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Notation. Besides the notation already defined in Section 1 of the main text, we define the following
extra notation. A polynomial q ∈ R[x] is a sums-of-squares (SOS) polynomial if and only if q can be
written as q = [x]

T
F Q [x]F for some monomial basis [x]F and PSD matrix Q � 0, in which case

q ≥ 0,∀x ∈ Rn. We use Σ [x]2F to denote the set of SOS polynomials parametrized by the monomial
basis [x]F . In particular, when [x]F = [x]d is the full standard monomial basis of degree up to d, we
use Σ [x]2d to denote the set of SOS polynomials with degree up to 2d. Moreover, Σ [x] ⊂ R[x] is
the set of all SOS polynomials (with arbitrary degrees). For a constraint set X defined by polynomial
equality and inequality constraints X .

= {x : hj(x) = 0, j = 1, . . . , lh; gk(x) ≥ 0, k = 1, . . . , lg},
the set X is said to be Archimedean if there exist M > 0, λj ∈ R[x], j = 1, . . . , lh, and sk ∈
Σ [x] , k = 1, . . . , lg , such that M − ‖x‖2 =

∑lh
j=1 λjhj +

∑lg
k=1 skgk, which immediately implies

that ‖x‖2 ≤M and the set X is compact [3, Definition 3.137, p. 115].

A1 Proof of Proposition 5 (Geometric Perception as POP)

Proof. To tackle the non-smoothness of the inner minimization “min{·, ·}” in problem (TLS), we
first reformulate problem (TLS) as:

f? = min
x∈X

θi∈{±1},i=1,...,N

N∑
i=1

1 + θi
2β2

i

r2(x,yi) +
1− θi

2
c̄2, (A1)

where we have used the fact that “min{a, b}” is equivalent to an optimization over a binary variable:
min{a, b} = minθ∈{±1}

1+θ
2 a + 1−θ

2 b (where θ = +1 when a < b and θ = −1 when a >

b). Intuitively, if the i-th measurement yi is an inlier (i.e., r2 ≤ c̄2β2
i ), then θi = +1 and the

corresponding term in (A1) reduces to least squares; if yi is an outlier (i.e., r2 > c̄2β2
i ), then

θi = −1 and the corresponding term in (A1) becomes a constant c̄2, whence the outlier is irrelevant
to the optimization. Since we have introduced N binary variables to the optimization (A1), we
denote p =

[
xT,θT

]T ∈ Rñ as the new set of variables, where θ .
= [θ1, . . . , θN ]

T ∈ {±1}N is
the vector of binary variables and ñ .

= n + N is the number of variables. Then we make two
immediate observations: (1) denote fi(p) = 1+θi

2β2
i
r2(x,yi) + 1−θi

2 c̄2, then fi(p) ∈ R[x, θi] is only
a polynomial of x and θi and the objective function of (A1) can be written as the finite sum of fi’s:
f(p) =

∑N
i=1 fi(p) (i.e., claim (i) in Proposition 5). (2) The binary constraints θi ∈ {±1}, i =

1, . . . , N are equivalent to quadratic polynomial equality constraints hθi .= 1−θ2
i = 0, i = 1, . . . , N ,

and obviously each hθi ∈ R[θi] is only a polynomial in θi. For simplicity, we denote hθ = {hθi}Ni=1
(i.e., claim (ii) in Proposition 5).

Next we will show that – for Examples 1-4– (1) r2(x,yi) is a polynomial in xwith deg
(
r2(x,yi)

)
≤

2 (and hence, deg (fi(p)) ≤ 3), (2) the constraint set x ∈ X can be written as quadratic polynomial
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inequality and equality constraints, and (3) the feasible set is Archimedean (i.e., claim (iii) in
Proposition 5).

Example 1 (Single Rotation Averaging). We develop the residual function:

r2(x,yi) = ‖R−Ri‖2F = tr
(
(R−Ri)

T(R−Ri)
)

= tr (2I3)− 2tr
(
RT
i R

T
)

= 6− 2yT
i r, (A2)

where we have denoted r .
= vec (R) ∈ R9 as the vectorization of the unknown rotation matrix R,

and yi
.
= vec (Ri) ∈ R9 as the vectorization of the measurementsRi. From eq. (A2) it is clear that

deg
(
r2(x,yi)

)
= 1. The constraint set for single rotation averaging isR ∈ SO(3), which is known

to be equivalent to a set of (redundant) quadratic polynomial equality constraints [25].

Lemma A1 (Quadratic Constraints for SO(3) [20, 25]). For any matrix R ∈ R3×3, R ∈ SO(3)
is equivalent to the following set of 15 quadratic polynomial equality constraints hr = {hri }15

i=1:{
Orthonormality: hr1=1−‖r1‖2, hr2=1−‖r2‖2, hr3=1−‖r3‖2, hr4=rT1r2, h

r
5=rT2r3, h

r
6=rT3r1

Right-handedness: hr7,8,9=r1×r2−r3, hr10,11,12=r2×r3−r1, hr13,14,15=r3×r1−r2
(A3)

where ri ∈ R3, i = 1, 2, 3 denotes the i-th column1 ofR and “×” represents vector cross product.

Therefore, we have h = hx ∪ hθ with hx .
= hr, and g = ∅ for single rotation averaging. To show

the Archimedeanness of the feasible set P .
= {p : h(p) = 0,∀h ∈ h, 1 ≥ g(p) ≥ 0,∀g ∈ g}, we

note that:

3 +N − ‖p‖2 =

3∑
i=1

1 · hri +

N∑
i=1

1 · hθi = 0, (A4)

which implies that ‖p‖2 ≤ N + 3 and the feasible set P is equipped with a polynomial certificate for
compactness.

Example 2 (Shape Alignment). Directly developing the residual function r2(x,yi) =

‖bi − sΠRBi‖2 leads to a quartic polynomial (degree 4) in s and R, which is not suitable for
moment relaxation because it would increase the minimum relaxation order κ [14]. Therefore, we
perform a change of variables and let R̄ = sΠR:

R̄ = s

[
1 0 0
0 1 0

] rT1
rT2
rT3

 =

[
srT1
srT2

]
.
=

[
r̄T1
r̄T2

]
, (A5)

where rTi ∈ R3 denotes the i-th row of the rotation matrixR and we have denoted r̄i = sri, i = 1, 2
as the product of s and ri. Now using Lemma A1, we can see that s ∈ [0, s̄] and R ∈ SO(3) is
equivalent to the following constraints on r̄ .

= vec
(
R̄T
)

=
[
r̄T1 , r̄

T
2

]T
:

hr̄ =
{
hr1 = ‖r̄1‖2 − ‖r̄2‖2 , hr2 = r̄T1 r̄2

}
, gr̄ =

{
1− ‖r̄1‖2 + ‖r̄2‖2

2s̄2

}
. (A6)

Therefore, we have h = hx ∪ hθ with hx .
= hr̄, and g = gr̄ for shape alignment.2 To prove the

feasible set is Archimedean, we write the following polynomial certificate for compactness:

2s̄2 +N − ‖p‖2 = 2s̄2 · gr̄ +

N∑
i=1

1 · hθi ≥ 0. (A7)

Example 3 (Point Cloud Registration). We develop the residual function:

r2(x,yi) = ‖bi −Rai − t‖2 = ‖t‖2 − 2bTi t− 2bTi Rai + 2tTRai + ‖ai‖2 + ‖bi‖2

= ‖t‖2 − 2bTi t− 2
(
aT
i ⊗ bTi

)
r + 2

(
aT
i ⊗ tT

)
r + ‖ai‖2 + ‖bi‖2 , (A8)

1The same set of quadratic constraints hold when rTi ∈ R3, i = 1, . . . , 3 denotes the i-th row ofR.
2Note that due to the division by 2s̄2 in eq. (A6), 0 ≤ gr̄ ≤ 1 is satisfied.
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where r .
= vec (R) ∈ R9 is the vectorization ofR and “⊗” denotes the Kronecker product. Clearly,

deg
(
r2(x,yi)

)
= 2 from eq. (A8). For the constraint set of (R, t), we have the 15 quadratic equality

constraints from Lemma A1 for R ∈ SO(3), and we have gt = 1 − ‖t‖
2

T 2 for t (the translation is
bounded by a known value T ). Therefore, for point cloud registration, we have h = hx ∪ hθ with
hx

.
= hr and g = {gt}. The Archimedeanness of the constraint set can be seen from the following

inequality:

T 2 +N − ‖p‖2 = T 2 · gt +

N∑
i=1

1 · hθi ≥ 0. (A9)

Example 4 (Mesh Registration). To make the residual function r2(x,yi) a quadratic polynomial,
we perform the following change of variables and develop the residual function:

r2(x,yi) =
∥∥∥(Rui)

T
(bi −Rai − t)

∥∥∥2

+ wi ‖vi −Rui‖2 (A10)

=
∥∥uT

i

(
RTbi − ai −RTt

)∥∥2
+ wi ‖vi −Rui‖2 (A11)

R̃
.
=RT ,t̃

.
=RT t

=
∥∥∥uT

i R̃bi − uT
i ai − uT

i t̃
∥∥∥2

+ wi

∥∥∥vi − R̃Tui

∥∥∥2

(A12)

= t̃T
(
ui ⊗ uT

i

)
t̃+ r̃T

(
bib

T
i ⊗ uiuT

i

)
r̃ − 2vec

(
uia

T
i uib

T
i

)T
r̃ + 2uT

i aiu
T
i t̃

−2r̃T
(
bi ⊗ uiuT

i

)
t̃− 2wivec

(
uiv

T
i

)T
r̃ +

(
uT
i ai
)2

+ wi

(
‖vi‖2 + ‖ui‖2

)
, (A13)

where R̃ .
= RT ∈ SO(3) and t̃ .= RTt ∈ R3 is the new set of unknown rotation and translation. In

addition, ‖t‖ ≤ T if and only if
∥∥t̃∥∥ ≤ T because the rotation matrix preserves the norm of t. The

original (R, t) can be recovered from
(
R̃, t̃

)
by:

R = R̃T, t = R̃Tt̃. (A14)

The constraints for
(
R̃, t̃

)
is the same as what we developed for point cloud registration: h = hx∪hθ

with hx .
= hr̃

.
= hr, and g .

= gt̃
.
= {gt}. Therefore, the Archimedeanness of the feasible set follows

from eq. (A9). This concludes the proof for Proposition 5. �

A2 Explanation and Example for Theorem 6 (Dense Moment Relaxation)

In this section, we provide a brief but self-contained explanation to shed light on Lasserre’s hierarchy
of dense moment relaxations in Theorem 6 (Section A2.1). We also give an accessible example to
demonstrate the application of the hierarchy to a simple but illustrative problem, namely 2D single
rotation averaging (Section A2.2).

A2.1 Explanation

Our explanation of Lasserre’s hierarchy is adapted from [14, 13]. Let µ (p) be a probability measure
supported on the feasible set P of the POP (2), and let Ω (P) be the set of all possible probability
measures on P . Then the POP (2) can be rewritten as a generalized moment problem.
Theorem A2 (POP as the Moment Problem [13, Proposition 2.1]). Let the feasible set of the
POP (2) be P , then the POP is equivalent to the following optimization:

f?µ = min
µ∈Ω(P)

∫
f(p)dµ, (A15)

in the sense that:

(i) f?µ = f?;

(ii) if p? is a (potentially not unique) global minimizer of the POP (2), then µ? = δp? is a global
minimizer of the moment problem (A15), where δp? is the Dirac measure at p?;
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(iii) assuming the POP (2) has a (potentially not unique) global minimizer with global minimum
f?, then for every optimal solution µ? of the moment problem (A15), f(p) = f?, µ?-
almost everywhere (i.e., µ? ({p : f(p) 6= f?}) = 0 and µ? is supported only on the global
minimizers of the POP);

(iv) if p? is the unique global minimizer of the POP (2), then µ? = δp? is the unique global
minimizer of the moment problem (A15).

Although the moment problem (A15) is convex [14], it is infinite-dimensional and still intractable.
Therefore, the crux of making the optimization tractable is to relax the infinite-dimensional problem
into a finite-dimensional one. Towards this goal, we introduce the notion of moments, moment
matrices and localizing matrices.

Definition A3 (Moments, Moment Matrices, Localizing Matrices [14, Chapter 3]). Given a
probability measure µ supported on P ⊂ Rñ, its moment of order α ∈ Zñ+ is the scalar zα

.
=∫

P p
αdµ = Eµ [pα] ∈ R, i.e., the integral (expected value) of the monomial pα over the set

P w.r.t. µ. In particular, if α = 0, then pα = pα1
1 · · · p

αñ
ñ = 1, and z0 = 1. Now let z = (zα) be

an infinite sequence of moments (the order α can be unbounded), we define the linear functional
Lz : R[p]→ R:

f(p) =
∑
α∈F

c(α)pα 7→ Lz(f) =
∑
α∈F

c(α)zα, (A16)

that maps a polynomial f to a real numberLz(f) by replacing the monomials of f with corresponding
moments. With this linear functional, the moment sequence of degree up to 2κ is simply:

z2κ
.
= Lz ([p]2κ) ∈ Rmñ(2κ), (A17)

where the linear functional Lz applies component-wise to the vector of monomials [p]2κ, and the
moment matrix of degree κ is:

Mκ(z2κ)
.
= Lz

(
[p]κ [p]

T
κ

)
∈ Smñ(κ), (A18)

where Lz also applies component-wise to the monomial matrix [p]κ [p]
T
κ , andMκ(z2κ) essentially

assembles the vector of moments z2κ into a symmetric matrix. Finally, given a polynomial h ∈ R[p],
we definite the localizing matrix of order κ with respect to z and h to be:

Mκ (hz2κ)
.
= Lz

(
h ·
(

[p]κ [p]
T
κ

))
∈ Smñ(κ), (A19)

where Lz applies component-wise, and h ·
(

[p]κ [p]
T
κ

)
means multiplying h with each entry of the

monomial matrix [p]κ [p]
T
κ .

With this definition, we can see that the cost function of the moment problem (A15) is a linear
function of the moments:∫

f(p)dµ =

∫ ∑
α∈F

c(α)pαdµ =
∑
α∈F

c(α)

∫
pαdµ =

∑
α∈F

c(α)zα. (A20)

Therefore, instead of finding the probability measure µ directly in the infinite-dimensional space
Ω (P) as written in eq. (A15), we can equivalently search for the sequence of (possibly finite number
of) moments z and then recover the measure µ from the moments z. However, not every sequence of
moments has a representing measure. In fact, in order to have a representing measure, the moment
sequence has to satisfy the following conditions.

Theorem A4 (Necessary and Sufficient Condition for Representing Measure [14, Theorem
3.8(b), p. 63]). Let z = (zα) be a given infinite sequence of moments, and let P be an Archimedean
constraint set defined by the polynomial equality and inequality constraints in the POP (2). Then, the
sequence z has a representing measuring on P if and only if:

∀κ ∈ N : Mκ(z2κ) � 0; Mκ(hz2κ) = 0,∀h ∈ h; Mκ(gz2κ) � 0,∀g ∈ g. (A21)
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Enforcing the PSD constraints in (A21) for every κ ∈ N (potentially unbounded) is intractable due
to the infinite moment sequence z. Therefore, a natural strategy is to enforce the constraints for
a fix order κ (called the relaxation order), which is precisely the optimization (3) in Theorem 6.3
Problem (3) is a relaxation of the moment problem (A15) because the constraints at a fixed κ only
provide a necessary condition for the existence of a representing measure, which in turn implies that
the global minimum of the relaxation, p?κ, is a lower bound of the global minimum of the moment
problem (A15) (and thus the POP (2)):

p?κ ≤ f?µ = f?. (A22)
Lasserre’s hierarchy is a hierarchy of moment relaxations with increasing relaxation orders κ1 <
κ2 < . . . (and increasing lower bounds p?κ1

≤ p?κ2
< . . . ) until the relaxation is tight (i.e., p?κ = f?µ).

In general, Lasserre’s hierarchy may achieve tightness only asymptotically (i.e., p?κ → f?µ as κ→∞).
However, when the feasible set P is Archimedean, Nie [18] showed that the hierarchy terminates at
a finite relaxation order, which is the case for our POP (2) arising from a broad class of geometric
perception problems (cf. claim (iii) in Proposition 5).

Now a natural question is, how can one determine when the relaxation is tight (and terminate the
hierarchy) without knowing the true global minimum f?? In other words, how to compute an
optimality certificate, and possibly recover the global minimizers of the POP (2) from the solution
of the moment relaxation (3)? Both questions boil down to checking if the solution of the moment
relaxation, z?2κ, has a representing measure on P , which is known as the truncated K-moment
problem [7]. The following theorem states a sufficient condition.
Theorem A5 (Sufficient Condition for Truncated K-Moment Problem [14, Theorem 3.11,
p. 66]). Let P be the feasible set of the POP (2), where both hj and gk are quadratic polynomials.
Let z?2κ be the solution of the moment relaxation (3). Then z?2κ admits an r-atomic representing
measure supported on P , with r = rank

(
Mκ−1

(
z?2κ−2

))
, if:

rank
(
Mκ−1

(
z?2κ−2

))
= rank (Mκ (z?2κ)) . (A23)

Theorem A5 is a special case of Theorem 3.11 in [14], where we have used the fact that P are defined
by quadratic polynomials.4 In particular, for the POP arising from geometric perception problems,
at the minimum relaxation order κ = 2, we usually have rank (Mκ (z?2κ)) = 1, which immediately
implies that r = rank

(
Mκ−1

(
z?2κ−2

))
= rank (Mκ (z?2κ)) = 1 (because Mκ−1

(
z?2κ−2

)
is

a nonzero principal sub-matrix of Mκ (z?2κ)), and z?2κ admits a 1-atomic representing measure
µ = δp? . Therefore, from Theorem A2, we have p? is the unique global minimizer of the POP (2).5
Additionally, for µ = δp? , it is straightforward to verify that z?2κ = [p?]2κ from eq. (A17), and p?
can be directly read off from the moments.

Rounding and Relative Duality Gap. When the sufficient condition eq. (A23) does not hold and
the moment matrix Mκ (z?2κ) has rank larger than 1, we can first perform spectral decomposition
onMκ (z?2κ), and extract its eigenvector corresponding to the largest eigenvalue, denoted as vκ ∈
Rmñ(κ). Then we normalize vκ’s first entry, vκ(1), to be 1 by: vκ ← vκ

vκ(1) . If the relaxation were
tight, then vκ = [p?]κ is a vector of moments up to degree κ and p? can be directly read off from vκ.
However, since the relaxation is not tight, we obtain a feasible point p̂ by:

p̂ = projP (vκ (p)) , (A24)
where vκ (p) denotes the entries of vκ at indices corresponding to the locations of p in [p]κ, and
projP performs the projection onto the feasible set P (see Section A2.3 for details). Let f̂ = f(p̂),
we have the following inequality:

p?κ ≤ f? ≤ f̂ , (A25)
3Because the constraint polynomials h and g have degree 2, the localizing matrices of order κ− 1 is used to

make sure every moment appearing in the localizing matrices also appears in the moment matrixMκ(z2κ). In a
more general setting where the constraint polynomials hi (or gi) have degree 2vi or 2vi − 1, then the localizing
matrices of degree κ− vi should be used.

4In the general case, suppose P are defined by polynomials with degree 2vi or 2vi − 1, i = 1, . . . , lh + lg ,
then denote v = maxi vi, the sufficient condition becomes rank (Mκ−v (z2κ−2v)) = rank (Mκ (z2κ)).

5The uniqueness of the solution comes from the fact that Interior Point Methods solvers (e.g., SeDuMi)
output an optimal solution of maximum rank if the SDP has more than one optimal solutions [22]. Therefore, if
p? is not unique, then the SDP will have multiple optimal solutions and the rank of the solution will be larger
than 1 (cf. Theorem 6.18 in [15]).
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where the first inequality follows from eq. (A22), and the second inequality holds because f? is the
global minimum of the POP (2). The relative duality gap can be computed as:

ηκ =
f̂ − p?κ
f̂

. (A26)

A smaller ηκ implies a tighter relaxation and ηκ = 0 if and only if the relaxation is tight.

A2.2 Example: 2D Single Rotation Averaging

To make our explanation of Lasserre’s hierarchy in Section A2.1 more accessible, we show an
application of the hierarchy to 2D single rotation averaging, because the dimension of x is small and
the constraint set X is simple to characterize. 2D single rotation averaging follows the definition of
3D single rotation averaging in Example 1, except that the measurementsRi, i = 1, . . . , N and the
unknown geometric modelR are 2D rotation matrices, i.e.,R ∈ SO(2). In this case, we describe a
2D rotation matrix using:

R ∈ SO(2)⇐⇒ R =

[
x1 −x2

x2 x1

]
, s.t. hx = 1− x2

1 − x2
2 = 0. (A27)

We then choose N = 2, leading to two binary variables θ1 and θ2. Denote x = [x1, x2]T, θ =
[θ1, θ2]T, and p = [xT,θT]T, the POP (2) for 2D single rotation averaging with N = 2 is:

min
p=[x1,x2,θ1,θ2]T∈R4

f(p) (A28)

s.t. hx = 1− x2
1 − x2

2 = 0, (A29)
hθ1 = 1− θ2

1 = 0, (A30)
hθ2 = 1− θ2

2 = 0, (A31)

where the objective function can be computed from eq. (A1).

Moment matrices. To describe the dense moment relaxation (3) at κ = 2, we first form the moment
matrices M1 (z2) and M2 (z4). Towards this goal, let us write the vector of monomials [p]1 and
[p]2:

[p]1 = [1, x1, x2, θ1, θ2]T ∈ R5, (A32)

[p]2 = [1, x1, x2, θ1, θ2, x
2
1, x1x2, x1θ1, x1θ2, x

2
2, x2θ1, x2θ2, θ

2
1, θ1θ2, θ

2
2]T ∈ R15. (A33)

For notation simplicity, we use zpα , instead of zα, to denote the moment of order α. For example,
zx1x2

.
=
∫
P x1x2dµ for some probability measure µ supported on P . Then the vector of moments z1

and z2 directly follow from the vector of monomials in eq. (A32) and (A33):

z1 = [z1, zx1
, zx2

, zθ1 , zθ2 ]
T ∈ R5, (A34)

z2 =
[
z1, zx1

, zx2
, zθ1 , zθ2 , zx2

1
, zx1x2

, zx1θ1 , zx1θ2 , zx2
2
, zx2θ1 , zx2θ2 , zθ21 , zθ1θ2 , zθ22

]
∈ R15. (A35)

The vector of moments of degree up to 4, z4 ∈ Rm4(4)=70 can be written in a similar way. We omit
its full expression here, because it will soon appear in the moment matrix M2 (z4). Then we are
ready to form the moment matrix of order 1, with rows and columns indexed by [p]1:

M1 (z2) = Lz

(
[p]1 [p]

T
1

)
=

1 x1 x2 θ1 θ2


1 z1 zx1 zx2 zθ1 zθ2
x1 ? zx2

1
zx1x2 zx1θ1 zx1θ2

x2 ? ? zx2
2

zx2θ1 zx2θ2

θ1 ? ? ? zθ21 zθ1θ2
θ2 ? ? ? ? zθ22

, (A36)

where we see that the moments appearing in M1 (z2) are exactly z2 (compare upper triangular
entries in (A36) with (A35), thus the expressionM1 (z2)). Similarly, we form the moment matrix of
order 2, with rows and columns indexed by [p]2:
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M2 (z4) = Lz

(
[p]2 [p]T2

)
= (A37)

1 x1 x2 θ1 θ2 x21 x1x2 x1θ1 x1θ2 x22 x2θ1 x2θ2 θ21 θ1θ2 θ22



1 z1 zx1 zx2 zθ1
zθ2

z
x21

zx1x2 zx1θ1
zx1θ2

z
x22

zx2θ1
zx2θ2

z
θ21

zθ1θ2
z
θ22

x1 ? z
x21

zx1x2 zx1θ1
zx1θ2

z
x31

z
x21x2

z
x21θ1

z
x21θ2

z
x1x

2
2

zx1x2θ1
zx1x2θ2

z
x1θ

2
1

zx1θ1θ2
z
x1θ

2
2

x2 ? ? z
x22

zx2θ1
zx2θ2

z
x21x2

z
x1x

2
2

zx1x2θ1
zx1x2θ2

z
x32

z
x22θ1

z
x22θ2

z
x2θ

2
1

zx2θ1θ2
z
x2θ

2
2

θ1 ? ? ? z
θ21

zθ1θ2
z
x21θ1

zx1x2θ1
z
x1θ

2
1

zx1θ1θ2
z
θ1x

2
2

z
x2θ

2
1

zx2θ1θ2
z
θ31

z
θ21θ2

z
θ1θ

2
2

θ2 ? ? ? ? z
θ22

z
x21θ2

zx1x2θ2
zx1θ1θ2

z
x1θ

2
2

z
x22θ2

zx2θ1θ2
z
x2θ

2
2

z
θ21θ2

z
θ1θ

2
2

z
θ32

x21 ? ? ? ? ? z
x41

z
x31x2

z
x31θ1

z
x31θ2

z
x21x

2
2

z
x21x2θ1

z
x21x2θ2

z
x21θ

2
1

z
x21θ1θ2

z
x21θ

2
2

x1x2 ? ? ? ? ? ? z
x21x

2
2

z
x21x2θ1

z
x21x2θ2

z
x1x

3
2

z
x1x

2
2θ1

z
x1x

2
2θ2

z
x1x2θ

2
1

zx1x2θ1θ2
z
x1x2θ

2
2

x1θ1 ? ? ? ? ? ? ? z
x21θ

2
1

z
x21θ1θ2

z
x1x

2
2θ1

z
x1x2θ

2
1

zx1x2θ1θ2
z
x1θ

3
1

z
x1θ

2
1θ2

z
x1θ1θ

2
2

x1θ2 ? ? ? ? ? ? ? ? z
x21θ

2
2

z
x1x

2
2θ2

zx1x2θ1θ2
z
x1x2θ

2
2

z
x1θ

2
1θ2

z
x1θ1θ

2
2

z
x1θ

3
2

x22 ? ? ? ? ? ? ? ? ? z
x42

z
x32θ1

z
x32θ2

z
x22θ

2
1

z
x22θ1θ2

z
x22θ

2
2

x2θ1 ? ? ? ? ? ? ? ? ? ? z
x22θ

2
1

z
x22θ1θ2

z
x2θ

3
1

z
x2θ

2
1θ2

z
x2θ1θ

2
2

x2θ2 ? ? ? ? ? ? ? ? ? ? ? z
x22θ

2
2

z
x2θ

2
1θ2

z
x2θ1θ

2
2

z
x2θ

3
2

θ21 ? ? ? ? ? ? ? ? ? ? ? ? z
θ41

z
θ31θ2

z
θ21θ

2
2

θ1θ2 ? ? ? ? ? ? ? ? ? ? ? ? ? z
θ21θ

2
2

z
θ1θ

3
2

θ22 ? ? ? ? ? ? ? ? ? ? ? ? ? ? z
θ42

,(A38)

where the upper triangular entries are exactly z4, the vector of moments up to degree 4 (thus the
expressionM2 (z4)). Moreover, the moment matrix is called a generalized Hankel matrix because
a moment of order α can appear multiple times in the matrix. For example, the moment zx1x2θ1θ2
(highlighted in blue) appears three times in the upper triangular part ofM2 (z4).

Localizing matrices. Using the moment matrix of order 1, M1 (z2), the localizing matrix for
hx = 1− x2

1 − x2
2 = 0 (eq. (A29)) is:

M1 (hxz2) = Lz

(
hx [p]1 [p]

T
1

)
= (A39)

1−x2
1−x

2
2 x1−x3

1−x1x
2
2 x2−x2

1x2−x3
2 θ1−x2

1θ1−x
2
2θ1 θ2−x2

1θ2−x
2
2θ2


1 z1−zx21

−z
x22

zx1−zx31
−z

x1x
2
2

zx2−zx21x2
−z

x32
zθ1−zx21θ1

−z
x22θ1

zθ2−zx21θ2
−z

x22θ2

x1 ? z
x21
−z

x41
−z

x21x
2
2

zx1x2−zx31x2
−z

x1x
3
2

zx1θ1−zx31θ1
−z

x1x
2
2θ1

zx1θ2−zx31θ2
−z

x1x
2
2θ2

x2 ? ? z
x22
−z

x21x
2
2
−z

x42
zx2θ1−zx21x2θ1

−z
x32θ1

zx2θ2−zx21x2θ2
−z

x32θ2

θ1 ? ? ? z
θ21
−z

x21θ
2
1
−z

x22θ
2
1

zθ1θ2−zx21θ1θ2
−z

x22θ1θ2

θ2 ? ? ? ? z
θ22
−z

x21θ
2
2
−z

x22θ
2
2

,(A40)

where the columns are indexed by [p]1, and the rows are indexed by hx · [p]1. The localizing matrix
for hθ1 = 1− θ2

1 = 0 (eq. (A30)) is:

M1

(
hθ1z2

)
= Lz

(
hθ1 [p]1 [p]

T
1

)
= (A41)

1−θ21 x1−x1θ
2
1 x2−x2θ

2
1 θ1−θ31 θ2−θ21θ2


1 z1−zθ21

zx1−zx1θ21
zx2−zx2θ21

zθ1−zθ31
zθ2−zθ21θ2

x1 ? z
x21
−z

x21θ
2
1

zx1x2−zx1x2θ21
zx1θ1−zx1θ31

zx1θ2−zx1θ21θ2
x2 ? ? z

x22
−z

x22θ
2
1

zx2θ1−zx2θ31
zx2θ2−zx2θ21θ2

θ1 ? ? ? z
θ21
−z

θ41
zθ1θ2−zθ31θ2

θ2 ? ? ? ? z
θ22
−z

θ21θ
2
2

, (A42)
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where the columns are indexed by [p]1, and the rows are indexed by hθ1 · [p]1. The localizing matrix
for hθ2 = 1− θ2

2 = 0 (eq. (A31)) is:

M1

(
hθ2z2

)
= Lz

(
hθ2 [p]1 [p]

T
1

)
= (A43)

1−θ22 x1−x1θ
2
2 x2−x2θ

2
2 θ1−θ1θ22 θ2−θ32


1 z1−zθ22

zx1−zx1θ22
zx2−zx2θ22

zθ1−zθ1θ22
zθ2−zθ32

x1 ? z
x21
−z

x21θ
2
2

zx1x2−zx1x2θ22
zx1θ1−zx1θ1θ22

zx1θ2−zx1θ32
x2 ? ? z

x22
−z

x22θ
2
2

zx2θ1−zx2θ1θ22
zx2θ2−zx2θ32

θ1 ? ? ? z
θ21
−z

θ21θ
2
2

zθ1θ2−zθ1θ32
θ2 ? ? ? ? z

θ22
−z

θ42

, (A44)

where the columns are indexed by [p]1, and the rows are indexed by hθ2 · [p]1.

Dense Moment Relaxation. With the expressions of the moment matrices and localizing matrices,
the dense moment relaxation at κ = 2 for 2D single rotation averaging is:

p?2 = min
z4∈R70

∑
α∈F c(α)zpα (A45)

s.t. M2 (z4) � 0 (cf. eq. (A38)),
M1 (hxz2) = 0 (cf. eq. (A40)),
M1

(
hθ1z2

)
= 0 (cf. eq. (A42)),

M2

(
hθ2z2

)
= 0 (cf. eq. (A44)).

Now it is clearly that problem (A45) is an SDP because the entries of the moment matrixM2 (z4), and
the localizing matricesM1 (hxz2) ,M1

(
hθ1z2

)
,M1

(
hθ2z2

)
depend linearly on the optimization

variables z4, and the objective function is also a linear function of z4.
Remark A6 (Moment Relaxation for POP vs. SDP Relaxation for QCQP). The expert reader
may now see connections between the moment relaxation for POPs and Shor’s SDP relaxation for
quadratically constrained quadratic programs (QCQP): the moment relaxation can be seen as first
performing a change of variables so that the POP becomes a QCQP (i.e., using [p]2 as the new set of
variables, the POP can be seen as a QCQP because [p]2 contains monomials of degree higher than
1), and then apply standard SDP relaxations with redundant constraints. The redundant constraints
come from (i) the new set of variables [p]2 are not mutually independent, e.g., x1x2 = x1 · x2,
and hence the moment matrixM2 (z4) possess linear equality constraints, e.g., the term zx1x2θ1θ2

appears multiple times; (ii) combinations of equality constraints, e.g., hx = 0 and hθ1 = 0 implies
hx ·hθ1 = 0. Therefore, converting a POP to a QCQP and then applying SDP relaxation (see [4, 24]
for two examples) has two drawbacks: first, carefully listing the complete set of redundant constraints
can be time-consuming; second, it is challenging to handle inequality constraints. On the contrary,
the localizing matrices in moment relaxation provide a systematic way to include all redundant
equality and inequality constraints.

A2.3 Projection onto P

Here we discuss how to project an estimate to the feasible set of the (POP): this is required to
implement the rounding procedure described in eq. (A24). Denote pv = [xT

v ,θ
T
v ]T = vκ (p) as the

entries of vκ at indices corresponding to the locations of p in [p]κ (recall that vκ is obtained from the
spectral decomposition of a moment matrixMκ (z4) with rank larger than 1, and in general pv 6∈ P).
To project pv onto P (eq. (A24)), we need to project xv onto X and project θv onto {±1}Ni=1.

Project θv onto {±1}Ni=1. The projection of θv onto the set of binary variables {±1}Ni=1, denoted θ̂,
is straightforward: [

θ̂
]
i

= proj{±1} ([θv]i) = sgn ([θv]i) , i = 1, . . . , N, (A46)

where [·]i denotes the i-th entry of a vector and sgn (·) denotes the sign function.

Project xv onto X . Because Examples 1-4 have different feasible sets X for the geometric models,
the projections are different.
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Example 1 (Single Rotation Averaging). x = R ∈ SO(3), so the projection is:

R̂ = projSO(3) (xv) = Udiag (1, 1,det (U) · det (V ))V T, (A47)

where xv = USV T,U ,V ∈ O(3) is the singular value decomposition for xv (first reshape xv ∈ R9

into a 3× 3 matrix) [9].

Example 2 (Shape Alignment). x = sΠR, s ∈ [0, s̄],R ∈ SO(3), so the projection is:

ŝ = min

{
s̄,
σ1 + σ2

2

}
, R̂ =

 rT1
rT2

(r1 × r2)
T

 , (A48)

where σ1, σ2, r1, r2 come from the singular value decomposition of xv (first reshape xv into a 2× 3
matrix):

xv = U

[
σ1 0 0
0 σ2 0

]
V T,U ∈ O(2),V ∈ O(3),

[
rT1
rT2

]
= U

[
1 0 0
0 1 0

]
V T. (A49)

Example 3-4 (Point Cloud Registration and Mesh Registration). x = (R, t),R ∈ SO(3), ‖t‖≤
T , so the projection is:

R̂ = projSO(3) (xrv) , t̂ = min
{∥∥xtv∥∥ , T} xtv

‖xtv‖
, (A50)

where xrv denotes the entries of xv corresponding toR, and xtv denotes the entries of xv correspond-
ing to t.

A3 Proof of Theorem 7 (Sparse Moment Relaxation)

Proof. Let us first show that the sparse moment relaxation (4) is indeed a valid relaxation, i.e., (a)
the sparse set of monomials [p]2B contains all the monomials in the objective function f(p) of the
POP (2) (otherwise, the objective function of the relaxation (4) is not equivalent to the objective
function of the POP (2)); and (b) the sparse set of moments z2B contains all the moments appearing
in the localizing matrices of (4) (otherwise, the optimization contains undefined variables). To
see (a), from the sparsity of the objective function f (cf. property (i) of Proposition 5), we know
that f =

∑N
i=1 fi and each fi at most contains monomials of type [x]2, θi and θi · [x]2 (cf. the

expression of fi in eq. (A1)), all of which are included in the sparse set of monomials [p]2B (recall
[p]B = [1,xT,θT, (x)

T
2 ,θ

T ⊗ xT]T). To see (b), we observe that hx and g only contain monomials
[x]2, and z2 only contain monomials [p]2, so the product [x]2 ⊗ [p]2 is included in [p]2B. Hence, the
moments in the localizing matricesM1 (hxz2) andM1 (gz2) are included in the moment vector z2B.
Similarly, hθ only contains monomials [θ]2, and z2Bx only contains monomials [x]2, so the product
[θ]2 ⊗ [x]2 is included in [p]2B. Hence, the moments in the localizing matricesMBx

(
hθz2Bx

)
are

also included in the moment vector z2B.

Lower Bound. Then we prove that p?B ≤ p?2, i.e., the optimal value of the sparse relaxation (4) is a
lower bound of the optimal value of the dense relaxation (3) at order κ = 2. We prove this by showing
that the feasible set of the dense relaxation is contained in the feasible set of the sparse relaxation. To
see this, consider z4 as an arbitrary point in the feasible set of the dense relaxation (3), i.e., z4 satisfies
z0 = 1, M2 (z4) � 0, M1 (hz2) = 0,∀h ∈ h, and M1 (gz2) � 0,∀g ∈ g. Then z2B ⊂ z4, the
sub-vector of z4 corresponding to the sparse set of monomials [p]2B, must be feasible for the sparse
relaxation (4). This is because MB (z2B) � 0 must hold as MB (z2B) is a principal sub-matrix
of the full moment matrix M2 (z4); MBx (hz2Bx) = 0 must hold as MBx (hz2Bx) is a principal
sub-matrix of the full localizing matrixM1 (hz2) ,∀h ∈ hθ; andM1 (hz2) andM1 (gz2) are the
same as the localizing matrices in the dense relaxation.

Rounding and Relative Duality Gap. Property (iv) of the dense relaxation still holds for the sparse
relaxation. Because p?B ≤ p?2 and p?2 ≤ f?, we have p?B ≤ f? is also a valid lower bound for f?,
the true optimal objective value of the POP. Additionally, since the sparse set of monomials [p]B
still contains [p]1, the degree-1 monomials of x and θ, one can use the same rounding method
(i.e., spectral decomposition and the projection onto the feasible set P in (A24)) to obtain a feasible
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solution p̂, which gives a value f̂ = f(p̂) that satisfies p?B ≤ f? ≤ f̂ . The relative duality gap can
then be calculated similar to eq. (A26) as:

ηB =
f̂ − p?B
f̂

, (A51)

where a smaller ηB implies a tighter relaxation and ηB = 0 if and only if the relaxation is tight.

Optimality Certificate. Showing property (iii) of the dense relaxation also holds for the sparse
relaxation is non-trivial because Theorem A5 does not hold for an arbitrary sparse moment matrix
(i.e., a moment matrix with rows and columns indexed by a sparse set of monomials [p]B ⊂ [p]2).
Therefore, we will show that the sparse moment matrixMB (z2B) can be extended to a full moment
matrixM2 (z4) when rank (MB (z2B)) = 1. Let us first introduce the notion of a flat extension.

Definition A7 (Flat Extension). Given two moment matrices MB (z2B) and MA (z2A), with
B ⊂ A (recall that the rows and columns ofMB (z2B) (resp. MA (z2A)) are indexed by monomials
[p]B (resp. [p]A)), thenMA (z2A) is said to be a flat extension ofMB (z2B) ifMB (z2B) coincides
with the sub-matrix ofMA (z2A) indexed by [p]B and rank (MB (z2B)) = rank (MA (z2A)).

Our goal is to show thatMB (z2B) admits a flat extensionM2 (z4) when rank (MB (z2B)) = 1, so
that rank (M2 (z4)) = 1 is also true, in which case we recover the dense moment relaxation and
obtain an optimality certificate. To do so, we will show that the sparse moment matrix MB (z2B)
satisfies the generalized flat extension theorem in [16], stated below.

Theorem A8 (Generalized Flat Extension [16, Theorem 1.4]). Given a monomial basis [p]C ,
define its closure to be the set:

[p]C+
.
= [p]C ∪

(
∪ñi=1pi [p]C

) .
= {pα, p1p

α, . . . , pñp
α|α ∈ C} . (A52)

For example, let ñ = 3, and [p]C = [p1], then [p]C+ = [p1, p
2
1, p1p2, p1p3]. In addition, the

monomial set [p]C is said to be connected to 1 if 1 ∈ [p]C and every monomial pα can be written as
pα = pi1pi2 · · · pik with pi1 , pi1pi2 , ..., pi1pi2 · · · pik ∈ [p]C . For example [1, p1, p1p2] is connected
to 1, but [1, p1p2] is not. Then the generalized flat extension theorem states:

If [p]C is connected to 1, andMC+ (z2C+) is a flat extension ofMC (z2C), thenMC+ (z2C+) admits
a unique flat extensionMκ (z2κ) for any κ ≥ αmax, where αmax

.
= max{|α|: α ∈ C+} denotes the

maximum degree of the monomials in [p]C+ .

Using Theorem A8, let [p]C
.
= [p]Bx = [1,xT]T, then obviously [p]C is connected to 1. The

closure of [p]C is [p]C+ = [p]B = [1,xT,θT, (x)2 ,θ
T ⊗ xT]T. If rank (MB (z2B)) = 1, then

rank (MB (z2B)) = rank (MBx (z2Bx)) = 1 and MB (z2B) is a flat extension of MBx (z2Bx).
Therefore,MB (z2B) admits a flat extensionMκ (z2κ) for any κ ≥ 2. In particular, setting κ = 2,
we recover a dense moment matrixM2 (z4) with rank (M2 (z4)) = 1. It remains to show that the
moments z4 (obtained from the flat extension) satisfy the constraints on the localizing matrices in
the dense relaxation (3). The only different constraint between the dense relaxation (3) at κ = 2 and
the sparse relaxation (4) is that, the constraintM1 (hz2) = 0 has been relaxed toM1 (hz2Bx) = 0
for h ∈ hθ. However, we observe that the top-left entry of M1 (hz2Bx) is z1 − zθ2i when h =

hθi = 1− θ2
i , and z1 − zθ2i = 0 implies zθ2i = z2

θi
= 1 (due to rank (M2 (z4)) = 1), which implies

zθi = ±1 and the solution is indeed binary and supported on P and must satisfyM1 (hz2) = 0. �

A4 Proof of Theorem 8 (Sufficient Condition for Global Optimality)

Proof. If problem (5) is feasible, then for any p ∈ P , we have:

[p]
T
B S0 [p]B ≥ 0, [p]

T
1 Sk [p]1 ≥ 0,∀k = 1, . . . , lg, (A53)

because S0 and Sk, k = 1, . . . , lg, are PSD matrices (i.e., [p]
T
B S0 [p]B and [p]

T
1 Sk [p]1 are SOS

polynomials). In addition, gk(p) ≥ 0,∀p ∈ P by construction of the inequality constraints of the
POP (2). Therefore, the right-hand side of eq. (6) is nonnegative. On the other hand, the left-hand side
of eq. (6) reduces to f(p)− f̂ for any p ∈ P due to the equality constraints hj(p) = 0,∀hj ∈ hx
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and hj(p) = 0,∀hj ∈ hθ of the POP (2). Combining these two observations, we have f(p)− f̂ ≥ 0

for any p ∈ P , which implies that f̂ is the global minimum of the POP and p̂ is the corresponding
global minimizer.

Next we show how to convert problem (5) into the compact SDP formulation in (7), by writing
every polynomial in (6) as a sum of products between coefficients (parametrized by the unknowns
λxj ,λ

θ
j ,S0 and Sk) and the monomial basis [p]2B.

Right-hand Side of (6). We start from the right-hand side of (6). To do so, we first write the
monomial outer product [p]B [p]

T
B as:

[p]B [p]
T
B =

∑
α∈2B

W 0
αp

α, (A54)

where W 0
α ∈ Sm(B) is the “0/1” monomial indicator matrix with rows and columns indexed by

[p]B, whose entries are defined as:[
W 0
α

]
pα1 ,pα2

=

{
1 if α1 +α2 = α

0 otherwise
. (A55)

Using the expression in (A54), we can write the SOS polynomial s0
.
= [p]

T
B S0 [p]B as:

s0
.
= [p]

T
B S0 [p]B =

〈
S0, [p]B [p]

T
B

〉
=

〈
S0,

∑
α∈2B

W 0
αp

α

〉
=
∑
α∈2B

〈
S0,W

0
α

〉
pα, (A56)

where 〈A,B〉 .= tr (AB) denotes the inner product between two symmetric matricesA,B ∈ Sn.
Similarly, for each outer product gk [p]1 [p]

T
1 , we write them as:

gk [p]1 [p]
T
1 =

∑
α∈2B

W k
αp

α, k = 1, . . . , lg, (A57)

where W k
α ∈ Smñ(1) is the monomial coefficient matrix with rows and columns indexed by [p]1,

whose entries are defined as:[
W k
α

]
pα1 ,pα2

= ck (α−α1 −α2) , (A58)

where ck (α−α1 −α2) denotes the coefficient of gk corresponding to the monomial pα−α1−α2 .
Note that W k

α is not an “0/1” matrix due to the multiplication of gk with the monomial outer
product [p]1 [p]

T
1 . Using the expression in (A57), we can write the nonnegative polynomials sk

.
=

gk [p]
T
1 Sk [p]1 , k = 1, . . . , lg , as:

sk
.
= gk [p]

T
1 Sk [p]1 =

〈
Sk, gk [p]1 [p]

T
1

〉
=

〈
Sk,

∑
α∈2B

W k
αp

α

〉
=
∑
α∈2B

〈
Sk,W

k
α

〉
pα. (A59)

Eq. (A56) and (A59) have written the right-hand side of (6) as a sum of products, where each product
is between a monomial pα and a coefficient,

〈
S0,W

0
α

〉
or
〈
Sk,W

k
α

〉
, parametrized by the unknown

PSD matrices S0 and Sk, k = 1, . . . , lg .

Left-hand Side of (6). We now perform similar algebra for the left-hand side of (6). We write
f(p)− f̂ as:

f(p)− f̂ =
∑
α∈2B

cf (α)pα, (A60)

where cf (α) denotes the coefficient of f(p) − f̂ corresponding to the monomial pα. We write
hj [p]2 , hj ∈ hx as:

hj [p]2 =
∑
α∈2B

w
xj
α p

α, (A61)

where wxj
α ∈ Rmñ(2) is a vector of coefficients indexed by [p]2, whose entries are defined as:[

w
xj
α

]
pα1

= chxj (α−α1) , (A62)
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where chxj (α−α1) is the coefficient of hj ∈ hx corresponding to the monomial pα−α1 . Using the

expression in (A61), we can write qxj
.
= hj [p]

T
2 λ

x
j ,∀hj ∈ hx, as:

qxj
.
= hj [p]

T
2 λ

x
j =

〈
λxj , hj [p]2

〉
=

〈
λxj ,

∑
α∈2B

w
xj
α p

α

〉
=
∑
α∈2B

〈
λxj ,w

xj
α

〉
pα, (A63)

where 〈a, b〉 .= aTb denotes the inner product between two vectors a, b ∈ Rn. Similarly, we write
hj [x]2 , hj ∈ hθ as:

hj [x]2 =
∑
α∈2B

w
θj
α p

α, (A64)

where wθj
α ∈ Rmn(2) is a vector of coefficients indexed by [x]2, whose entries are defined as:[

w
θj
α

]
pα1

= chθj (α−α1) , (A65)

where chθj (α−α1) is the coefficient of hj ∈ hθ corresponding to the monomial pα−α1 . Using the

expression in (A64), we can write qθj
.
= hj [x]

T
2 λ

θ
j as:

qθj
.
= hj [x]

T
2 λ

θ
j =

〈
λθj , hj [x]2

〉
=

〈
λθj ,

∑
α∈2B

w
θj
α p

α

〉
=
∑
α∈2B

〈
λθj ,w

θj
α

〉
pα. (A66)

Eq. (A63) and (A66) have written the left-hand side of (6) as a sum of products, where each product
is between a monomial pα and a coefficient,

〈
λxj ,w

xj
α

〉
or
〈
λθj ,w

θj
α

〉
, parametrized by the unknown

vectors λxj , j = 1, . . . , |hx|, and λθj , j = 1, . . . , |hθ|, where |hx| and |hθ| denotes the cardinality of
the sets hx and hθ, respectively.

Obtaining the Compact SDP (7). Combining the left-hand side (eq. (A60), (A63) and (A66)) and
the right-hand side (eq. (A56) and (A59)) of eq. (6), we are ready to write down the final expression
for the compact SDP (7). To do so, we first concatenate all the independent unknown variables into a
single vector, called the dual variable:

d = [(λx1)T, . . . , (λx|hx|)
T, (λθ1)T, . . . , (λθ|hθ|)

T, svec (S1)
T
, . . . , svec

(
Slg
)T
, svec (S0)

T
]T ∈ Rmd ,(A67)

whose dimension is:

md = |hx|·mñ(2) + |hθ|·mn(2)︸ ︷︷ ︸
md1

+ lg ·
mñ(1) (mñ(1) + 1)

2︸ ︷︷ ︸
md2

+
m(B) (m(B) + 1)

2︸ ︷︷ ︸
md3

, (A68)

where md1 is the dimension of the free variables λx and λθ, md2 is the dimension of the PSD
variables Sk, k = 1, . . . , lg, md3 is the dimension of the PSD variable S0, and we use symmetric
vectorization to save storage. Then it is obvious that the dual variable d lives in a convex cone K
defined by:

K .
= Rmd1 × Smñ(1)

+ × . . .× Smñ(1)
+︸ ︷︷ ︸

lg

×Sm(B)
+ . (A69)

Additionally, the dual variable d must satisfy the equality constraint in (6):

f(p)− f̂ −
|hx|∑
j=1

qxj −
|hθ|∑
j=1

qθj = s0 +

lg∑
k=1

sk,∀p. (A70)

Now using the expressions in eq. (A60), (A63), (A66), (A56), and (A59), we obtain the following
linear constraints for each monomial pα:

cf (α) =

|hx|∑
j=1

〈
λxj ,w

xj
α

〉
+

|hθ|∑
j=1

〈
λθj ,w

θj
α

〉
+

lg∑
k=1

〈
svec (Sk) , svec

(
W k
α

)〉
+
〈
svec (S0) , svec

(
W 0
α

)〉
, (A71)
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where we have used the fact that 〈A,B〉 = 〈svec (A) , svec (B)〉 for any two symmetric matrices
A,B ∈ Sn. The linear constraint (A71) can be written compactly as:

aT
αd = cf (α), (A72)

where aα ∈ Rmd is a vector of constants that is only related to the equality and inequality constraints
hj and gk of the POP (2):

aα =

[
(wx1
α )T , . . . ,

(
w
x|hx|
α

)T
,
(
wθ1
α

)T
, . . . ,

(
w
θ|hθ|
α

)T

, svec
(
W 1
α

)T
, . . . , svec

(
W

lg
α

)T
, svec

(
W 0
α

)T]T
.(A73)

All the linear constraints, one for each pα,α ∈ 2B, assembled together, define an affine subspace:

A .
=


d :


...
aT
α
...


︸ ︷︷ ︸

A∈Rm(2B)×md

d =


...

cf (α)
...


︸ ︷︷ ︸
b∈Rm(2B)


. (A74)

Therefore, problem (5) is equivalent to:

find d ∈ Rmd , s.t. d ∈ K ∩A, (A75)

with the convex cone K defined in (A69) and the affine subspace defined in (A74).

Partial Orthogonality. Finally, we state a property, namely partial orthogonality [28], of the matrix
A ∈ Rm(2B)×md that defines the affine subspace A in (A74).

Theorem A9 (Partial Orthogonality of A). Let A = [A1,A2,A3] be the column-wise partition
ofA according to the dimension defined in (A68), i.e.,A1 ∈ Rm(2B)×md1 ,A2 ∈ Rm(2B)×md2 and
A3 ∈ Rm(2B)×md3 , thenA3A

T
3 is an invertible diagonal matrix.

Proof. From the partition, we know thatA3 corresponds to the columns ofA indexed by svec (S0).
Therefore, according to (A73), which shows the row ofA corresponding to a monomial pα, we can
writeA3 as:

A3 =


...

svec
(
W 0
α

)T
...

 . (A76)

Now we can compute the (i, j)-th entry ofA3A
T
3 for i 6= j:[

A3A
T
3

]
i,j

= svec
(
W 0
αi

)T
svec

(
W 0
αj

)
=
〈
W 0
αi ,W

0
αj

〉
= 0, (A77)

where
〈
W 0
αi ,W

0
αj

〉
= 0 holds due to the definition of the indicator matrix in (A55) (if α1 +α2 =

αi, then α1 +α2 6= αj when αi 6= αj). The diagonal entries ofA3A
T
3 are nonzero because:[

A3A
T
3

]
i,i

= svec
(
W 0
αi

)T
svec

(
W 0
αi

)
=
〈
W 0
αi ,W

0
αi

〉
≥ 1. (A78)

Since
[
A3A

T
3

]
i,j

= 0 for any i 6= j, and
[
A3A

T
3

]
i,i
≥ 1,A3A

T
3 is diagonal and invertible. �

In Section A5, we will see the partial orthogonality property ofA allows efficient computation of the
projection map onto the affine subspace A. �
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A5 Proof of Theorem 9 (DRS for Optimality Certification)

Proof. We will first prove that DRS iterates converge to a solution of the feasibility SDP (7) if it is
feasible. We will then show how to compute a suboptimality bound from each iteration of the DRS
update. Finally, we will discuss how to implement the projection maps in the DRS iterates.

Convergence. We first prove (i), i.e., the DRS iterates (8), with 0 < γτ < 2, converge to a solution
of the SDP (7) if it is feasible. To do so, we write the SDP (7) equivalently as:

min
d

1K (d) + 1A (d) , (A79)

where 1K (d) (resp. 1A (d)) is the indicator function of the set K (resp. the set A), i.e., 1K (d) = 0
if d ∈ K and 1K (d) =∞ if d 6∈ K. It is clear that if the SDP (7) is feasible, then the optimal cost of
problem (A79) is 0; while if the SDP (7) is infeasible, then the optimal cost of problem (A79) is∞.
Douglas-Rachford Splitting is designed to solve problems of the following type:

min
d

f(d) + g(d), (A80)

where f and g are convex functions of d. Now let f = 1K (d), g = 1A (d), and observe that the
proximal operator for an indicator function 1K is exactly the projection onto the set K,6 we obtain
the DRS iterates of (8) from [6, Algorithm 4.2]. In addition, [6, Proposition 4.3] tells us the DRS
iterates converge to a solution of (A79). This implies the sequence {dτ}τ≥0 converges to a point
inside K ∩A when the intersection is nonempty.7

Suboptimality Bound. We then prove (ii), i.e., the DRS iterates provide valid suboptimality bounds
ε̄τ at each iteration. In particular, this suboptimality bound can be computed from dAτ . To show this,
we note that any dAτ satisfies the equality constraint in (6) because dAτ ∈ A. Therefore, let svec (Sτ0 )
and svec (Sτk ) , k = 1, . . . , lg be the sub-vectors in dAτ , then for any p ∈ P , eq. (6) tells us:

f (p)− f̂ = [p]
T
B S

τ
0 [p]

T
B +

lg∑
k=1

gk [p]
T
1 S

τ
k [p]1 ≥ λ1 (Sτ0 )M2

0 +

lg∑
k=1

min {0, λ1 (Sτk )}M2
1 , (A81)

where M0 and M1 are upper bounds on the `2-norm of the monomial bases [p]B and [p]1:

‖[p]B‖ ≤M0, ‖[p]1‖ ≤M1, ∀p ∈ P. (A82)

In (A81), we have used the fact that gk(p) ≤ 1 for any p ∈ P from the POP (2). Now to obtain the
suboptimality bound ε̄τ , let p = p? be the global minimizer in (A81), we have f(p?) = f? and:

f? − f̂ ≥ λ1 (Sτ0 )M2
0 +

lg∑
k=1

min {0, λ1 (Sτk )}M2
1 (A83)

=⇒ f̂ − f?

f̂
≤
−λ1 (Sτ0 )M2

0 −
∑lg
k=1 min {0, λ1 (Sτk )}M2

1

f̂
:= ε̄τ . (A84)

We now give the expressions for the upper bounds M0 and M1 for Examples 1-4.

Example 1 (Single Rotation Averaging). Recall x = r = vec (R) with ‖r‖2 = 3, so:

‖[p]1‖
2

= 1 + ‖r‖2 + ‖θ‖2 = 4 +N := M2
1 , (A85)

‖[p]B‖
2

= 1 + ‖r‖2 + ‖θ‖2 + ‖(r)2‖
2

+ ‖θ ⊗ r‖2 = 4N + 13 := M2
0 . (A86)

Example 2 (Shape Alignment). Recall x = r̄ = vec (sΠR) with ‖r̄‖2 ≤ 2s̄2, so:

‖[p]1‖
2

= 1 + ‖r̄‖2 + ‖θ‖2 ≤ 1 + 2s̄2 +N := M2
1 , (A87)

‖[p]B‖
2

= 1 + ‖r̄‖2 + ‖θ‖2 + ‖(r̄)2‖
2

+ ‖θ ⊗ r‖2 ≤ (1 + 2s̄2)(1 +N) + 4s̄4 := M2
0 . (A88)

6The proximal operator of a function f is defined as: proxf (x0)
.
= arg minx

1
2
‖x− x0‖2 + f(x). When

f = 1K is an indicator function, then proxf (x0) = arg minx
1
2
‖x− x0‖2 + 1K(x) := projK (x0).

7In fact, more generally, even if the intersection is empty, it is known that, if γτ = 1, then the sequences{
dKτ
}
τ≥0

and
{
dAτ
}
τ≥0

converge to a solution of the optimization: mind1∈K,d2∈A ‖d1 − d2‖, i.e., a pair of
points d1 ∈ K and d2 ∈ A that achieves the minimum distance between set K and set A [12, 1].

14



Example 3 (Point Cloud Registration). Recall x = [rT, tT]T = [vec (R)
T
, tT]T with ‖r‖2 =

3, ‖t‖2 ≤ T 2, so:

‖[p]1‖
2

= 1 + ‖r‖2 + ‖t‖2 + ‖θ‖2 ≤ 4 + T 2 +N := M2
1 , (A89)

‖[p]B‖
2

= 1 + ‖r‖2 + ‖t‖2 + ‖θ‖2 + ‖(r)2‖
2

+ ‖(t)2‖
2

+ ‖r ⊗ t‖2 + ‖θ ⊗ r‖2 + ‖θ ⊗ t‖2 (A90)

≤ 13 + 4N + 4T 2 + T 4 +NT 2 := M0. (A91)

Example 4 (Mesh Registration). Same as point cloud registration.

Projection Maps. To carry out the DRS iterates (8), we need to implement the projection onto the
convex cone K, projK, and the projection onto the affine subspace A, projA. The projection onto the
PSD cone has a closed-form solution, due to Higham [11].

Lemma A10 (Projection onto Sn+ [11]). Given any matrix S ∈ Sn, let S =

Udiag (λ1, . . . , λn)UT be its spectral decomposition, then the projection of S onto the PSD cone
Sn+ is:

projSn+ (S) = Udiag (max (0, λ1) , . . . ,max (0, λn))UT. (A92)

Using this Lemma and the expression of the convex cone K in eq. (A69), the projection of d onto K
can be performed component-wise:

projK (d) =

[
λT, svec

(
projSmñ(1)

+

(S1)

)
, . . . , svec

(
projSmñ(1)

+

(
Slg
))

, svec
(

projSm(B)
+

(S0)
)]T

,(A93)

where λ ∈ Rmd1 are the unconstrained variables in d (cf. eq. (A67)).

For the affine subspace A = {d : Ad = b}, the projection onto A is [10]:

projA (d) = d−AT
(
AAT

)−1
(Ad− b) . (A94)

The next theorem states that the inverse
(
AAT

)−1
can be computed efficiently using the Matrix

Inversion Lemma [8].

Theorem A11 (Efficient Matrix Inversion). Let A = [A1,A2,A3] be the partition of A as in
Theorem A9. DenoteA12 = [A1,A2], andD = A3A

T
3 as the invertible diagonal matrix. Then the

inverse ofAAT is:(
AAT

)−1
= D−1 −D−1A12

(
Imd1+md2

+AT
12D

−1A12

)−1
AT

12D
−1. (A95)

Proof. WriteAAT = D +A12A
T
12, and invoke the Matrix Inversion Lemma. �

The computational benefit brought by the partial orthogonality property of A is that, in eq. (A95),
only a matrix of sizemd1 +md2 needs to be inverted (the inversion of the diagonal matrixD is cheap),
although the matrixAAT has size m(2B), which is typically much larger. Partial orthogonality has
been exploited in several works to design scalable first-order solvers for solving SOS programs [28, 2].

Another computational advantage is, we can rewrite projA (d) in eq. (A94) as:

projA (d) =
(
Imd −AT

(
AAT

)−1
A
)
d+AT

(
AAT

)−1
b. (A96)

Because the matrixA only depends on the constraints of the POP (2) and is unrelated to the visual
measurements yi, both Imd −AT

(
AAT

)−1
A andAT

(
AAT

)−1
can be computed offline. Hence,

during online optimality certification, only matrix-vector multiplications are required to perform the
projection onto the affine subspace. �
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A6 Chordal Sparse Initialization

In theory, one can start DRS (8) at any initial condition d0. However, to speed up DRS, we compute
the initial point d0 by solving a cheap SOS program with chordal sparsity [21, 14].
Proposition A12 (Chordal Sparse Initialization). Define [p]Bi

.
= [1,xT, θi, θix

T]T ∈ R2n+2,
[p]1i

.
= [1,xT, θi]

T ∈ Rn+2, as the sparse monomial bases only in x and θi, i = 1, . . . , N . Let the
solution of the following SOS program (SDP):

max ζ ∈ R (A97)

s.t. f(p)−ζ−
∑
hj∈hx

hj ·
(

[p]
T
2 λ

x
j

)
−
∑
hj∈hθ

hj ·
(

[x]
T
2 λ

θ
j

)
=

N∑
i=1

[p]
T
Bi S0i [p]Bi+

lg∑
k=1

gk ·

(
N∑
i=1

[p]
T
1i Ski [p]1i

)
,∀p, (A98)

λxj ∈ Rmñ(2),λθj ∈ Rmn(2),S0i ∈ S2n+2
+ ,Ski ∈ Sn+2

+ , (A99)

be λx?j , λθ?j , S?0i and S?ki, then d0 can be constructed as:

d0 = [(λx?1 )T, . . . , (λx?|hx|)
T, (λθ?1 )T, . . . , (λθ?|hθ|)

T, svec
(
S̄?1
)T
, . . . , svec

(
S̄?lg

)T
, svec

(
S̄?0
)T

]T,(A100)

where S̄?k ∈ SR
mñ(1)

, k = 1, . . . , lg , and S̄?0 ∈ Sm(B) satisfy:

[p]
T
1 S̄

?
k [p]1 =

∑N
i=1 [p]

T
1i S

?
ki [p]1i , ∀p, (A101)

[p]
T
B S̄

?
0 [p]B =

∑N
i=1 [p]

T
Bi S

?
0i [p]Bi , ∀p. (A102)

The chordal sparse SDP (A97) is different from the SDP (5) in two aspects. First, we have relaxed the
large PSD constraints into multiple much smaller PSD constraints with fixed sizes (independent of
the number of measurements N ). For example, S0 ∈ Sm(B)

+ has been divided into S0i ∈ S2n+2
+ , i =

1, . . . , N , where each S0i is associated with a sparse monomial basis [p]Bi of fixed size. Similarly,

each Sk ∈ Smñ(1)
+ has been divided into N smaller PSD constraints Ski ∈ Sn+2

+ , i = 1, . . . , N .
Second, instead of trying to certify f̂ is the global minimum of f(p), we turn to maximize a
lower bound ζ of f(p). The reason is, by relaxing the large PSD constraints into multiple smaller
constraints (i.e., by requiring the SOS polynomials in the feasibility SDP (5) to admit chordal sparse
decompositions as in (A101) and (A102)), problem (A97) is more restrictive than problem (5) and in
general its optimum ζ? cannot certify the global optimality of f̂ (i.e., ζ? < p?B ≤ f? ≤ f̂ ).8 However,
the chordal sparse SOS program (A97) scales to large N . Therefore, we compute d0 by solving this
cheap SOS program (A97) using an IPM-based SDP solver and then refine d0 by running DRS for
the more powerful (but more expensive) SOS program (5).

A7 Details of Experiments

A7.1 Details of Experimental Setup

We test primal relaxation and dual certification on random problem instances of Examples 1-4. At
each Monte Carlo run, we generate inliers and outliers as follows. In single rotation averaging (SRA),
we first randomly generate a ground-truth 3D rotationR◦, then inliers are generated byRin = R◦Rε,
whereRε is generated by randomly sampling a unit-norm rotation axis Ψ ∈ R3 and a rotation angle
φ ∼ N (0, σ2) with σ = 3◦; outliers are arbitrary random rotations. In shape alignment (SA), we
first randomly generate a 3D shape {Bi}Ni=1, where eachBi ∼ N (0, I3), and then scale the shape
such that its diameter (i.e., maximum distance between two points) is 4. We then generate a random
ground-truth scale s◦ ∈ [0.5, 2] and a random ground-truth rotationR◦. Inlier 2D measurements are
generated by bin = s◦ΠR◦B + ε, where ε ∼ N (0, σ2I2) with σ = 0.01, and outliers are arbitrary

8From a different perspective, Sk � 0 and S0 � 0 imply that there must exist smaller PSD decompositions
Ski � 0 and S0i � 0. However, Ski � 0 and S0i � 0 do not necessarily mean Sk � 0 and S0 � 0.
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2D vectors bout ∼ N (0, I2). In point cloud registration (PCR), we first generate {ai}Ni=1 in the same
way as generating {Bi}Ni=1 in SA. Then we sample a random rotationR◦ and a random translation
t◦ with ‖t◦‖≤ T = 1. Inlier 3D points are generated by bin = R◦a+ t◦+ ε, where ε ∼ N (0, σ2I3)
with σ = 0.01; and outliers are arbitrary random vectors bout ∈ N (0, I3). In mesh registration
(MR), we first generate a random mesh by sampling unit normals {ui}Ni=1 and points {ai}Ni=1 the
same way as in SA. Then we generate a random rotation R◦ and translation t◦, ‖t◦‖≤ T = 1.
Inlier normals are generated by vin = (R◦u + ε)/‖R◦u + ε‖, where ε ∼ N (0, σ2I3) with
σ = 0.01. Inlier points are generated by bin = R◦(a + u × Φ) + t◦ + ε, where Φ ∼ N (0, I3)
and ε ∼ N (0, σ2I3) with σ = 0.01 (note that a + u × Φ generates a random point on the face
defined by (a,u)). Outlier normals are randomly generated unit-norm 3D vectors vout and outlier
points are randomly generated bout ∼ N (0, I3). The relative weight between point-to-plane distance
and normal-to-normal distance is set to be wi = 1, i = 1, . . . , N . In problem (TLS), c̄ = 1 for all
applications, and β2

i = β2, i = 1, . . . , N , is set as follows. In SRA, β2 = (2
√

2 sin(3σ/2))2. In SA,
β2 = σ2 · chi2inv(2, 0.99). In PCR, β2 = σ2 · chi2inv(3, 0.99). In MR, β2 = 2σ2 · chi2inv(3, 0.99),
where chi2inv(d, p) computes the quantile of the χ2 distribution with d degrees of freedom and lower
tail probability equal to p (see [24] for a probabilistic interpretation).

A7.2 Dense vs. Sparse Moment Relaxation

We compare the performance of the dense moment relaxation (3) and the sparse moment relaxation (4)
with N = 10 measurements, because the dense relaxation is too large to be solved by IPM solvers at
N = 20. Fig. A1 boxplots the rotation estimation error (left axis) and the relative duality gap (right
axis) averaged over 30 Monte Carlo runs for the four Examples 1-4. For single rotation averaging
(Fig. A1(a)), both the dense and spare relaxations are tight up to 80% outlier measurements (relative
duality gap always below 10−5), and both of them return accurate rotation estimations (rotation error
always below 5 degrees). For shape alignment and point cloud registration (Fig. A1(b)(c)) , both
the dense and sparse relaxations produce occasional non-tight solutions (especially at high-outlier
regime). However, we see that the rotation estimations are still quite accurate. We observed that
the relaxation becomes tighter for increasing N . Indeed, the results in the paper shows improved
performance for N = 20. Hence, we conjecture that, when N is small, the estimation problem is
more “ambiguous” for the relaxations, in the sense that inliers do not form a dominating consensus
set as strong as when N is large. This is similar to human perception: we recognize the patterns
more easily when we see dense visual measurements (e.g., a dense point cloud vs. a sparse point
cloud of only a few points). For mesh registration (Fig. A1(d)), the relaxations are always tight, and
significantly better than the case of point cloud registration. This echoes our previous conjecture:
adding surface normals to the visual measurements provides more cues and makes the estimation less
“ambiguous”. Finally, it is also interesting to see that at 80% outlier rate (there are only 2 inliers),
there are two runs where the relaxations produce the globally optimal solutions (because the relative
duality gap is below 10−5), but the globally optimal solutions are far away from the ground-truth
solutions (the rotation errors are 90 and 180 degrees). We suspect the reason is the possible symmetry
in the randomly generated problems, as also observed in [26].

A7.3 Results for Point Cloud Registration

Fig. A2 shows the performance of primal relaxation and dual certification on point cloud registration,
and the results look qualitatively the same as the results for mesh registration in the main text.

A7.4 Details of Satellite Pose Estimation

The neural network in [5] learns a 3D model of the Tango satellite consisting of 11 keypoints {Bi}11
i=1,

shown in Fig. A3(a). It can also output 11 2D landmark detections for a given 2D image, {bi}11
i=1,

shown in Fig. A3(b). We assume a weak perspective camera model9 and the inlier 3D keypoints and
2D landmarks satisfy the following generative model:

bi = sΠRBi + t+ εi, (A103)

9Weak perspective camera model is a good approximation of the full perspective camera model when the
object is far away from the camera center [29, 25].
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(a) Single Rotation Averaging
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(b) Shape Alignment
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(c) Point Cloud Registration
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(d) Mesh Registration

Figure A1: Dense momemt relaxation vs. sparse moment relaxation on (a) Single Rotation Averaging, (b)
Shape Alignment, (c) Point Cloud Registration, and (d) Mesh Registration. Left axis: rotation estimation error;
right axis: relative duality gap. N = 10 and statistics are plotted over 30 Monte Carlo runs.
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Figure A2: Certifiable point cloud registration. (a) Sparse moment Relaxation, (b) Dual optimality certification
and (c) Convergence of suboptimality.

where t ∈ R2 is a 2D translation and εi models an unknown but bounded additive noise that satisfies
‖εi‖ ≤ δi. Then the pairwise relative 3D keypoints and 2D landmarks will satisfy the shape alignment
model used in Example 2:

bi − bj︸ ︷︷ ︸
b̄ij

= sΠR (Bi −Bj)︸ ︷︷ ︸
B̄ij

+ (εi − εj)︸ ︷︷ ︸
ε̄ij

, (A104)

because the translation t cancels out due to the subtraction, and ‖ε̄ij‖ ≤ δi + δj models the updated
noise. Because there are 11 keypoints and landmarks, we haveK = (11

2 ) = 55 pairwise measurements{
B̄k

}K
k=1

and
{
b̄k
}K
k=1

. Using the K pairwise measurements, we can first estimate s andR using
the certifiable algorithms discussed in the main text, and then estimate the translation using the
adaptive voting method in [23]. The full 6D camera pose can be recovered as:

R3D = R, t3D =

[
tT, 1

]T
s

. (A105)
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When spoiling outliers, we replace l landmarks bi’s with random 2D pixels, which implies that the
outlier rate should be computed as:

1−
(

11−l
2

)
55

, (A106)

where
(

11−l
2

)
is the number of inlier pairwise relative measurements (a pairwise measurement b̄ij is

an inlier if and only if both bi and bj are inliers). Using the formula in eq. (A106), the outlier rates
are 0%, 18%, 35%, 49%, 62% and 73% for l = 0, 1, 2, 3, 4, 5.

Extra results and visualizations are provided in Fig. A3. These results were certified as correct by the
dual optimality certifiers presented in the main text.

(a) 3D wireframe model of Tango
(b) l = 3 (49% outlier rate)

(c) l = 4 (62% outlier rate) (d) l = 4 (62% outlier rate)

(e) l = 5 (73% outlier rate) (f) l = 5 (73% outlier rate)

Figure A3: Satellite pose estimation on the SPEED dataset [19].

A7.5 Comparison to Primal Baselines

Fig. A4(a) compares the performance of our primal solver (SDP: Basis Reduction) versus two state-
of-the-art baselines: (1) GNC (best heuristics, no optimality guarantees) [27] and (2) SDP: Chordal
Sparse (an efficient SDP relaxation that exploits correlative sparsity) [21] on single rotation averaging.
Our primal relaxation is significantly tighter than chordal sparse relaxation, and the accuracy and
robustness of our estimates dominate both baselines.
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(a) Comparison to baselines for solving primal TLS 
problem. Top: rotation error, bottom: duality gap.

(b) Comparison to baselines for verifying solution 
correctness. Top: DRS (ours), bottom: KS test.

(c) Performance w.r.t. increasing adversarial
outliers. Top: rotation error, bottom: duality gap.

Figure A4: (a) Comparison to primal baselines. (b) Comparison to certification baselines. (c)
Adversarial outliers.

A7.6 Comparison to Certification Baselines

Our DRS approach is the first mathematically rigorous approach for verifying solution correctness.
We compare it with a heuristic method that performs Kolmogorov–Smirnov (KS) test [17] on the
squared residuals with a χ2 distribution (i.e., tests normality of the residuals classified as inliers).
Fig. A4(b) shows that KS test has many false positives/negatives, while ours has zero, for single
rotation averaging.

A7.7 Adversarial Outliers

We performed tests with an adversarial outlier model (where outliers follow a different model and are
consistent with each other) and test our algorithm (SDP: Basis Reduction) against two state-of-the-art
baselines. Fig. A4(c) shows our method dominates both baselines, is insensitive to adversarial
outliers until the maximum breakdown point 50%. Note that our relaxation is still tight at 50%
outlier rate, certifying that the globally optimal solution is obtained. However, due to the presence of
adversarial outliers, the globally optimal solution may not be the ground-truth solution (if we assume
the ground-truth solution has a larger set of consistent measurements).
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