
Supplementary Material

A Formal Statement of Assumptions

Assumption 1 For all i ∈ [n] and j ∈ [mi], f̂i,j(·, Dtest
i,j ) satisfy the following:

1. B̂-boundedness: ∃B̂ ∈ R s.t. ∀w ∈ W , |f̂i,j(w,Dtest
i,j )| ≤ B̂.

2. L̂-Lipschitz continuity: ∃L̂ ∈ R s.t. ∀u, v ∈ W , |f̂i,j(u,Dtest
i,j )−f̂i,j(v,Dtest

i,j )| ≤ L̂‖u−v‖2.

Furthermore, each f̂i,j(·, Dtrain
i,j ) satisfies the following:

1. Hessian eigenvalue lower bound: ∃Ĥ ∈ R s.t. ∀w ∈ W , λmin(∇2f̂i,j(w,D
train
i,j )) ≥ −Ĥ .

Assumption 2 For all i ∈ [n] and j ∈ [mi], f̂i(·, Dtrain
i,j ) satisfies the following:

1. M̂ -smoothness: ∃M̂ ∈ R s.t. ∀u, v ∈ W , ‖∇f̂i,j(u,Dtrain
i,j )−∇f̂i,j(v,Dtrain

i,j )‖2 ≤ M̂‖u−
v‖2.

2. ρ̂-Hessian-Lipschitz continuity: ∃ρ̂ ∈ R s.t. ∀u, v ∈ W , |∇2f̂i,j(u,D
train
i,j ) −

∇2f̂i,j(v,D
train
i,j )| ≤ ρ̂‖u− v‖2.

B Proof of Lemma 1

B.1 Unbiasedness

Proof. Recall that ĝw(w, p) is computed as follows:

ĝw(w, p) =
n

C

C∑
k=1

pik(I − α∇2f̂ik,jk(w,Dtrain
ik,jk

))∇f̂ik,jk(w − α∇f̂ik,jk(w,Dtrain
ik,jk

), Dtest
i,ji)

Thus we have

E[ĝw(w, p)]

= E{(ik,jk)}k

[
n

C

C∑
k=1

pik(I − α∇2f̂ik,jk(w,Dtrain
ik,jk

))∇f̂ik,jk(w − α∇f̂ik,jk(w,Dtrain
ik,jk

), Dtest
ik,jk

)

]

a
= E{ik}k

[
n

C

C∑
k=1

E{jk}k
[
pik(I − α∇2f̂ik,jk(w,Dtrain

ik,jk
))∇f̂ik,jk(w − α∇f̂ik,jk(w,Dtrain

ik,jk
), Dtest

ik,jk
) | {ik}k

]]

= E{ik}k

 n
C

C∑
k=1

pik
mik

mik∑
j=1

(I − α∇2f̂ik,j(w,D
train
ik,j

))∇f̂ik,j(w − α∇f̂ik,j(w,Dtrain
ik,j

), Dtest
ik,j

) | C


b
=

n∑
i=1

pi
mi

mi∑
j=1

(I − α∇2f̂i,j(w,D
train
i,j ))∇f̂i,j(w − α∇f̂i,j(w,Dtrain

i,j ), Dtest
i,j )

= gw(w, p) (13)

where a follows from the Law of iterated Expectation and b follows because each index ik is selected
with probability 1/n. A similar computation shows that E[ĝp(w, p)] = gp(w, p).

B.2 Bounded Second Moments

Proof. First we show the bound on E[‖ĝp(w, p)‖22]. Recall that ĝp(w, p) =
∑C
k=1

n
C f̂ik(w −

α∇f̂ik(w,Dtrain
ik,jk

), Dtest
ik,jk

)eik . Let ci be the number of times index i appears in {ik}Ck=1.
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Then, noting that each ci is a binomial random variable with success probability 1
n and C trials, we

have

E[‖ĝp(w, p)‖22] =

n∑
i=1

E[(ĝp(w, p)i)
2]

=

n∑
i=1

E[(
∑

k∈[C]:ik=i

n

C
f̂i(w − α∇f̂i(w,Dtrain

i,jk
), Dtest

i,jk
))2]

≤ n2

C2

n∑
i=1

E[(
∑

k∈[C]:ik=i

B̂)2] (14)

=
n2

C2

n∑
i=1

E[(ciB̂)2]

=
n2

C2

n∑
i=1

(
C(n− 1)

n2
+
C2

n2
)B̂2

=
n

C
(n+ C − 1)B̂2 =: Ĝ2

p (15)

where (14) follows from Assumption 1. Next we bound E[‖ĝw(w, p)‖22]. Recall the definition of
ĝw(w, p):

ĝw(w, p) =

C∑
k=1

n

C
pik(I −α∇2f̂ik,jk(w,Dtrain

ik,jk
))∇f̂ik,jk(w−α∇f̂ik,jk(w,Dtrain

ik,jk
), Dtest

ik,jk
) (16)

We can write ĝw(w, p) = n
C

∑C
k=1Xk where Xk is written as

Xk = pik(I − α∇2f̂ik,jk(w,Dtrain
ik,jk

))∇f̂ik,jk(w − α∇f̂ik,jk(w,Dtrain
ik,jk

), Dtest
ik,jk

) (17)

We have

E[‖Xk‖22] =
1

n

n∑
i=1

1

mi

mi∑
j=1

p2
i ‖(I − α∇2f̂i,j(w,D

train
i,j ))∇f̂i,j(w − α∇f̂i,j(w,Dtrain

i,j ), Dtest
i,j )‖22

≤ 1

n

n∑
i=1

p2
i

mi

mi∑
j=1

‖(I − α∇2f̂i,j(w,D
train
i,j ))‖22‖∇f̂i,j(w − α∇f̂i,j(w,Dtrain

i,j ), Dtest
i,j )‖22

(18)

≤ 1

n

n∑
i=1

p2
i

mi

mi∑
j=1

(1 + αĤ)2‖∇f̂i,j(w − α∇f̂i(w,Dtrain
i,j ), Dtest

i,j )‖22 (19)

≤ 1

n

n∑
i=1

p2
i

mi

mi∑
j=1

(1 + αĤ)2L̂2 (20)

≤ 1

n
(1 + αĤ)2L̂2 (21)

where (18) follows by the Cauchy-Schwarz Inequality, (19) and (20) follow from Assumption 1, and
(21) follows from the fact that

∑n
i=1 p

2
i ≤ 1. Thus we have

E[‖ĝw(w, p)‖22] = E[‖ n
C

C∑
k=1

Xk‖22] (22)

≤ E[
n2

C

C∑
k=1

‖Xk‖22] (23)

≤ n(1 + αĤ)2L̂2 (24)

where (23) follows from the convexity of norms and Jensen’s Inequality.
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C Proof of Theorem 1

Proof. We adapt the arguments from [24] to our nested gradients case. First observe that since each
F̂i(w) is convex, φ(w, p) is convex in w and linear, thus concave, in p. Therefore we can write:

max
p∈∆n

φ(wc
T , p)− min

w∈W
φ(w, pcT ) = max

p∈∆n

{
φ(wc

T , p)− min
w∈W

φ(w, pcT )

}
= max
p∈∆,w∈W

{φ(wc
T , p)− φ(w, pcT )}

≤ 1

T
max

p∈∆,w∈W

{
T∑
t=1

φ(wt, p)− φ(w, pt)

}
(25)

where (25) follows from the convexity of φ in w and the concavity of φ in p. Again using the
convexity of φ in w along with the linearity of φ in p, we have that for any t ≥ 1,
φ(wt, p)− φ(w, pt) = φ(wt, p)− φ(wt, pt) + φ(wt, pt)− φ(w, pt)

≤ 〈(p− pt),∇pφ(wt, pt)〉+ 〈(wt − w),∇wφ(wt, pt)〉
= 〈(p− pt), ĝtp〉+ 〈(wt − w), ĝtw〉

+ 〈(p− pt), (∇pφ(wt, pt)− ĝtp)〉+ 〈(wt − w), (∇wφ(wt, pt)− ĝtw)〉
Thus by rearranging terms and the subadditivity of max,

max
p∈∆,w∈W

{
T∑
t=1

φ(wt, p)− φ(w, pt)

}

≤ max
p∈∆,w∈W

{
T∑
t=1

〈(p− pt), ĝtp〉+ 〈(wt − w), ĝtw〉

}

+ max
p∈∆,w∈W

{
T∑
t=1

〈p, (∇pφ(wt, pt)− ĝtp)〉+ 〈w, (ĝtw −∇wφ(wt, pt))〉

}

−

(
T∑
t=1

〈pt, (∇pφ(wt, pt)− ĝtp)〉 − 〈wt, (∇wφ(wt, pt)− ĝtw)〉

)
(26)

We bound the expectation of each of the above terms separately, starting with the first one. Note that
since 2ab = a2 + b2 − (a− b)2, we have that for any w ∈ W and constant step size ηw > 0,

T∑
t=1

〈(wt − w), ĝtw〉 =
1

2

T∑
t=1

1

ηw
‖wt − w‖22 + ηw‖ĝtw‖22 −

1

ηw
‖wt − ηwĝtw − w‖22

≤ 1

2ηw

T∑
t=1

‖wt − w‖22 + (ηw)2‖ĝtw‖22 − ‖wt+1 − w‖22 (27)

=
1

2ηw
(‖w1 − w‖22 − ‖wT+1 − w‖22) +

ηw
2

T∑
t=1

‖ĝtw‖22 (28)

≤ 1

2ηw
‖w1 − w‖22 +

ηw
2

T∑
t=1

‖ĝtw‖22

≤ 2R2
W

ηw
+
ηw
2

T∑
t=1

‖ĝtw‖22 (29)

where (27) follows from the projection property and (28) is the result of the telescoping sum. Since
(29) holds for allw ∈ W and its right hand side does does not depend onw, we can take the maximum
over w ∈ W on the left hand side, and the expectation of both sides with respect to the stochastic
gradients, to obtain

E

[
max
w∈W

T∑
t=1

〈(wt − w), ĝtw〉

]
≤ 2R2

W
ηw

+
ηwTĜ

2
w

2
(30)
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where Ĝ2
w = n(1 + αĤ)2L̂2 is the bound on the second moment of the stochastic gradient with

respect to w given in Lemma 1. Using analogous arguments and noting that the radius of ∆n is 1, we
can show that

E

[
max
p∈∆n

T∑
t=1

〈(p− pt), ĝtp〉

]
≤ 2

ηp
+
ηpTĜ

2
p

2
(31)

where, again from Lemma 1, Ĝ2
p = n(n+C−1)B̂2

C . Next, for the second term in (26), we can use the
Cauchy-Schwarz Inequality and again the fact that maxp∈∆n

‖p‖2 = 1 to write

max
p∈∆n

T∑
t=1

〈p,∇pφ(wt, pt)− ĝtp〉 = max
p∈∆n

〈p,
T∑
t=1

∇pφ(wt, pt)− ĝtp〉

≤ ‖
T∑
t=1

∇pφ(wt, pt)− ĝtp‖2 (32)

Note from Lemma 1 that

E[‖∇pφ(wt, pt)− ĝtp‖22] = E[‖ĝtp‖22]− ‖∇pφ(wt, pt)‖22
≤ Ĝ2

p

for all t ≥ 1. Define σ̃2
p such that E[‖∇pφ(wt, pt)− ĝtp‖22] ≤ σ̃2

p ≤ Ĝ2
p for all t ≥ 1. Also note that

because the batch selections are independent, the∇pφ(wt, pt)− ĝtp terms are uncorrelated random
variables with mean 0. Using this fact combined with the definition of σ̃2

p, we obtain

E[‖
T∑
t=1

∇pφ(wt, pt)− ĝtp‖2]2 ≤ E[‖
T∑
t=1

∇pφ(wt, pt)− ĝtp‖22]

= E[

T∑
t=1

‖∇pφ(wt, pt)− ĝtp‖22]

≤ T σ̃2
p

which implies that E[‖
∑T
t=1∇pφ(wt, pt) − ĝtp‖2] ≤

√
T σ̃p. Using this relation after taking the

expectation of both sides of (32) yields

E

[
max
p∈∆n

T∑
t=1

〈p,∇pφ(wt, pt)− ĝtp〉

]
≤
√
T σ̃p (33)

Using similar arguments and the analogous definition of σ̃2
w, with this time using RW to bound

maxw∈W ‖w‖2 after the analogous Cauchy-Schwarz step as in 32, we have

E

[
max
w∈W

T∑
t=1

〈w, ĝtw −∇wφ(wt, pt)〉

]
≤ RW

√
T σ̃w (34)

For the third and final term in (26), note that by the Law of Iterated Expectations and the unbiasedness
of the stochastic gradients, we have that for any t ≥ 1,

E[〈pt, (∇pφ(wt, pt)− ĝtp)〉 − 〈wt, (∇wφ(wt, pt)− ĝtw)〉]
= E

[
E
[
〈pt, (∇pφ(wt, pt)− ĝtp)〉 − 〈wt, (∇wφ(wt, pt)− ĝtw)〉|wt, pt

]]
= 0

Recalling (25) and (26), by combining the bounds on each of the terms and dividing by T , we obtain

E
[

max
p∈∆n

φ(wCT , p)− min
w∈W

φ(w, pCT )

]
≤ 2R2

W
ηwT

+
ηwĜ

2
w

2
+

2

ηpT
+
ηpĜ

2
p

2
+
RW σ̃w√

T
+

σ̃p√
T

(35)

We minimize the above bound by setting the step sizes as

ηw =
2RW

Ĝw
√
T
, ηp =

2

Ĝp
√
T

(36)

to complete the proof, noting that σ̃w ≤ Ĝw and σ̃p ≤ Ĝp.
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D Proof of Lemma 2

The result is a sample-approximation version of Theorem 1 in [13]. We include our version of the
proof here for completeness.

Proof. Note that F̂i(w) is the empirical average of the functions f̂i,j(w − α∇f̂i,j(w,Dtrain
i,j ), Dtest

i,j )

for j = 1, . . . ,mi, so we can write F̂i(w) as the empirical expectation over j:

Êj [f̂i,j(w−α∇f̂i,j(w,Dtrain
i,j ), Dtest

i,j )] :=
1

mi

mi∑
j=1

f̂i,j(w−α∇f̂i,j(w,Dtrain
i,j ), Dtest

i,j ) = F̂i(w) (37)

Using this notation, we show the strong convexity of F̂i when α < 1/M and each f̂i,j(·, Dtest
i,j ) is

µ-strongly convex in addition to satisfying Assumption 1. We have

‖∇F̂i(u)−∇F̂i(v)‖
= ‖Êj

[
(I − α∇2f̂i,j(u,D

train
i,j ))∇f̂i,j(u− α∇f̂i,j(u,Dtrain

i,j ), Dtest
i,j )

− (I − α∇2f̂i,j(v,D
train
i,j ))∇f̂i,j(v − α∇f̂i,j(v,Dtrain

i,j ), Dtest
i,j )
]
‖

= ‖Êj
[
(I − α∇2f̂i,j(u,D

train
i,j ))

(
∇f̂i,j(u− α∇f̂i,j(u,Dtrain

i,j ), Dtest
i,j )

−∇f̂i,j(v − α∇f̂i,j(v,Dtrain
i,j ), Dtest

i,j )
)
−
(

(I − α∇2f̂i,j(v,D
train
i,j ))

− (I − α∇2f̂i,j(u,D
train
i,j ))

)
∇f̂i,j(v − α∇f̂i,j(v,Dtrain

i,j ), Dtest
i,j )
]
‖ (38)

≥ ‖Êj
[
(I − α∇2f̂i,j(u,D

train
i,j ))(∇f̂i,j(u− α∇f̂i,j(u,Dtrain

i,j ), Dtest
i,j )

−∇f̂i,j(v − α∇f̂i,j(v,Dtrain
i,j ), Dtest

i,j ))
]
‖

− ‖Êj
[
((I − α∇2f̂i,j(v,D

train
i,j ))

− (I − α∇2f̂i,j(u,D
train
i,j )))∇f̂i,j(v − α∇f̂i,j(v,Dtrain

i,j ), Dtest
i,j )
]
‖

= ‖Êj
[
(I − α∇2f̂i,j(u,D

train
i,j ))(∇f̂i,j(u− α∇f̂i,j(u,Dtrain

i,j ), Dtest
i,j )

−∇f̂i,j(v − α∇f̂i,j(v,Dtrain
i,j ), Dtest

i,j ))
]
‖

− α‖Êj
[
(∇2f̂i,j(u,D

train
i,j )−∇2f̂i,j(v,D

train
i,j ))∇f̂i,j(v − α∇f̂i,j(v,Dtrain

i,j ), Dtest
i,j )
]
‖ (39)

To lower bound the first term, we use the M̂ -smoothness of f̂i,j(·, Dtrain
i,j ), which implies that the

minimum eigenvalue of I − α∇2f̂i,j(u,D
train
i,j ) is at least 1− αM̂ for all u ∈ W . Thus,

‖Êj
[
(I − α∇2f̂i,j(u,D

train
i,j ))(∇f̂i,j(u− α∇f̂i,j(u,Dtrain

i,j ), Dtest
i,j )

−∇f̂i,j(v − α∇f̂i,j(v,Dtrain
i,j ), Dtest

i,j ))
]
‖

≥ (1− αM̂)‖Êj
[
∇f̂i,j(u− α∇f̂i,j(u,Dtrain

i,j ), Dtest
i,j )−∇f̂i,j(v − α∇f̂i,j(v,Dtrain

i,j ), Dtest
i,j )
]
‖

(40)

By the µ̂-strong convexity of f̂i,j(·, Dtest
i,j ) and the triangle inequality, we have

‖Êj
[
∇f̂i,j(u−α∇f̂i,j(u,Dtrain

i,j ), Dtest
i,j )−∇f̂i,j(v − α∇f̂i,j(v,Dtrain

i,j ), Dtest
i,j )
]
‖

≥ µ̂‖Êj
[
u− α∇f̂i,j(u,Dtrain

i,j )− (v − α∇f̂i,j(v,Dtrain
i,j ))

]
‖

≥ µ̂
(
‖u− v‖ − α‖Êj

[
∇f̂i,j(v,Dtrain

i,j )−∇f̂i,j(u,Dtrain
i,j )

]
‖
)

≥ µ̂
(
‖u− v‖ − αÊj‖∇f̂i,j(v,Dtrain

i,j )−∇f̂i,j(u,Dtrain
i,j )‖

)
≥ µ

(
‖u− v‖ − αM̂‖u− v‖

)
(41)
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where the second-to-last inequality follows from Jensen’s Inequality and the last inequality follows
from the M̂ -smoothness of each f̂i,j(·, Dtrain

i,j ) Next we upper bound the second term in (39). We have

‖Êj
[
(∇2f̂i,j(u,D

train
i,j )−∇2f̂i,j(v,D

train
i,j ))∇f̂i,j(v − α∇f̂i,j(v,Dtrain

i,j ), Dtest
i,j )
]
‖

≤ Êj
[
‖(∇2f̂i,j(u,D

train
i,j )−∇2f̂i,j(v,D

train
i,j ))∇f̂i,j(v − α∇f̂i,j(v,Dtrain

i,j ), Dtest
i,j )‖

]
(42)

≤ Êj
[
‖(∇2f̂i,j(u,D

train
i,j )−∇2f̂i,j(v,D

train
i,j ))‖‖∇f̂i,j(v − α∇f̂i,j(v,Dtrain

i,j ), Dtest
i,j )‖

]
(43)

≤
√
Êj [‖∇2f̂i,j(u,D

train
i,j )−∇2f̂i,j(v,D

train
i,j )‖2]Êj [‖∇f̂i,j(v − α∇f̂i,j(v,Dtrain

i,j ), Dtest
i,j )‖2]

(44)

≤ L̂
√
Êj [‖∇2f̂i,j(u,D

train
i,j )−∇2f̂i,j(v,D

train
i,j )‖2] (45)

≤ L̂ρ̂‖u− v‖ (46)

where (42) follows from Jensen’s Inequality, (43) and (44) follow from the Cauchy-Schwarz Inequal-
ity, (45) follows from the L̂-Lipschitzness of f̂i,j(v,Dtest

i,j ) for all j ∈ [mi], and (46) follows from
Assumption 1. Combining (39), (40), and (41) and (46) yields that F̂i is µ̃ := (µ̂(1− αM̂)2 − αL̂ρ̂)-
strongly convex under the given conditions.

E Proof of Lemma 3

Proof. We show the smoothness of each F̂i by upper bounding the norm of the difference of its
gradients. Using (38) and the triangle inequality,

‖∇F̂i(u)−∇F̂i(v)‖
≤ ‖Êj

[
(I − α∇2f̂i,j(u,D

train
i,j ))(∇f̂i,j(u− α∇f̂i,j(u,Dtrain

i,j ), Dtest
i,j )−∇f̂i,j(v − α∇f̂i,j(v,Dtrain

i,j ), Dtest
i,j ))

]
‖

+ ‖Êj
[
((I − α∇2f̂i,j(v,D

train
i,j ))− (I − α∇2f̂i,j(u,D

train
i,j )))∇f̂i,j(v − α∇f̂i,j(v,Dtrain

i,j ), Dtest
i,j )
]
‖

(47)

We consider the two terms in the right hand side of (47) separately. Denoting the first term as Ξ, we
use Jensen’s Inequality then the Cauchy-Schwarz Inequality twice, as in (43) and (44), to obtain

Ξ ≤
(
Êj
[
‖I − α∇2f̂i,j(u,D

train
i,j )‖2

]
Êj
[
‖∇f̂i,j(u− α∇f̂i,j(u,Dtrain

i,j ), Dtest
i,j )

−∇f̂i,j(v − α∇f̂i,j(v,Dtrain
i,j ), Dtest

i,j )‖2
])1/2

≤ (1 + αM̂)
√

Êj
[
‖∇f̂i,j(u− α∇f̂i,j(u,Dtrain

i,j ), Dtest
i,j )−∇f̂i,j(v − α∇f̂i,j(v,Dtrain

i,j ), Dtest
i,j )‖2

]
(48)

where to obtain (48) we have used the M -smoothness of f̂i,j . Considering the term remaining inside
the square root, we have

Êj
[
‖∇f̂i,j(u− α∇f̂i,j(u,Dtrain

i,j ), Dtest
i,j )−∇f̂i,j(v − α∇f̂i,j(v,Dtrain

i,j ), Dtest
i,j )‖2

]
≤ M̂2Êj

[
‖u− α∇f̂i,j(u,Dtrain

i,j )− (v − α∇f̂i,j(v,Dtrain
i,j ))‖2

]
(49)

= M̂2Êj
[
‖u− v‖2 + 2α(u− v)T (∇f̂i,j(v,Dtrain

i,j )−∇f̂i,j(u,Dtrain
i,j ))

+ α2‖∇f̂i,j(u,Dtrain
i,j )−∇f̂i,j(v,Dtrain

i,j )‖2
]

= M̂2

(
‖u− v‖2 + 2α2(u− v)TEj [∇f̂i,j(u,Dtrain

i,j )−∇f̂i,j(v,Dtrain
i,j )]

+ α2Ej [‖∇f̂i,j(u,Dtrain
i,j )−∇f̂i,j(v,Dtrain

i,j )‖2]

)
≤ M̂2

(
‖u− v‖2 + 2αM̂‖u− v‖2 + α2M̂2‖u− v‖2

)
(50)

= M̂2
(

1 + αM̂
)2

‖u− v‖2 (51)
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where (50) follows from the M̂ -smoothness of f̂i,j(·, Dtrain
i,j ) and the Cauchy Schwarz Inequality.

Thus we have

Ξ ≤ M̂(1 + αM̂)2‖u− v‖ (52)

Note that we have already upper bounded the second term in (47) in the previous lemma (see Equation
(46)). Thus we have that the smoothness parameter of F̂i is

M̃i := M̂(1 + αM̂)2 + αL̂ρ̂ (53)

F Proof of Lemma 4

Proof. We again use the shorthand Xk as defined in Appendix (17), and we also define

Xi,j = pi(I − α∇2f̂i,j(w,D
train
i,j ))∇f̂i,j(w − α∇f̂i,j(w,Dtrain

i,j ), Dtest
i,j ) (54)

for a fixed i ∈ [n] and j ∈ [mi]. Note that Xk is a random variable while Xi,j is deterministic. Also
observe that ĝw(w, p) = 1

C

∑C
k=1 nXk, that each nXk is an unbiased estimate of gw(w, p), and the

Xk’s are independent. Using these facts, we have

E[‖ĝw(w, p)− gw(w, p)‖22]

= E[‖ 1

C

C∑
k=1

nXk − gw(w, p)‖22] (55)

=
1

C2
E[

C∑
k=1

‖nXk − gw(w, p)‖22] (56)

=
1

C
E[‖nX1 − gw(w, p)‖22] (57)

=
1

nC

n∑
i=1

1

mi

mi∑
j=1

‖nXi,j − gw(w, p)‖22 (58)

=
1

nC

n∑
i=1

1

mi

mi∑
j=1

‖nXi,j − npi∇F̂i(w)‖22 + ‖npi∇F̂i(w)− gw(w, p)‖22

− 2(nXi,j − npi∇F̂i(w))(npi∇F̂i(w)− gw(w, p)) (59)

Consider

mi∑
j=1

(nXi,j − npi∇F̂i(w))(npi∇F̂i(w)− gw(w, p))

= (npi∇F̂i(w)− gw(w, p))

mi∑
j=1

(nXi,j − npi∇F̂i(w))

= n(npi∇F̂i(w)− gw(w, p))

mi∑
j=1

(
pi(I − α∇2f̂i(w,D

train
i,j ))∇f̂i(w − α∇f̂i(w,Dtrain

i,j ), Dtest
i,j )
)
−mipi∇F̂i(w)


= n(npi∇F̂i(w)− gw(w, p))

[
mipi∇F̂i(w)−mipi∇F̂i(w)

]
= 0
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Therefore we have

E[‖ĝw(w, p)− gw(w, p)‖22]

=
1

nC

n∑
i=1

1

mi

mi∑
j=1

‖nXi,j − npi∇F̂i(w)‖22 + ‖npi∇F̂i(w)− gw(w, p)‖22

=
n

C

n∑
i=1

1

mi

mi∑
j=1

‖piXi,j − pi
mi∑
j′=1

Xi,j′‖22 +
n

C

n∑
i=1

‖pi∇F̂i(w)− 1

n

n∑
i′=1

pi′∇F̂i′(w)‖22

=
n

C

n∑
i=1

σ2
i +

n

C
σ2

G Proof of Theorem 2

Proposition 2. Suppose Assumption 1 holds andW = Rd. Let ηtw and ηtp be constant over all t,
denoted by ηw and ηp, respectively, where ηw < (2/M̃). Let (wτT , p

τ
T ) be the solution returned by

Algorithm 1 after T iterations. Then,

E[‖∇wφ(wτT , p
τ
T )‖22] ≤ 2(φ(w1, p1) +B)

T (2ηw − η2
wM̃)

+
4ηp
√
nBĜp

(2ηw − η2
wM̃)

+
ηwM̃σ2

w

(2− ηwM̃)
,

E [φ(wτT , p
τ
T )] ≥ max

p∈∆n

{E [φ(wτT , p)]} −
1

ηpT
−
ηpĜ

2
p

2

where Ĝ2
p = n(n+ C − 1)B̂2/C.

Proof. Note that

E[‖∇wφ(wτT , p
τ
T )‖22] = E

[
Eτ [‖∇wφ(wτT , p

τ
T )‖22]

]
(60)

= E

[
1

T

T∑
t=1

‖∇wφ(wt, pt)‖22

]
(61)

=
1

T

T∑
t=1

E
[
‖gtw‖2

]
(62)

where the un-subscripted expectation in the right hand sides of (60) and (61) is over the stochastic
gradients which determine the sequence {(wt, pt)}t. Thus to show the bound on E[‖∇wφ(wτT , p

τ
T )‖22]

in Proposition 2, we bound the right hand side of (62). To do so we borrow ideas from the proof of
Theorem 1 in [28]. First recall that by Lemma 3, F̂i is M̃ -smooth for each i ∈ {1, ..., n}. Then for
any u, v ∈ W ,

F̂i(u) ≤ F̂i(v) +∇F̂i(v)T (u− v) +
M̃

2
‖u− v‖2 (63)

Conditioned on the history up to iteration t, denoted by F t, the above equation implies

E

[
n∑
i=1

ptiF̂i(w
t+1)|F t

]

≤ E

 n∑
i=1

ptiF̂i(w
t) +

(
∇w

n∑
i=1

ptiF̂i(w
t)

)T
(wt+1 − wt) +

M̃

2
‖wt+1 − wt‖2|F t

 (64)
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Note that∇w
∑n
i=1 p

t
iF̂i(w

t) = gtw and wt+1 − wt = −ηwĝtw. Thus, we have

E

[
n∑
i=1

ptiF̂i(w
t+1)|F t

]
≤ E

[
n∑
i=1

ptiF̂i(w
t)− ηw(gtw)T ĝtw +

M̃

2
η2
w‖ĝtw‖2|F t

]
(65)

=

n∑
i=1

ptiF̂i(w
t)− ηw‖gtw‖2 +

M̃

2
η2
w

(
‖gtw‖2 + E

[
‖ĝtw − gtw‖2|F t

])
(66)

where (66) follows because ĝtw is an unbiased estimate of gtw. Using Lemma 4, we have

E

[
n∑
i=1

ptiF̂i(w
t+1)|F t

]
≤

n∑
i=1

ptiF̂i(w
t)−

(
ηw −

η2
wM̃

2

)
‖gtw‖2 +

η2
wM̃σ2

w

2
(67)

Rearranging the terms, we obtain(
ηw − η2wM̃

2

)
‖gtw‖2 ≤ E

[
n∑
i=1

ptiF̂i(w
t)−

n∑
i=1

ptiF̂i(w
t+1)|F t

]
+
η2
wM̃σ2

w

2
(68)

= E

[
n∑
i=1

ptiF̂i(w
t)−

n∑
i=1

pt+1
i F̂i(w

t+1)|F t
]

(69)

+ E

[
n∑
i=1

pt+1
i F̂i(w

t+1)−
n∑
i=1

ptiF̂i(w
t+1)|F t

]
+
η2
wM̃σ2

w

2
(70)

We bound the second expectation in the above equation:

E

[
n∑
i=1

pt+1
i F̂i(w

t+1)−
n∑
i=1

ptiF̂i(w
t+1)|F t

]
= E

[
n∑
i=1

(pt+1
i − pti)F̂i(wt+1)|F t

]

≤ E

[
‖pt+1 − pt‖2

n∑
i=1

(
F̂i(w

t+1)
)1/2

|F t
]

(71)

≤
√
nB̂E

[
‖pt+1 − pt‖2|F t

]
(72)

≤ 2
√
nB̂(E

[
‖ηpĝtp‖2|F t

]
) (73)

= 2ηp
√
nB̂Ĝp (74)

where (71) follows from the Cauchy-Shwarz Inequality, (72) follows by the bound on f̂i,j for all
i, (73) follows from the update rule for p combined with the projection property (since pt ∈ ∆n,
‖pt − (pt + ηpĝ

t
p)‖ ≥ ‖pt − Π∆n(pt + ηpĝ

t
p)‖), and (74) follows by Lemma 1, noting Ĝ2

p =
n(n+C−1)B̂

C . Using this result, summing (70) from t = 1 to T , and taking the expectation over
all the stochastic gradients of both sides and using the Law of Iterated Expectations to remove the
conditioning on F t, we obtain(

ηw − η2wM̃
2

) T∑
t=1

E
[
‖gtw‖2

]
≤ E

[
n∑
i=1

p1
i F̂i(w

1)

]
− E

[
n∑
i=1

pT+1
i F̂i(w

T+1)

]
+ 2Tηp

√
nB̂Ĝp +

TM̃η2
wσ

2
w

2

≤ φ(w1, p1) + B̂ + 2Tηp
√
nB̂Ĝp +

Tη2
wM̃σ2

w

2

Next, dividing both sides by T
(
ηw − η2wM̃

2

)
we have

1

T

T∑
t=1

E
[
‖gtw‖2

]
≤ φ(w1, p1) + B̂

T
(
ηw − η2wM̃

2

) +
2ηp
√
nB̂Ĝp(

ηw − η2wM̃
2

) +
ηwM̃σ2

w(
2− ηwM̃

) (75)

21



which by (62) is the desired bound on E[‖∇wφ(wτT , p
τ
T )‖22].

Next we show the bound on the optimality of pτT . As before, we start by evaluating the expectation
over τ :

E [φ(wτT , p
τ
T )] = E [Eτ [φ(wτT , p

τ
T )]] (76)

= E

[
1

T

T∑
t=1

φ(wt, pt)

]
(77)

=
1

T

T∑
t=1

E [φ(wτT , p
τ
T )] (78)

Next, since φ(w, p) is linear in p, we have that for any p ∈ ∆n and any t ∈ {1, ..., T},

E
[
φ(wt, p)− φ(wt, pt)|F t

]
= E

[
(p− pt)gtp|F t

]
= E

[
(p− pt)ĝtp|F t

]
+ E

[
(p− pt)(gtp − ĝtp)|F t

]
(79)

= E
[
(p− pt)ĝtp|F t

]
(80)

where (80) follows because ĝtp is an unbiased estimate of gtp. Using (80) and the identity 2ab =

a2 + b2 − (a− b)2 with a = p− pt and b = ηpĝ
t
p yields

E
[
φ(wt, p)− φ(wt, pt)|F t

]
= E

[
1

2ηp

(
‖p− pt‖22 + (ηp)

2‖ĝtp‖22 − ‖p− (pt + ηpĝ
t
p)‖22

)
|F t
]

(81)

≤ E
[

1

2ηp

(
‖p− pt‖22 + (ηp)

2‖ĝtp‖22 − ‖p− pt+1‖22
)
|F t
]

(82)

≤ E
[

1

2ηp

(
‖p− pt‖22 + (ηp)

2Ĝ2
p − ‖p− pt+1‖22

)
|F t
]

(83)

where (82) follows from the projection property and (83) follows from Lemma 1. Summing from
t = 1 to T and taking the expectation over all the stochastic gradients of both sides and using the
Law of Iterated Expectations to remove the conditioning on F t, we obtain

T∑
t=1

E
[
φ(wt, p)− φ(wt, pt)

]
≤

T∑
t=1

1

2ηp
E
[
‖p− pt‖22

]
− 1

2ηp
E
[
‖p− pt+1‖22

]
+
ηp
2
Ĝ2
p (84)

=
1

2ηp
E
[
‖p− p1‖22

]
+
ηp
2
TĜ2

p (85)

≤ 1

ηp
+
ηpTĜ

2
p

2
(86)

where (84) follows from the telescoping sum and (86) follows from the fact that p, p1 ∈ ∆n and ∆n

is contained in an `2 ball of radius 1. Dividing both sides of (86) by T and rearranging terms

1

T

T∑
t=1

E
[
φ(wt, pt)

]
≥ E [φ(wτT , p)]−

(
1

ηpT
+
ηpĜ

2
p

2

)
(87)

Finally, since (87) holds for all p ∈ ∆n, we maximize the right hand side over p ∈ ∆n, yielding

1

T

T∑
t=1

E
[
φ(wt, pt)

]
≥ max
p∈∆n

[φ(wτT , p)]−

(
1

ηpT
+
ηpĜ

2
p

2

)
From (78), the left hand side above is equal to E [φ(wτT , p

τ
T )], thus completing the proof.

Theorem 2 follows immediately from Proposition 2 by setting the step sizes appropriately.
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H Proof of Theorem 3

First we have the following proposition for unspecified constant stepsizes.
Proposition 3. Suppose Assumptions 1 and 2 hold andW is convex and compact. Let the step sizes
ηtw and ηtp be constant over all t, denoted by ηw and ηp, respectively, where ηw < (2/M̃). Let
(wτT , p

τ
T ) be the solution returned by Algorithm 1 after T iterations. Then we have

E[‖ḡw(wτT , p
τ
T )‖22] ≤ 2(φ(w1, p1) + B̂)

T (2ηw − η2
wM̃)

+
4ηp
√
nB̂Ĝp

(2ηw − η2
wM̃)

+
σ2
w

(2− ηwM̃)
,

E [φ(wτT , p
τ
T )] ≥ max

p∈∆n

{E [φ(wτT , p)]} −
1

ηpT
−
ηpĜ

2
p

2
.

Proof. Here it is helpful to rewrite ΠW as a prox operation. Defining IW : W → {0,+∞} as
IW(w) = 0 if w ∈ W and IW(w) = +∞ otherwise, the update rule for w becomes:

wt+1 = ΠW(wt − ηtwgtw) = argmin
u∈Rd

{〈ĝtw, u〉+
1

2ηtw
‖u−wt‖22 + IW(u)} = proxηtwIW (wt − ηtwgtw)

and the projected stochastic gradient is equivalent to

ḡtw =
1

ηtw
(wt − proxηtwIW (wt − ηtwĝtw))

The rewritten objective, using IW to remove the constraint on w, is as follows:
min
w∈Rd

max
p∈∆n

{Φ(w, p) := φ(w, p) + IW(w)} (88)

With these notations in hand, we are ready to begin the proof. We make analogous initial arguments
to those in the proof of Theorem 2 in [14], and cite two results on the properties of the prox operation
from the same paper. By the M̃ -smoothness of F̂i for each i, we have equation (63), and thus for any
t ∈ {1, ..., T},

n∑
i=1

ptiF̂i(w
t+1) ≤

n∑
i=1

ptiF̂i(w
t) +

(
∇w

n∑
i=1

ptiF̂i(w
t)

)T
(wt+1 − wt) +

M̃

2
‖wt+1 − wt‖22

=

n∑
i=1

ptiF̂i(w
t)− ηtw

(
∇w

n∑
i=1

ptiF̂i(w
t)

)T
ḡtw +

M̃

2
(ηtw)2‖ḡtw‖22

=

n∑
i=1

ptiF̂i(w
t)− ηtw

(
ĝtw
)T
ḡtw +

M̃

2
(ηtw)2‖ḡtw‖22 + ηtw(δtw)T ḡtw

where in the identity we have used the definitions of ḡt and δtw. Next, using Lemma 1 in [14] with
x = wt, γ = ηtw, and g = ĝtw, we obtain
n∑
i=1

ptiF̂i(w
t+1) ≤

n∑
i=1

ptiF̂i(w
t)− [ηtw‖ḡt‖22 + IW(wt+1)− IW(wt)] +

M̃

2
(ηtw)2‖ḡtw‖22 + ηtw(δtw)T ḡtw

=

n∑
i=1

ptiF̂i(w
t)− [ηtw‖ḡt‖22 + IW(wt+1)− IW(wt)] +

M̃

2
(ηtw)2‖ḡtw‖22

+ ηtw(δtw)T gt + ηtw(δtw)T (ḡtw − gt)

where δtw := ĝtw − gtw and gt :=
1

ηtw
(wt− proxηtwIW (wt− ηtwgtw)) is the projected full gradient with

respect to w. Thus after rearranging terms,

Φ(wt+1, pt) ≤ Φ(wt, pt)−

(
ηtw −

M̃

2
(ηtw)2

)
‖ḡtw‖22 + ηtw〈δtw, gt〉+ ηtw‖δtw‖‖ḡtw − gt‖

≤ Φ(wt, pt)−

(
ηtw −

M̃

2
(ηtw)2

)
‖ḡtw‖22 + ηtw〈δtw, gt〉+ ηtw‖δtw‖2
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where the last inequality follows from Proposition 1 in [14] with x = wt, γ = ηtw, g1 = ĝtw, and
g2 = gtw. Rearranging terms, we have(

ηtw −
M̃

2
(ηtw)2

)
‖ḡtw‖22

≤ Φ(wt, pt)− Φ(wt+1, pt) + ηtw〈δtw, gt〉+ ηtw‖δtw‖2

=
(
Φ(wt, pt)− Φ(wt+1, pt+1)

)
+
(
Φ(wt+1, pt+1)− Φ(wt+1, pt)

)
+ ηtw〈δtw, gt〉+ ηtw‖δtw‖2

=
(
Φ(wt, pt)− Φ(wt+1, pt+1)

)
+
(
φ(wt+1, pt+1)− φ(wt+1, pt)

)
+ ηtw〈δtw, gt〉+ ηtw‖δtw‖2

Taking the expectation with respect to the stochastic gradients conditioned on the history up to time t
of each side, we have(

ηtw −
M̃

2
(ηtw)2

)
E
[
‖ḡtw‖22|F t

]
≤ E

[(
Φ(wt, pt)− Φ(wt+1, pt+1)

)
|F t
]

+ E
[(
φ(wt+1, pt+1)− φ(wt+1, pt)

)
|F t
]

+ ηtwE
[
〈δtw, gt〉|F t

]
+ ηtwE

[
‖δtw‖2|F t

]
= E

[(
Φ(wt, pt)− Φ(wt+1, pt+1)

)
|F t
]

+ E

[
n∑
i=1

(pt+1
i − pti)F̂i(wt+1)|F t

]
+ ηtwE

[
〈δtw, gt〉|F t

]
+ ηtwE

[
‖δtw‖2|F t

]
(89)

Note that we can use the Holder Inequality to bound the second expectation in (89). In doing so we
obtain(
ηtw −

M̃

2
(ηtw)2

)
E
[
‖ḡtw‖22|F t

]
≤ E

[(
Φ(wt, pt)− Φ(wt+1, pt+1)

)
|F t
]

+ E

‖pt+1 − pt‖2

(
n∑
i=1

F̂i(w
t+1)2

)1/2

|F t


+ ηtwE
[
〈δtw, gt〉|F t

]
+ ηtwE

[
‖δtw‖2|F t

]
≤ E

[(
Φ(wt, pt)− Φ(wt+1, pt+1)

)
|F t
]

+ 2
√
nBE

[
‖ηtpĝtp‖2|F t

]
+ ηtwE

[
〈δtw, gt〉|F t

]
+ ηtwE

[
‖δtw‖22|F t

]
(90)

≤ E
[(

Φ(wt, pt)− Φ(wt+1, pt+1)
)
|F t
]

+ 2
√
nBηtpĜp + ηtwE

[
〈δtw, gt〉|F t

]
+ ηtwE

[
‖δtw‖22|F t

]
(91)

≤ E
[(

Φ(wt, pt)− Φ(wt+1, pt+1)
)
|F t
]

+ 2
√
nBηtpĜp + ηtwE

[
‖δtw‖22|F t

]
(92)

≤ E
[(

Φ(wt, pt)− Φ(wt+1, pt+1)
)
|F t
]

+ 2
√
nBηtpĜp + ηtwσ

2
w (93)

where (90) follows from the definition of B and the update rule for p combined with the projection
property, (91) follows from the definition of Ĝp, (92) follows from the facts that gt is a deterministic
function of the stochastic samples that determine the stochastic gradients up to time t and ĝtw is an
unbiased estimate of gtw, and (93) follows from the computation of E[‖δw‖2] given in Lemma 4.
Summing over t = 1, ..., T , setting the step sizes to be constants, and taking the expectation with
respect to all of the stochastic gradients and using the Law of Iterated Expectations, we find(
ηw −

M̃

2
(ηw)2

)
T∑
t=1

E
[
‖ḡtw‖22

]
≤ Φ(w1, p1)− E

[
Φ(wT+1, pT+1)

]
+ 2TηpB

√
nĜp + Tηwσ

2
w

≤ Φ(w1, p1) +B + 2TηpB
√
nĜp + Tηwσ

2
w

Next we divide both sides by T
(
ηw − M̃

2 (ηw)2
)

to yield

1

T

T∑
t=1

E
[
‖ḡtw‖22

]
≤ 2(φ(w1, p1) +B)

T (2ηw − η2
wM̃)

+
4ηp
√
nBĜp

(2ηw − η2
wM̃)

+
σ2
w

(2− ηwM̃)
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Using an analogous argument as (62), we have that the left hand side of the above equation is equal
to E[‖ḡw(wτT , p

τ
T )‖22], thus we have completed the proof of the convergence result in w.

For the convergence with respect to p, note that the update rule for pt+1 is identical to the update rule
analyzed in Proposition 2, and the output procedure is the same for both algorithms. Furthermore,
since the convergence analysis of p does not depend on the update rule for w, the analysis with
respect to p in the proof of Proposition 2 still applies here, thus we have the same bound.

The only significant difference between the bound in Proposition 3 and the bound derived in Proposi-
tion 2 is that the term with σ2

w is not multiplied by the step size ηw, thus appears to asymptotically
behave as a constant. Therefore, in order to show that the right hand side in the above bound con-
verges, we must treat σ2

w as a function of the number of stochastic gradients computed during each
iteration. Recall that σ2

w is an upper bound on E‖ĝw − gtw‖22, and note from Lemma 4 that we can
write it as σ2

w = σ̃2
w/C, where σ̃2

w does not depend on C or T , and C is the number of sampled task
instances used for each stochastic gradient computation, and each sampled task instance involves
a constant number of function, gradient and Hessian evaluations. We can therefore define C as
an increasing function of T in order for σ2

w to decrease with T , while the total number of oracle
evaluations performed by the algorithm will be O(CT ).

To balance terms, we must choose ηp and σ2
w to be of the same order with respect to T . Thus for

some β ∈ (0, 1), let ηp = O(T−β) and C = O(T β). Since here C grows with T , we can assume
without loss of generality that C > n (since if this were not the case, the only way we would get
improvement over the 1/5 rate, to 1/4, would require β = 1, which would mean C = m = n = T, which
is not realistic). In this case, Ĝ2

p can be numerically upper bounded as

Ĝ2
p :=

n(n+ C − 1)

C
B̂2 = (

n2

C
+ n− n

C
)B̂2 ≤ 2nB̂2 (94)

Replacing Ĝ2
p with this upper bound in the results from Proposition 3 and plugging in the appropriate

step sizes completes the proof of Theorem 3.

I Generalization Results

I.1 Proof of Proposition 1

The result is a standard Rademacher complexity bound, see for example [23], thus we omit the proof.

I.2 Proof of Theorem 4

Proof. Since DKn+1 ×DJn+1 is a mixture distribution, we have, for any w,

Fn+1(w) = E(Dtrain
n+1,j ,D

test
n+1,j)∼Dn+1

[f̂n+1,j(w − α∇f̂n+1,j(w,D
train
n+1,j), D

test
n+1,j)] (95)

=

n∑
i=1

aiE(Dtrain
n+1,j ,D

test
n+1,j)∼Di

[f̂n+1,j(w − α∇f̂n+1,j(w,D
train
n+1,j), D

test
n+1,j)] (96)

=

n∑
i=1

aiFi(w) (97)

Therefore, using Proposition 1 and a union bound over the n tasks, we have that with probability at
least 1− nδ′ over the choice of samples used to compute F̂i(w),

Fn+1(w∗) =

n∑
i=1

aiFi(w
∗) ≤

n∑
i=1

aiF̂i(w
∗) + 2aiR

i
mi

(F) + aiB̂

√
log 1/δ′

2mi
(98)
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Table 4: Omniglot N -way, K-shot classification accuracies (%). After meta-training, 5,000 few-shot
classification problems (task instances) are sampled uniformly from the 25 alphabets (tasks) used
for meta-training, likewise for the 20 new meta-testing alphabets. For each alphabet, the average
accuracy on task instances from that alphabet is computed, and statistics are taken across these average
accuracies. ‘Weighted Mean’ weighs the alphabet accuracies by the meta-training distribution, which
corresponds to the quantity MAML aims to optimize, whereas ‘Mean’ weighs all alphabets equally.
‘Worst’ is the minimum alphabet accuracy, and ‘Std. Dev.’ is the standard deviation across the
alphabet accuracies, with 95% confidence intervals given over three full runs for all statistics.

Meta-training Alphabets Meta-testing Alphabets

(N,K) Algorithm Weighted Mean Mean Worst Mean Worst Std. Dev.

(10,1) MAML 98.5± 1.2 91.0± .4 54.5± 2.5 85.9± 0.3 71.0± 1.2 6.3± .1
TR-MAML 95.6± .3 94.0± .1 89.5± 1.0 83.6± .5 70.2± 2.4 6.6± .3

(10,5) MAML 99.1± .1 95.0± .1 70.1± 2.8 92.1± .1 82.9± 0.1 3.8± .1
TR-MAML 98.5± .4 98.6± .4 96.2± 1.0 93.8± .7 87.7± 1.4 3.2± .5

Making the substitution δ = nδ′ and using the fact that ai ∈ ∆n and the definition of w∗ yields that

Fn+1(w∗) ≤ max
p∈∆n

n∑
i=1

piF̂i(w
∗) + 2aiR

i
mi

(F) + aiB̂

√
log(n/δ)

2mi
(99)

= min
w∈W

max
p∈∆n

n∑
i=1

piF̂i(w
∗) + 2aiR

i
mi

(F) + aiB̂

√
log(n/δ)

2mi
(100)

(101)

with probability at least 1− δ, which completes the proof.

J Additional Experimental Results and Details

We performed all experiments on a 3.7GHz, 6-core Intel Corp i7-8700K CPU. For all experiments,
there was no significant difference in the time required to run TR-MAML compared to MAML.

J.1 Sinusoid Regression

For the sinusoid regression experiments, we adapted the codebase from the original MAML paper
[12] available at https://github.com/cbfinn/maml, which is written in in Tensorflow https:
//www.tensorflow.org/. We used a batch size of 25 task instances with J (the number of
evaluation points in each task instance/few-shot learning episode) equal to K. We set ηw = 10−3,
α = 10−3, and used one step of SGD update and the Adam optimizer for the meta-learning update
step for w for both TR-MAML and MAML, consistent with the original sinusoid experiments [12].
To update p in TR-MAML, we used vanilla projected SGD (without an optimizer) with learning rate
ηp = 0.0001 when K = 5 and ηp = 0.0002 when K = 10.

J.2 Few-shot Image Classification

For the image classification experiments, we adapted the codebase from the repository available at
https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch that implements in
Pytorch https://pytorch.org/ the experiments in the paper [1]. Again we kept most of the
default parameters consistent. The Adam optimizer was used for the meta-update of w and vanilla
SGD was used to update p. We set ηp = 2.0× 10−5 for the 5-way experiments, ηp = 1.6× 10−5

for the 10-way experiments, and ηp = 1.0× 10−5 for the 20-way experiments. In all cases, we set
J = 10. After meta-training for 60,000 iterations with a batch size of 8, the most recent meta-trained
model was evaluated on both the meta-testing and meta-training tasks (alphabets). One step of SGD
was used for both meta-training and meta-testing in all experiments. Images were augmented by
rotations of 90 degrees, with augmented images considered part of the same class (thus there were
20× 4 = 80 images per class), but each image in each class in each task instance was rotated by the
same amount. Additional results for the 10-way classification case are shown in Table 4.
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For the mini-ImageNet experiments, we set ηp = 1.6× 10−5 and J = 15, and execute for 60,000
iterations with a batch size of 2 task instances. We use 5 steps of inner gradient updates during both
meta-training and meta-testing.
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