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(a) Comparison to baselines for solving primal TLS 
problem. Top: rotation error, bottom: duality gap.

(b) Comparison to baselines for verifying solution 
correctness. Top: DRS (ours), bottom: KS test.

(c) Performance w.r.t. increasing adversarial
outliers. Top: rotation error, bottom: duality gap.

Novelty and Significance (R1, R4). (i) Motivation: Outliers are ubiquitous in computer vision and robotics [101].1

(ii) Hardness: Globally optimal outlier-robust geometric perception is NP-hard and intractable [28]. (iii) Limitation2

of SOTA: SOTA algorithms are divided into fast heuristics (real-time but no guarantees) and global solvers (optimal3

but exponential time). (iv) Significance of this paper: (1) Theoretical: The first polynomial-time method for solving4

generic outlier-robust geometric perception with a posteriori global optimality guarantees. The tightness of the5

relaxation discovers a class of non-convex problems that admits hidden convexity, which has significant potential for6

theoretical study.1 (2) Algorithmic: The first tractable method for designing dual optimality certifiers that run orders of7

magnitude faster than SOTA SDP solvers (cf. Table 1).2 (3) Broader Impact: Optimality guarantees (e.g., rejecting8

wrong solutions as in Fig. 1(b)) are crucial for safety-critical applications. (v) Novelties: (1) First to reformulate TLS as9

POP with structured sparsity (cf. Prop. 5(i)(ii)); (2) First to empirically show Lasserre’s hierarchy is (surprisingly) tight10

for outlier-robust problems (Kahl’07 IJCV, Yang’20 CVPR assume outlier-free) with binary variables (vs. MAX-CUT11

relaxation is not tight); (3) First to use basis reduction to improve efficiency but keep tightness (vs. chordal relaxation12

[91] is not tight (Fig. (a))). (4) First to propose scalable certifiers using DRS and chordal initialization.13

Comparison with Baselines (R1-4). (i) Fig. (a) compares the performance of our primal solver (SDP: Basis Reduction)14

versus two (SOTA) baselines, GNC (best heuristics) [97] and SDP: Chordal Sparse (efficient SDP relaxation) [91]. Our15

primal relaxation is significantly tighter than chordal sparse relaxation [91], and the accuracy and robustness of our16

estimates dominates both baselines. (ii) Our DRS approach is the first mathematically rigorous approach for verifying17

solution correctness. We compare it with a heuristic method that performs Kolmogorov–Smirnov (KS) test on the18

squared residuals with a χ2 distribution (i.e., tests normality of the residuals classified as inliers). Fig. (b) shows that19

KS test has many false positives/negatives, while ours has zero. All results are for Single Rotation Averaging, similar20

results hold for the other applications considered in the paper.21

Adversarial Outliers (R2). We performed tests with an adversarial outlier model (where outliers follow a different22

model and are consistent with each other) and test our algorithm (SDP: Basis Reduction) against two SOTA baselines.23

Fig. (c) shows our method dominates both baselines, is insensitive to adversarial outliers until the maximum breakdown24

point 50% (the tightness of the relaxation implies the optimal solution may not be the ground-truth solution at 50%).25

LTS (R2). LTS minimizes sum of the K smallest squared residuals: minx∈X
∑K
i=1 r

2
i (x), with r21 ≤ · · · ≤ r2N . This26

is equivalent to: minx∈X ,θ2i=1

∑N
i=1

1+θi
2 r2i (x), subject to:

∑N
i=1 θi = 2K −N , which ensures the number of θi’s27

with value +1 is exactly K (smallest K). Therefore, LTS can be written as a POP, and our framework can be applied.28

However, tightness of performing relaxation for LTS is not guaranteed and basis reduction may need extra care.29

Others. (i) Theoretical breakdown of TLS is 50%. Empirical robustness can be higher if outliers are not adversarial30

([99], over 95%). [101] establishes breakdown for a specific problem. (ii) N = 100 is common for real problems. But31

surely there is still room for scalability improvements (e.g., BM factorization [18]). (iii) Main paper is rigorous thus32

hard to follow. Supplementary provides details for non-expert readers, and we will open source our implementation.33

1Moreover, the tightness of the relaxations further motivates developing fast SDP solvers, which is a major line of research on its
own (many related work in NeurIPS). As SDP solvers become more efficient, these problems eventually can be solved in real-time.

2The goal of this paper is NOT to replace existing fast heuristics, but to enhance them with a fast certification that allows asserting
the quality of their estimates and rejecting failure cases (cf. Fig. 1(b)), for safety-critical applications.


