of sampled trajectories for base (top) and long (bottom) horizons, averaged
over the Knee test data. Shown is the fraction of MR slices for which a particular column has been
sampled at an acquisition step. The central white bands are initialisation measurements. The v = 0.9
average policies interpolate between the Greedy and NGreedy average policies. For each setting the
best model on the test set was used.

probabilities of the stored action may be computed and the gradient backpropagated as normal. This
requires one more forward pass of the policy model for every action (to compute the log probability
gradients), but frees up storage space because these gradients need not be remembered for the full
trajectory. Especially for longer horizons this may speed up computation by exploiting the use of
larger batches than otherwise possible.

We refer to Table 3 for a comparison of (very) approximate training times on GTX1080Ti GPUs.
These numbers are based on observation of the training logs, not on an exact computation, as the
latter was rendered impossible due to issues on the GPU clusters that caused training jobs to crash
halfway through. The largest source of variance in training time within a setting seems to be related
to I/0, likely due to the loading of large MR image files.

B.2 Additional policy visualisations

Here we present additional policy visualisations that were omitted from the main text. In Figure 5 we
compare the Greedy model with the v = 0.9 model for Knee data. The latter outputs more sharply
peaked average policies than the former, although - as expected - this difference is less stark than
that of Figure 3. These visualisations were obtained by running the policy model for all MR slices
in the corresponding test dataset and averaging the number of times a particular measurement was
performed at a particular acquisition step. Since the acquisitions are themselves policy samples, these
visualisations will slightly differ between runs of the same model. Figure 6 shows a comparison
of average policies of the Greedy and NGreedy model for the Brain dataset, and Figure 7 shows
the Greedy and v = 0.9 average policies. We observe a similar contrast here as we did for Knee
data, with the NGreedy model outputting more sharply peaked average policies, and the v = 0.9
interpolating. Note that the acquisitions done by the models make up a smaller fraction of the initially
selected (and total) k-space columns here than in the Knee case, due to the use of larger images.

B.3 Learning curves

Figure 8 provides training and validation learning curves for the Knee dataset. Note that the Greedy
models seem to overfit slightly more than the NGreedy models, consistent with our hypothesis of
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Figure 6: Visualisation of sampled trajectories for base (top) and long (bottom) horizons, averaged
over the Brain test data. Shown is the fraction of MR slices for which a particular column has been
sampled at an acquisition step. The central white bands are initialisation measurements. The NGreedy
policies select the same column for various slices more often than the Greedy model, suggesting it
adapts less to the individual images. For each setting the best model on the test set was used.

Greedy y=0.9

0
10
50
100
150
200
06
0
[) 2 4 6 8 10 2 u 16 [ 2 4 6 8 10 2 u 16
0
- o.
50
100
150 02
200
20 -0
[) 5 10 15 0 5 [ 5 10 5 0 5

acquisition step acquisition step

column

column

Figure 7: Visualisation of sampled trajectories for base (top) and long (bottom) horizons, averaged
over the Brain test data. Shown is the fraction of MR slices for which a particular column has been
sampled at an acquisition step. The central white bands are initialisation measurements. The v = 0.9
average policies interpolate between the Greedy and NGreedy average policies. For each setting the
best model on the test set was used.

higher gradient variance leading to the latter learning from more average reward signals. Figure 9
provides validation learning curves for the Brain dataset. The training data learning curves were not
computed for the Brain dataset, as the computation corresponds to a near doubling of the number of
training epochs.

B.4 Policy mutual information

B.4.1 Mutual information motivation

In section 5.2 we showed the average policy over the test data set for the best Greedy and NGreedy
models. This average policy m(a;) for acquisition step ¢ was computed by running a single trajectory
for every setting and taking the average over the data set of N points indexed by ¢ as: m(a;) =

= Zf\il m(a|s;), where s; ¢ is the state corresponding to MR image ¢ at acquisition step ¢.

As stated, the Greedy policy seemed to be more adaptive as its average policy was less peaked that
that of the NGreedy policy. However, inspection of 7(a;) on its own is not sufficient to support this
claim, as the uncertainty in the policy could also be explained as the Greedy model having high
uncertainty in 7(a|s;): that is, high uncertainty on which action to sample even given the current
reconstruction.

In the main text we further supported our adaptivity claim by comparing the Greedy model to a
non-adaptive oracle, which could only be outperformed by being adaptive to the current state, which
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Figure 8: Learning curves on the Knee data train and validation set. For all methods the training
SSIM increases steadily with the number of epochs trained, but the effect is stronger the greedier the
model, suggesting the Greedy model overfits more strongly than the NGreedy model.
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Figure 9: Learning curves on the Brain data validation set. The Greedy model converges quickest,
with v = 0.9 interpolating between Greedy and NGreedy.

in turn implies low uncertainty in m(a|s;) relative to 7(a;). Here we directly measure the gap
between these two uncertainties for the Greedy and NGreedy model in both the base and long horizon
settings.

We use the entropy as a quantitative measure of the uncertainty in the policies. The entropy H (A;)
of a probability distribution over possible actions A; is known as the marginal entropy, computed
as H(A;) = 3, m(aj)logm(a;), where j indexes the actions in A;. The conditional entropy
H(A¢|S}) of a conditional probability distribution over actions A; given a state s; € Sy is computed
as H(A:|S;) = X2, m(ajilse)p(se)logm(ajelse) = § 2oy ; m(ajelsie) logm(aj elsi ), again for
the IV data points in the test set.

The gap between these two entropies is the mutual information (MI) I(Ay; S;) of A; and S;:
I(Ay; St) = H(A;) — H(A¢|S:). This is a quantitative measure of how much information the
state gives about the action, under the learned policy. This mutual information provides a direct
measure of how adaptive a model is: the higher I(A¢; S;), the more the model changes its policy as
the state changes.

Note that high mutual information does not on its own equal strong performance on the MRI
subsampling task. As a degenerate example, consider the case of a specific Knee policy that performs
a single acquisition step on 128 slices. For every slice this policy suggests a different measurement
with probability 1. The marginal entropy of this policy is In(128), and the conditional entropy is 0.
This gives the maximum possible mutual information of In(128) for this setting - and indeed this
policy is maximally adaptive - but clearly this is a bad policy for the task at hand. Of course, as our
policies are learned based on the SSIM reward signal, they are incentivised to be adaptive only if this
helps the MRI task, and thus the MI gives information about the degree to which these policies are
usefully adaptive.

B.4.2 Knee data mutual information

In Figure 4 of the main text we visualise the MI per acquisition step for the Greedy, NGreedy and
v = 0.9 models on Knee data. For the base horizon task, it seems the Greedy model learns to be
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Figure 10: Marginal and conditional entropies for the base (left) and long (right) horizon settings for
the Greedy, NGreedy and v = 0.9 methods on Knee test data. Shown is the average and standard
deviation of the entropies per acquisition step over five seeds, computed with ¢ = 8 trajectories.

adaptive already in the first acquisition, having enough information to produce adaptive policies.
The NGreedy model has low mutual information for the initial acquisition steps, but becomes more
adaptive as it gets closer to exhausting the acquisition budget.

An explanation for the NGreedy model’s behaviour may go as follows: if little is known about an MR
image, one might reasonably default to taking measurements in the low-frequency bands, until enough
information has been acquired to focus on image-specific details. However, as the Greedy model has
high mutual information already at acquisition initialisation, it is more likely that the NGreedy model
performs better at later acquisition steps due to the shorter time horizon for optimisation. This is
consistent with our hypothesis that gradient variance due to long optimisation horizons hampers the
NGreedy model. The NGreedy model eventually overtakes the Greedy model in mutual information:
it may be that the NGreedy model has the potential to be more adaptive than the Greedy model for
certain acquisition steps due to its non-greediness. Another possible explanation is that the usefulness
of adaptivity decreases as more measurements have already been adaptively sampled, and as such the
NGreedy model catches up to the Greedy model as the latter runs into diminishing marginal returns
more quickly.

Interesting is the bowl-like shape in the Greedy model’s MI. It implies higher adaptivity at the start
and end of the acquisition trajectory, but whether this is due to properties of the problem setting or
due to properties of training is unclear and left for future research.

For the long horizon task, the Greedy model’s mutual information steeply climbs during the first
few acquisitions, suggesting that initially it does not have enough information to properly adapt its
policies to the input: this behaviour mirrors that of the NGreedy model in the base horizon case.
The low mutual information means the marginal and conditional entropies are close together in
value. To further analyse this behaviour, we show the conditional and mutual entropies separately
in Figure 10. Since all entropies are relatively low at acquisition initialisation of the long horizon
task, we conclude both models start out selecting a small set of similar measurements for most MR
images initially, corresponding to more sharply peaked conditional policies. In the base horizon
setting the Greedy model starts out with relatively high values for both entropies, suggesting more
adaptivity for this setting. Figure 10 also shows that the NGreedy model generally seems more certain
(lower conditional entropy) about its predictions than the Greedy model. This could be related to
the NGreedy model learning from an average reward signal, but there are likely other explanations
consistent with the current observations as well. While it might also be indicative of the NGreedy
model overfitting relative to the Greedy model, we do not observe this here, as shown in Figure 8.

In the long horizon task, the Greedy model obtains the same level of adaptivity as on the base horizon
task through the first few acquisitions. After this, it shows the same bowl-like MI shape observed for
the base horizon task. The NGreedy model shows similar behaviour as it did on the base horizon task,
presenting stronger adaptivity for the final few acquisition steps, likely due to shorter optimisation
horizons. Unlike in the base horizon task, it does not catch up to the Greedy model in mutual
information for any acquisition step. This provides another indication that the NGreedy model’s lack
of adaptivity compared to the Greedy model is correlated to longer optimisation horizons.
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Figure 11: Mutual information for the base (left) and long (right) horizon settings, for the Greedy,
NGreedy and v = 0.9 methods on Brain data. Shown is the average and standard deviation of the
mutual information per acquisition step over five seeds, computed with ¢ = 8 trajectories.
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Figure 12: Mutual information for the base (left) and long (right) horizon settings, for the Greedy,
NGreedy and v = 0.9 methods on Brain data. Shown is the average and standard deviation of the
mutual information per acquisition step over five seeds, computed with ¢ = 8§ trajectories.

The behaviour of the v = 0.9 MI and entropies is more similar to that of the Greedy model than
that of NGreedy model, indicating that the learned policies exploit similar adaptivity information,
while retaining a less Greedy optimisation horizon. This is somewhat surprising, as its optimisation
objective and practical training details are much more similar to the NGreedy model than to the
Greedy model. Interestingly, the v = 0.9 model manages to surpass the Greedy model in mutual
information near the end of the acquisition horizon for both settings, which may contribute to its
higher performance.

B.4.3 Brain data mutual information

In Figures 11 and 12 we present the mutual information and entropy plots for the Greedy and NGreedy
model trained on Brain data. The behaviour of these quantities is quite similar to their Knee data
counterparts in Figures 4 and 10: the Greedy model generally enjoys higher average MI than the
NGreedy model, as well as lower variance. The most notable differences are the lack of bowl-like
shape in the Greedy MI plots, as well as the inability of the NGreedy MI to overtake the Greedy
even in the base horizon setting. Whereas for the Knee dataset the base horizon setting corresponds
to a final acceleration factor of 4, for the Brain dataset the final acceleration factor is 322i61 = =53,
so this comparison is not strictly fair. We note however than for the Knee dataset base horizon
setting, the NGreedy model MI overtakes that of the Greedy model already after only half the total
acquisition steps have been performed, corresponding to the same acceleration factor % = 5%
Indeed, looking back at Table 1, the relative gap in performance between the Greedy and NGreedy

model is larger for the Brain dataset than for the Knee dataset.

In the long horizon setting, the MI of the Greedy model requires about twice the number of acquisition
steps (compared to Knee data) to reach the point where it flattens out. Since the Brain images contains
twice as many columns, this corresponds to the same relative acceleration (around %).
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Figure 13: Mutual information for the base (left) and long (right) horizon settings for the NGreedy
method with various values of the discount factor v € [0, 0.5] on Knee test data. Shown is the average
and standard deviation of the mutual information per acquisition step over five seeds, computed with
q = 8 trajectories.

base horizon long horizon

-- y=0margent ~== y =0 marg ent
— y=0cond ent - — y=0cond ent
35 | y =0.1marg ent 35 |- v=01margent/‘=
—— y=0.1cond ent —— y =0.1cond ent
30 --- y=0.2margent 30 --- y=0.2 marg ent
—— y=0.2 cond ent —— y=0.2 cond ent
25 y = 0.5 marg ent 25 Y = 0.5 marg ent
y = 0.5 cond ent Y =0.5 cond ent

4

00 00
2 4 6 8 10 12 14 16 [ 5 10

15
acquisition step acquisition step

20 5

Figure 14: Marginal and conditional entropies for the base (left) and long (right) horizon settings for
the NGreedy method with various values of the discount factor v € [0, 0.5] on Knee test data. Shown
is the average and standard deviation of the mutual information per acquisition step over five seeds,
computed with ¢ = 8 trajectories.

The v = 0.9 Brain models behave broadly similarly to the Knee case, with the exception of the heavy
drop and recovery of the marginal entropy late in the long horizon setting. We leave exploration of
this behaviour to future work. We furthermore note that in the long horizon setting the v = 0.9 MI
starts out higher than the Greedy MI. It seems the longer optimisation horizon does not hamper the
adaptivity of this model as much, perhaps due to the lower acceleration factor relative to the Knee
setting.

B.4.4 Mutual information on Knee data for various discount factors

In Figures 13, 15, 14, and 16, we present mutual information, conditional entropy, and marginal
entropy plots for NGreedy models trained on Knee data with various values of the discount factor ~.
These models represent an interpolation between the Greedy and NGreedy model. See section B.5.2
for SSIM performance of these models. Note that the v = 0 model does not correspond to the Greedy
model due to a difference in computation of the reward baseline (see Figure 2).

In Table 5, NGreedy models with y € [0, 0.5] all perform quite similarly to the Greedy model, and
indeed their MI and entropy curves look very similar to the Greedy model’s. For « € [0.5, 1] the MI
and entropy curves look more like interpolations between the Greedy and NGreedy case for both
horizon settings. However, the behaviour surprisingly still seems more similar to the Greedy model
than the NGreedy model even for v = 0.99.
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Figure 15: Mutual information for the base (left) and long (right) horizon settings for the NGreedy
method with various values of the discount factor v € [0.5, 1] on Knee test data. Shown is the average
and standard deviation of the mutual information per acquisition step over five seeds, computed with
q = 8 trajectories.
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Figure 16: Marginal and conditional entropies for the base (left) and long (right) horizon settings for
the NGreedy method with various values of the discount factor y € [0.5, 1] on Knee test data. Shown
is the average and standard deviation of the mutual information per acquisition step over five seeds,
computed with ¢ = 8 trajectories.

B.5 Additional SSIM results

B.5.1 Extended SSIM table

We report extended SSIM results in Table 4. Here we include results for a greedy oracle model,
that selects the measurement leading to the greatest immediate SSIM improvement for every slice
separately. We denote this model as ‘Oracle’. In principle this is an upper bound on any greedy model,
but note that this method is most susceptible to failing to identify situations where a combination of
two measurements that are separately uninformative lead to strong improvements. This seems to be
the likely explanation for the low Oracle performance in the long horizon Brain setting. Nevertheless,
these scores provide an indication of a performance gap that may still be closed by future research.

Additionally, we include a comparison with equispaced masks, which are generally easier to im-
plement in MRI machines than random masks, and may perform better as noted in [40]. As with
the random baseline, we initialise these masks by sampling low frequency bands up to the starting
acceleration. The two-sided equispaced mask ‘Equi (two)’ is then constructed by sampling every
r’th column of the remaining k-space, where r is determined by dividing the number of initially
unsampled columns by the number of acquisitions to be made. The one-sided equispaced mask ‘Equi
(one)’ is constructed similarly, but only considering the remaining columns on one side of k-space.
One-sided sampling can be more efficient due to k-space symmetry in some cases, as we observe in
Table 1.
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Table 4: SSIM performance on test data. For non-deterministic models, averages and standard
deviations are computed over five seeds, using ¢ = 8 trajectories for policy models (AlphaZero scores
are averaged over three seeds instead).

Knee Brain

Base horizon Long horizon Base horizon Long horizon

Random 0.6948+0.0003  0.6602£0.0006  0.9020+0.0001  0.5820£0.0006
Equi (one) 0.7049 0.6880 0.9038 0.5862
Equi (two) 0.7064 0.6918 0.9016 0.6026

NA Oracle 0.7213 0.7421 0.9099 0.8909
Oracle 0.7379 0.7623 0.9141 0.8872
AlphaZero 0.7203 £ 0.0008 0.7403 £ 0.0009 - -
NGreedy 0.7223 £0.0003 0.7421 +0.0014 0.9103 & 0.0002  0.8886 £ 0.0048
Greedy 0.7230 £0.0001  0.7442 £ 0.0007  0.9106 £+ 0.0001  0.8917 &£ 0.0002
~v=0.9 0.7232 £0.0002 0.7449 +0.0004 0.9106 £ 0.0003  0.8921 % 0.0001

Table 5: Average SSIM performance on Knee test data for NGreedy models trained with various
v € [0, 1], the NGreedy model reported in the main text (y = 1.0) and the Greedy model. Averages

and standard deviations are computed over five seeds, with ¢ = 8§ trajectories.

Knee

Base horizon

Long horizon

Greedy 0.7230 £ 0.0001  0.7442 +£ 0.0007
~=20.0 0.7231 £0.0002  0.7447 £ 0.0002
~v=0.1 0.7230 £ 0.0001  0.7446 £ 0.0010
v =0.2 0.7230 £ 0.0001  0.7445 + 0.0003
~¥=0.5 0.7230 £ 0.0002  0.7443 £ 0.0006
v=0.8 0.7231 £0.0002  0.7445 + 0.0004
~=0.9 0.7232 £ 0.0002  0.7449 =+ 0.0004
v =0.95 0.7232£0.0001 0.7446 + 0.0002
~v=0.99 0.7228 £0.0004 0.7437 £ 0.0007
NGreedy 0.7223 £0.0003 0.7421 £ 0.0014

B.5.2 Knee data SSIM results for other discount factors

In Table 5 we report average SSIM performance for NGreedy models trained on Knee data with
various discount factors v € [0, 1]. These models represent an interpolation between the Greedy and
NGreedy model. As noted in the main text, the model with v = 0.9 performs best. Note the relatively
heavy drop in performance very close to v = 1.0, which corresponds to our NGreedy model. Out of
all the tested discount factors it seems that a fully NGreedy (v = 1.0) model performs worst on the
Knee dataset.

Note that the v = 0 model does not exactly correspond to the Greedy model due to a difference in
computation of the reward baseline (see Figure 2), but is otherwise equivalent. We note here that
the performance of this model is slightly higher than that of the Greedy model, though still within
one standard deviation. The weaker baseline of the v = 0 model, may in fact help the optimisation
by escaping local minima, as these Greedy models tend to have high SNR and thus seem to be less
hampered by variance than the models with higher values for +. The different reward baseline may
matter more for the non-greedy models, as they seem more troubled by gradient variance. Valuable
future research may be to investigate methods for adapting this baseline to the non-greedy case,
for instance by incorporating value function learning to estimate the return of a particular node in
Figure 2. Due to computational constraints, we do not report a table like Table 5 for Brain data.

While the Greedy model underperforms most of the non-greedy models, the differences are in
most cases within one standard deviation of performance. As the Greedy model is much less
computationally intensive, the greedy approach may be favoured for certain MRI tasks.
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Table 6: Signal-to-Noise ratio comparison of the Greedy, NGreedy and v = 0.9 models on both
datasets, for the two time horizons trained on. Displayed are average SNR estimates obtained for the
best performing model (on test data) on three runs over the train data for every setting, at various
points during its training: Epoch n refers to the model after the n’th epoch of training is completed.
SNR is estimated using gradients for the final layer of the policy network, with ¢ = 16 samples and
batch size 16 in all settings.

Knee
Base horizon Long horizon

Greedy NGreedy ~=0.9 Greedy NGreedy ~=0.9

Epoch 1 2.21£0.24 1.82£0.01 2.22£0.18 2.46=£0.25 1.68+0.14 2.05£0.11
Epoch10 3.20£0.10 1.17£0.03 2.00£0.22 5.90£0.14 1.16+0.18 2.00+£0.05
Epoch20 3.914+0.08 1.24+0.07 2.12+0.06 3.494+0.27 1.04£0.16 3.04%+0.06
Epoch30 5.90+0.12 1.08£0.20 2.20£0.12 4.78£0.13 1.04+£0.20 2.24+£0.21
Epoch40 2.80+0.40 1.02£0.12 1.59+0.03 2.144+0.08 1.06+£0.08 1.514+0.12
Epoch50 2.514+0.03 1.02+£0.07 1.43+0.10 2.154+0.16 0.96+£0.16 1.2940.11

Brain
Base horizon Long horizon

Greedy NGreedy ~=0.9 Greedy NGreedy ~=0.9

Epoch 1 6.70+£0.09 3.76£0.22 5.31£0.10 8.75+0.20 1.57£0.11 7.80+0.10
Epoch 10 8.444+0.06 2.48+0.11 4.91+0.08 12.10+£0.14 1.96+0.07 6.284+0.17
Epoch20 11.21+0.08 2.95+0.23 5.32£0.02 13.36+0.19 1.18+0.15 7.22+0.19
Epoch 30 14.50£0.09 2.02+0.21 3.25+0.05 16.16+£0.18 1.15+0.12 6.504+0.07
Epoch40 1491+0.11 1.83+0.14 3.08£0.23 13.04+0.04 1.04+0.14 3.73+£0.26
Epoch 50 7.024+0.07 1.45+0.10 2.35+0.00 4.56+0.09 0.82+0.08 2.984+0.09

B.6 More SNR results

We report SNR values as in Table 2 for additional intermediate training stages in Table 6. These
results are consistent with the conclusions stated in the main text. Shortly after initialisation all Knee
settings have relatively similar SNR, likely due to the average reward signal dominating all settings
under the initial random policy. For the Greedy estimators, it is notable that the SNR seems to rise and
fall quite sharply. We suspect this effect is related to convergence, and we leave closer investigation
of it to future work.

B.7 Reconstruction examples

Here we present some example reconstructions for the Greedy and NGreedy model on both acquisition
horizons. Figures 17 and 18 each show a slice of knee data. Figures 19 and 20 instead each show a
slice of brain data.

In every image we present from top to bottom: base horizon Greedy, base horizon NGreedy, long
horizon Greedy, long horizon NGreedy. From left to right: final subsampling mask, reconstruction at
this point, target image, absolute difference between target and reconstruction. For the Brain data
long horizon setting, the policies primarily suggest to sample low frequency bands, as was already
observed in Figure 6.
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Figure 17: Visualisation of a slice of Knee data for various settings. From top to bottom: base horizon
Greedy, base horizon NGreedy, long horizon Greedy, long horizon NGreedy. From left to right: final
subsampling mask, reconstruction at this point, target image, absolute difference between target and
reconstruction.
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Figure 18: Visualisation of a slice of Knee data for various settings. From top to bottom: base horizon
Greedy, base horizon NGreedy, long horizon Greedy, long horizon NGreedy. From left to right: final
subsampling mask, reconstruction at this point, target image, absolute difference between target and
reconstruction.
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Figure 19: Visualisation of a slice of Brain data for various settings. From top to bottom: base horizon
Greedy, base horizon NGreedy, long horizon Greedy, long horizon NGreedy. From left to right: final
subsampling mask, reconstruction at this point, target image, absolute difference between target and
reconstruction.
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Figure 20: Visualisation of a slice of Brain data for various settings. From top to bottom: base horizon
Greedy, base horizon NGreedy, long horizon Greedy, long horizon NGreedy. From left to right: final
subsampling mask, reconstruction at this point, target image, absolute difference between target and
reconstruction.
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