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A More background

A.1 Calculus on manifold

Definition A.1 (Levi-Civita Connection). Let (M, g) be a Riemannian manifold. An affine connec-
tion is said to be the Levi-Civita connection if it is torsion-free. i.e.

∇XY −∇YX = [X,Y ]

for every pair of vector fields X,Y on M and preserves the metric i.e.

∇g = 0.

Definition A.2 (Riemannian Volume). Let (M, g) be an orientable Riemannian manifold. The
volume form on the manifold in local coordinates is given as

dVol =
√

det(g)dx1 ∧ ... ∧ dxn.

We denote |g| = det(g) and dx = dVol (if no ambiguities caused) for short throughout following
context.
The following Theorem is used to guarantee the exponential map is defined on the whole tangent
space, which is equivalent to require M to be complete. This property is satisfied in our setting for
M to be compact without boundary.
Theorem A.3 (Hopf-Rinow). Let (M, g) be a connected Riemannian manifold. Then the followings
are equivalent.

1. The closed and bounded subsets of M are compact.

2. M is a complete metric space.

3. M is geodescically complete: for every point x ∈M , the exponential map Expx is defined
on the entire tangent space TxM .

The notion of differential operators, e.g. gradient, divergence and Laplacian for the differentiable
functions and vector fields on Euclidean space can be generalized to Riemannian manifold. In local
coordinate system, {∂i = ∂

∂xi
: i ∈ [n]} is a basis of the tangent space TxM . Denote gij the

metric matrix, gij the inverse of gij and |g| = det gij the determinant of matrix gij . Let f and V be
differentiable function and vector field on M , then the Riemannian gradient of f and the divergence
of V are written as

gradf =
∑
i,j

gij
∂f

∂xi
∂i and divV =

1√
|g|

∑
i

∂

∂xi

(√
|g|Vi

)
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where Vi is the i-th component of V .

The Laplace-Beltrami operator ∆M acting on f is defined to be the divergence of the gradient of f ,
i.e.

∆Mf = div(gradf) =
1√
|g|

∑
i

∂

∂xi

√|g|∑
j

gij
∂f

∂xj

 .

In Euclidean space, ∆M boils down to the classic Laplacian ∆f = ∇ · (∇f).
The following integration by parts formulas are used in proof of main lemmas. Let M be a compact
oriented Riemannian manifold of dimension n with boundary ∂M . Let X be a vector field on M .
The integration by parts is given by∫

M

〈gradf,X〉 = −
∫
M

fdivX +

∫
∂M

f〈X,n〉

or Green’s formula ∫
M

(f∆Mg − g∆Mf) = −
∫
∂M

(
f
∂g

∂n
− g ∂f

∂n

)
If ∂M is empty or the vector field X decay sufficiently fast at infinity of M provided M is open, we
have ∫

M

〈gradf,X〉 = −
∫
M

fdivX.

Definition A.4 (First eigenvalue of Laplacian). The first eigenvalue λ1 ≥ 0 of the Laplacian operator
on M is defined to be

λ1 = inf
f∈C∞

c

{∫
M
‖gradf‖ 2dx∫
M
‖f‖ 2dx

}
.

A.2 Stochastic analysis on manifold

Recall that the standard Brownian motion in Rn is a random process {Xt}t≥0 whose density evolves
according to the diffusion equation

∂ρ(x, t)

∂t
=

1

2
∆ρ(x, t).

Similarly, the Brownian motion in manifold M is M -valued random process {Wt}t≥0 whose density
function evolves according to the diffusion equation with respect to Laplace-Beltrami operator which
is the counterpart of the Laplace operator on Euclidean space.

∂ρ(x, t)

∂t
=

1

2
∆Mρ(x, t).

In local coordinate, the Laplace-Beltrami is written as

∆M =
∑
i.j

gij
∂2

∂xi∂xj
+
∑
i

bi
∂

∂xi
,

where

bi =
∑
j

1√
|g|

∂

∂xj

(√
|g|gij

)
=
∑
j,k

gjkΓijk. (1)

We can construct Brownian motion in the local coordinate as the solution of the stochastic differential
equation for a process {Xt}t≥0:

dXt =
1

2
b(Xt)dt+ σ(Xt)dBt

where the component bi(Xt) of b(Xt) is given by (1) and σ = (σij) is the unique symmetric square
root of g−1 = (gij).
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B Derivation of the GLA

In this section, we give detailed explanation on that the Riemannian Langevin algorithm, as a
stochastic process, captures the dynamics of the evolution of the density function for the stochastic
process. The derivation is firstly to write the diffusion equation in local coordinate system of
the manifold, and then compare the corresponding terms to the Fokker-Planck equation related to
stochastic differential equation that gives insight to the local expression of Riemannian Langevin
algorithm. In order to do this, recall that the density e−f on M is the stationary solution of the PDE

∂ρt
∂t

= div (ρtgradf + gradρt) . (2)

Using the local expression of Riemannian gradient and divergence operator, this PDE can be written
as

∂ρt
∂t

=
1√
|g|

n∑
i=1

∂

∂xi

√|g|
∑

j

gij
∂f

∂xj

 ρt +
√
|g|
∑
j

gij
∂ρt
∂xj

 (3)

=
1√
|g|

∑
i

∂

∂xi

∑
j

gij
∂f

∂xj
− 1√

|g|

∑
j

∂

∂xj

(√
|g|gij

)√|g|ρt
 (4)

+
1√
|g|

∑
i,j

∂2

∂xi∂xj

(
gij
√
|g|ρt

)
(5)

Denoting ρ̃t =
√
|g|ρt, we have the Fokker-Planck equation of density in Euclidean space as follows,

∂ρ̃t
∂t

= −
∑
i

∂

∂xi

 1√
|g|

∑
j

∂

∂xj

(√
|g|gij

)
−
∑
j

gij
∂f

∂xj

 ρ̃t

+
∑
i,j

∂2

∂xi∂xj

(
gij ρ̃t

)
.

(6)
Since for any stochastic differential equation of the form

dXt = F (Xt, t)dt+ σ(Xt, t)dBt

the density pt for Xt satisfies

∂p(x, t)

∂t
= −

n∑
i=1

∂

∂xi
(Fi(x, t)p(x, t)) +

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
(Aij(x, t)p(x, t)) (7)

where A = 1
2σσ

>, i.e. Aij = 1
2

∑n
k=1 σik(x, t)σjk(x, t). Compare equations (6) and (7), we have

the drift and diffusion terms in local coordinate systems are given by

Fi(xt) = −
∑
j

gij
∂f

∂xj
+

1√
|g|

∑
j

∂

∂xj

(√
|g|gij

)
and

σ(xt) =
√

2(Aij) =
√

2(gij) =
√

2g−1.

So the local Langevin equation is

dXt = F (Xt)dt+
√

2g−1dBt. (8)

This equation describes infinitesimal evolution of Xt, which can be seen as a process in the tangent
space of M . The Riemannian Langevin algorithm is the classic Euler-Maruyama discretization in the
tangent space, i.e., by letting Xt move in the tangent space for a positive time interval t ∈ [0, ε] with
the drift and diffusion at current location. Suppose the initial point is x0, the tangent vector is

εF (x0) +
√

2εg−1(x0)ξ0

where ξ0 ∼ N (0, I) is the standard Gaussian noise. Then the updated point is obtained by mapping
the vector to the base manifold via exponential map,

x1 = Expx0

(
εF (x0) +

√
2εg−1(x0)ξ0

)
.
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Renaming xk = x0 and xk+1 = x1, we have the general form

xk+1 = Expxk

(
εF (xk) +

√
2εg−1(xk)ξ0

)
.

We give the expression of the algorithm in normal coordinate, for convenience in part of the proofs of
main theorems.

For any manifold M , and x ∈ M , TxM is isomorphic to Rn, exp−1x gives a local coordinate
system of M around x. This is called the normal coordinates at x. The following lemmas are from
Lee-Vampalar
Lemma B.1. In normal coordinate, we have

gij(x) = δij −
1

3

∑
kl

Rikjl(x)xkxl +O(|x|3).

Under normal coordinate, the RLA can be written as

xt+1 = Expxt(−ε∇f(xt) +
√

2εξ0).

Note that the expression in the tangent space is exactly the same as unadjusted Langevin algorithm in
Euclidean space.

C Missing proofs of Section 4

C.1 Proof of Theorem 4.2

In this section, we proof that the KL divergence decreases along the process evolving following
Riemannian Langevin equation.

Firstly, need show that according to the SDE on manifold in local chart, the density func-
tion evolves according to Fokker-Planck/diffusion equation on this manifold.
Lemma 4.1. Suppose ρt evolves following the Fokker-Planck equation (3), then

d

dt
H(ρt|ν) = −

∫
M

ρt(x)

∥∥∥∥grad log
ρt(x)

ν(x)

∥∥∥∥ 2dx

where dx is the Riemannian volume element.

Proof. Since ∫
M

ρt
∂

∂t
log

ρt
ν
dx =

∫
M

ρt
∂

∂t
(log ρt + f)dx (9)

=

∫
M

∂ρt
∂t

dx (10)

=
d

dt

∫
M

ρtdx = 0, (11)

we have
d

dt
H(ρt|ν) =

d

dt

∫
M

ρt log
ρt
ν
dx (12)

=

∫
M

d

dt

(
ρt log

ρt
ν

)
dx (13)

=

∫
M

∂ρt
∂t

log
ρt
ν
dx+

∫
M

ρt
∂

∂t
log

ρt
ν
dx (14)

=

∫
M

∂ρt
∂t

log
ρt
ν
dx. (15)

Plug in with diffusion equation

∂ρt
∂t

= div(ρtgradf + gradρt)
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and apply integration by parts, we obtain

d

dt
H(ρt|ν) =

∫
M

div(ρtgradf + gradρt) log
ρt
ν
dx (16)

= −
∫
M

ρt

∥∥∥grad log
ρt
ν

∥∥∥ 2dx (17)

+

∫
∂M

log
ρt
ν
〈ρtgradf + gradρt, n〉dx (18)

Since M is compact and has no boundary, the boundary integral equals to zero, then we have

d

dt
H(ρt|ν) = −

∫
M

ρt

∥∥∥grad log
ρt
ν

∥∥∥ 2dx

Theorem 4.2. Suppose ν satisfies LSI with constant α > 0. Then along the Riemannian Langevin
equation, i.e. the SDE (4) in local coordinate systems, the density ρt satisfies

H(ρt|ν) ≤ e−2αtH(ρ0|ν).

Proof. By LSI, we have
d

dt
H(ρt|ν) ≤ −2αH(ρt|ν),

multiplying both sides by eαt,

e2αt
d

dt
H(ρt|ν) ≤ −2αe2αtH(ρt|ν)

and then

e2αt
d

dt
H(ρt|ν) + 2αe2αtH(ρt|ν) =

d

dt
e2αtH(ρt|ν) ≤ 0.

Integrating for 0 ≤ t ≤ s, the result holds as

e2αsH(ρs|ν)−H(ρ0|ν) =

∫ s

0

d

dt
e2αtH(ρt|ν) ≤ 0.

Rearranging and renaming s by t, we conclude

H(ρt|ν) ≤ e−2αtH(ρt|ν)

C.2 Proof of Theorem 4.3

Lemma C.1. Assume ν = e−f is L-smooth. Then

Eν [‖gradf‖ 2] ≤ nL.

Proof. Since

Eν [‖gradf‖ 2] =

∫
M

〈gradf, gradf〉e−fdx = −
∫
M

〈grade−f , gradf〉dx,

where dx is the Riemannian volume element. Integration by parts on manifold gives the following

−
∫
M

〈grade−f , gradf〉dx =

∫
M

e−f∆Mfdx−
∫
∂M

e−f 〈gradf, n〉ds

where ds is the area element on ∂M . By the assumption that M is boundaryless, the integral on
the boundary is 0. By the assumption Hessf is L-smooth and the fact that Hessf ≥ 1

n∆Mf , we
conclude Eν [‖gradf‖ 2] ≤ nL
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Lemma C.2. Suppose ν satisfies Talagrand inequality with constant α > 0 and L-smooth. Then for
any ρ,

Eρ[‖gradf‖ 2] ≤ 4L2

α
H(ρ|ν) + 2nL.

Proof. Let x ∼ ρ and y ∼ ν with optimal coupling (x, y) so that

E[d(x, y)2] = W2(ρ, ν)2.

gradf is L-Lipschitz from the assumption that f is L-smooth. So we have the following inequality:

‖gradf(x)‖ ≤
∥∥gradf(x)− Γxygradf(y)

∥∥ +
∥∥Γxygradf(y)

∥∥ (19)

≤ Ld(x, y) +
∥∥Γxygradf(y)

∥∥ (20)

= Ld(x, y) + ‖gradf(y)‖ (21)

where the equality follows from that parallel transport is an isometry. The same arguments as V-W
gives

‖gradf(x)‖ 2 ≤ (Ld(x, y) + ‖gradf(y)‖ )2 ≤ 2Ld(x, y)2 + 2 ‖gradf(y)‖ 2

and

Eρ[‖gradf(x)‖ 2] ≤ 2L2E[d(x, y)2] + 2Eν [‖gradf(y)‖ 2] (22)

= 2L2W2(ρ, ν)2 + 2Eν [‖gradf(y)‖ 2]. (23)

By Talagrand inequality and previous lemma, the result follows.

Lemma C.3. Suppose ν satisfies LSI with constant α > 0 and is L-smooth. If ε small enough, then
along each step,

H(pε|ν) ≤ e−αεH(p0|ν) + 4ε2(2nL2 + 2n3K2C + nK3K4)

for small ε, and

H(pk+1|ν) ≤ e−αεH(pk|ν) + 4ε2(2nL2 + 2n3K2C + nK3K4).

for all k ∈ N.

Proof. According to [? ], the exponential map Expx is a diffeomorphism on almost all the manifold,
i.e. let Ūx be the closed set of vectors in TxM for which γ(t) = Expx(tv), t ∈ [0, 1] is length
minimizing, and Ux be the interior and ∂Ūx be its boundary. Then the exponential map is a
diffeomorphism on Ux and Expx(∂Ūx) has measure zero.

In normal coordinates, the discretized SDE has the form of

dxt = −gradf(x0)dt+
√

2g−1(x0)dBt

and the Fokker-Planck equation of this SDE is

∂pt|0(xt|x0)

∂t
=
∑
i

∂

∂xi
((
∑
j

gij
∂f

∂xj
(x0))pt|0(xt|x0)) +

∑
i,j

∂2

∂xi∂xj
g−1(x0)pt|0(xt|x0) (24)

= div(pt|0(xt|x0)gradf(x0)) +
∑
i,j

g−1
∂2

∂xi∂xj
pt|0(xt|x0) +

∑
i

bi
∂

∂xi
pt|0(xt|x0)

(25)

+
∑
i,j

∂2

∂xi∂xj
g−1(x0)pt|0(xt|x0)− (

∑
i,j

g−1
∂2

∂xi∂xj
pt|0(xt|x0) +

∑
i

bi
∂

∂xi
pt|0(xt|x0))

(26)
= div(pt|0(xt|x0)gradf(x0)) + ∆Mpt|0(xt|x0) (27)

+
∑
i,j

(gij(x0)− gij(xt))
∂2

∂xi∂xj
pt|0(xt|x0)−

∑
i

bi
∂

∂xi
pt|0(xt|x0) (28)
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∂pt(x)

∂t
=

∫
Rn

∂pt|0(x|x0)

∂t
p0(x0)

√
|g|dx0 (29)

=

∫
Rn

∑
i

∂

∂xi
((
∑
j

gij
∂f

∂xj
(x0))pt|0(xt|x0)) +

∑
i,j

∂2

∂xi∂xj
g−1(x0)pt|0(xt|x0)

 p0(x0)
√
|g|dx0

(30)

=

∫
Rn

(
div(pt|0(x|x0)gradf(x0)) + ∆Mpt|0(x|x0)

)
p0(x0)

√
|g|dx0 (31)

+

∫
Rn

∑
i,j

(gij(x0)− gij(x))
∂2

∂xi∂xj
pt|0(x|x0)

 p0(x0)
√
|g|dx0 (32)

−
∫
Rn

(∑
i

bi
∂

∂xi
pt|0(x|x0)

)
p0(x0)

√
|g|dx0 (33)

∫
Rn

(
div(pt|0(x|x0)gradf(x0)) + ∆Mpt|0(x|x0)

)
p0(x0)

√
|g|dx0 (34)

=

∫
Rn

div(pt0(x, x0)gradf(x0))
√
|g|dx0 + ∆Mpt(x) (35)

= div

(
pt(x)

∫
Rn
p0|t(x0|x)gradf(x0)dx0

)
+ ∆Mpt(x) (36)

= div
(
pt(x)Ep0|t [gradf(x0)|xt = x]

)
+ ∆Mpt(x) (37)

∫
Rn

∑
i,j

(gij(x0)− gij(x))
∂2

∂xi∂xj
pt|0(x|x0)

 p0(x0)
√
|g|dx0 (38)

=
∑
i,j

∫
Rn

(gij(x0)− gij(x))
∂2

∂xi∂xj
pt|0(x|x0)p0(x0)

√
|g|dx0 (39)

≤
∑
i,j

∫
Rn

∣∣gij(x0)− gij(x)
∣∣ · ∣∣∣∣ ∂2

∂xi∂xj
pt|0(x|x0)p0(x0)

∣∣∣∣√|g|dx0 (40)

≤
∑
i,j

∫
Rn
O(‖x− x0‖ 2)

∣∣∣∣ ∂2

∂xi∂xj
pt|0(x|x0)p0(x0)

∣∣∣∣√|g|dx0 (41)

=
∑
i,j

∫
Rn
O(‖x− x0‖ 2)

∣∣∣∣ ∂2

∂xi∂xj
p0t(x0, x)

∣∣∣∣√|g|dx0 (42)

≤ n2K1

∫
Rn
O(‖x− x0‖ 2)

√
|g|dx0 (43)

where K1 is the upper bound of
∣∣∣ ∂2

∂xi∂xj
p0t(x0, x)

∣∣∣
∫
Rn

∫
Rn

∑
i,j

(gij(x0)− gij(x))
∂2

∂xi∂xj
pt|0(x|x0)

 p0(x0)
√
|g|dx0

 log
pt
ν

√
|g|dx (44)

≤
∑
ij

∫
Rn

(∫
Rn

∣∣gij(x0)− gij(x)
∣∣ ∣∣∣∣ ∂2

∂xi∂xj
p0t(x0, x)

∣∣∣∣√|g|dx0) ∣∣∣log
pt
ν

∣∣∣√|g|dx (45)
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Let

p̃(x0, x) =

∂2pt0(x0,x)
∂xi∂xj

log pt
ν

pt0(x0, x)

and assume that |p̃(x0, x)| is bounded by K2. Then (44) is bounded by
n2K2Ept0

[
O
(∥∥−tgradf(x0) +

√
2tz
∥∥ 2
)]

.

∫
Rn

∫
Rn

∑
ij

bi
∂p0t(x0, x)

∂xi

√|g(x0)|dx0

 log
pt
ν

√
|g(x)|dx (46)

=
∑
i

∫
Rn×Rn

bi(x)
∂p0t(x0, x)

∂xi
log

pt
ν
d(x0 × x) (47)

≤ K3

∫
Rn×Rn

|bi(x)| p0t(x0, x)d(x0 × x) (suppose K3 ≥

∣∣∣∂p0t(x0,x)
∂xi

∣∣∣ log pt
ν

p0t(x0, x)
) (48)

= K3

∑
i

Ep0t [|bi(x)|] (49)

= K3

∑
i

Ep0t
[∣∣∣bi(x0 − tgradf(x0) +

√
2tz)

∣∣∣] (50)

bi(x0 − tgradf(x0) +
√

2tz) (51)

= bi(x0)− t〈∇bi(x0),∇f(x0)〉+
√

2t〈∇bi(x0), z〉+ t〈z,∇2bi(x0)z〉. (52)

and then

Ep0t
[∣∣∣bi(x0 − tgradf(x0) +

√
2tz)

∣∣∣] ≤ tK4 (53)

where K4 is determined by the expectation of 〈∇bi(x0),∇f(x0)〉 and 〈z,∇2bi(x0)z〉. So we have∫
Rn

∫
Rn

∑
ij

bi
∂p0t(x0, x)

∂xi

√|g(x0)|dx0

 log
pt
ν

√
|g(x)|dx ≤ tnK3K4.

d

dt
H(pt|ν) =

∫
Rn

(∫
Rn

(
div(pt|0(x|x0)gradf(x0)) + ∆Mpt|0(x|x0)

)
p0(x0)

√
|g|dx0

)
log

pt
ν
dx

(54)

d

dt
H(pt|ν) ≤ −3

4
J +

4t2L4

α
H(p0|ν) + 2t2nL3 + 2tnL2 (55)

+ n2K2Ept0
[
O
(∥∥∥−tgradf(x0) +

√
2tz
∥∥∥ 2
)]

+ tnK3K4 (56)

≤ −3

4
J +

4t2L4

α
H(p0|ν) + 2t2nL3 + 2tnL2 (57)

+ n2K2C

(
4t2L2

α
H(p0|ν) + 2t2nL+ 2tn

)
+ tnK3K4 (58)

= −3

4
J +

4t2L4 + 4t2L2n2K2C

α
H(p0|ν) + 2t2(nL3 + n3K2CL) + t(2nL2 + 2n3K2C + nK3K4)

(59)

Let t ≤ ε ≤ 2nL2+2n3K2C+nK3K4

2(nL3+n3K2CL)
, we have

d

dt
H(pt|ν) ≤ −3α

2
H(pt|ν) +

4ε2(L4 + L2n2k2C)

α
H(p0|ν) + 2ε(2nL2 + 2n3K2C + nK3K4)

(60)
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Multiplying both sides by e
3α
2 t, we have

d

dt

(
e

3α
2 tH(pt|ν)

)
≤ e 3α

2 t

(
4ε2(L4 + L2n2k2C)

α
H(p0|ν) + 2ε(2nL2 + 2n3K2C + nK3K4)

)
and integrating for t ∈ [0, ε],

e
3
2αεH(pε|ν)−H(p0|ν) ≤ 2(e

3α
2 ε − 1)

3α

(
4ε2(L4 + L2n2k2C)

α
H(p0|ν) + 2ε(2nL2 + 2n3K2C + nK3K4)

)
(61)

≤ 2ε

(
4ε2(L4 + L2n2k2C)

α
H(p0|ν) + 2ε(2nL2 + 2n3K2C + nK3K4)

)
(62)

So

H(pε|ν) ≤ e− 3
2αε

(
8ε3(L4 + L2n2K2C)

α
+ 1

)
H(p0|ν) + e−

3
2αε4ε2(2nL2 + 2n3K2C + nK3K4)

(63)

≤ e− 3
2αε

(
8ε3(L4 + L2n2K2C)

α
+ 1

)
H(p0|ν) + 4ε2(2nL2 + 2n3K2C + nK3K4).

(64)

If 1 + 8ε3(L4+L2n2K2C)
α ≤ 1 + αε

2 ≤ e
1
2αε, or ε ≤ α

4L
√
L2+n2K2C

,

H(pε|ν) ≤ e−αεH(p0|ν) + 4ε2(2nL2 + 2n3K2C + nK3K4),

and then
H(pk+1|ν) ≤ e−αεH(pk|ν) + 4ε2(2nL2 + 2n3K2C + nK3K4).

Theorem 4.3. Suppose M is a compact manifold without boundary and R is the Riemann curvature,
ν = e−f a density on M with α > 0 the log-Sobolev constant. Then there exists a global constant
K2,K3,K4, C, such that for any x0 ∼ ρ0 with H(ρ0|ν) ≤ ∞, the iterates xk ∼ ρk of GLA with
stepsize ε ≤ min{ α

4L
√
L2+n2K2C

, 2nL
2+2n3K2C+nK3K4

2(nL3+n3K2CL)
, 1
2L ,

1
2α} satisfty

H(pk|ν) ≤ e−αkεH(p0|ν) +
16ε

3α
(2nL2 + 2n3K2C + nK3K4)

Proof.

H(pk|ν) ≤ e−αkεH(p0|ν) +
1− e−αkε

1− e−αε
4ε(2nL2 + 2n3K2C + nK3K4) (65)

≤ e−αkεH(p0|ν) +
4

3αε
4ε2(2nL2 + 2n3K2C + nK3K4) (66)

= e−αkεH(p0|ν) +
16ε

3α
(2nL2 + 2n3K2C + nK3K4) (67)
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D Experiments

As mentioned before, for simplicity, we can implement GLA without using the exponential map
where a geodesic ODE solver is required, especially for the case when M is a submanifold of Rn.
In general, the retraction map from TxM to M is used in optimization on Riemannian manifold
[? ], as a replacement of exponential map. In this section, we give experiments on sampling from
distributions on the unit sphere in comparison of exponential map and orthogonal projection as a
retraction in the geodesic step of GLA.

The experiments are designed to verify the following properties:

1. GLA captures the target distribution e−f as expected;
2. The projection map behaves well in replacing the exponential map without solving geodesic

equations.

In each set of figures, (a) is the landscape of the ideal distribution, (b) and (c) are the results with small
number of iterations for exponential map and projection, (d) and (e) are enhanced with large number
of iterations. We start with the definition of the general retraction in optimization on manifold.
Definition D.1 (Retraction). A retraction on a manifold M is a smooth mapping Retr from the
tangent bundle TM to M satisfying properties 1 and 2 below: Let Retrx : TxM →M denote the
restriction of Retr to TxM .

1. Retrx(0) = x, where 0 is the zero vector in TxM .

2. The differential of Retrx at 0 is the identity map.

Suppose M is a submanifold of Rn with positive codimension. Denote ProjTxM the orthogonal
projection to the tangent space at x, then the retraction can be defined as Retrx(v) = ProjM (x+ v).
The GLA on a submanifold of Rn can be written as

xk+1 = Retrx

(
ProjTxM (−ε∇f(xk) +

√
2εξ0)

)
(68)

If M = Sn−1 be the unit sphere in Rn, then Retrx(v) = x+v
‖x+v‖ .
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(a) Ideal distribution of e−f

(b) Expx(v), iteration: 10k (c) Retrx(v), iteration: 10k

(d) Expx(v), iteration: 100k (e) Retrx(v), iteration: 100k

Figure 1: f(x) = x1 + x2 + x3, stepsize ε = 0.1.
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(a) Ideal distribution of e−f

(b) Expx(v), iteration: 10k (c) Retrx(v), iteration: 10k

(d) Expx(v), iteration: 100k (e) Retrx(v), iteration: 100k

Figure 2: f(x) = x21 + 3.05x22 − 0.9x23 + 1.1x1x2 +−1.02x2x3 + 2.1x3x1, setpsize ε = 0.1.
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