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A1 Introduction
This document is a supplement to the paper "Modern Hopfield Networks and Attention for Immune
Repertoire Classification". All datasets and code will be fully released at https://github.com/
ml-jku/DeepRC. The CMV dataset is publicly available at https://clients.adaptivebiotech.
com/pub/Emerson-2017-NatGen.

A2 Notation overview

Definition Symbol/Notation Dimension

bag / input object / repertoire X set of N instances
sequence / instance si dl × (20 + 3)
space of sequences S
instance-level representation of sequence si zi dv
instance-level representation matrix of (s1, . . . , sN ) Z N × dv
repertoire-level representation of bag X z dv
attention value of the i-th instance ai
standard basis vector em dv
k-mer representation of a sequence si ui du
k-mer representation of a repertoire X u du
pattern xi d or dk
pattern matrix X d×N or dk ×N
query ξ d or dk
key matrix K N × dk
query matrix Q N × dk or dq × dk
value matrix V N × dv
key embedding matrix WK dy × dk
query embedding matrix WQ dy × dk
value embedding matrix WV dk × dv
pattern before embedding yi dy
pattern matrix before embedding Y N × dy
number of patterns or instances N
largest norm of a pattern M
separation of pattern xi ∆i

scale/temperature parameter β
sequence embedding function h
pooling function f
bag classifier function g
output function / output layer o
classifier output / prediction for bag X ŷ
k-mer extraction function hkmer

sub-network of DeepRC h1
sub-network of DeepRC h2
network parameters of h1 θ1
network parameters of h2 θ2
network parameters of o θo
dimension of a key dk
dimension of a value dv
dimension of a query dq
dimension of a k-mer representation du
dimension of pattern xi d
dimension of pattern yi dy
length of input sequence dl
witness ratio / motif frequency ρ

Table A1: Symbols and notations used in this paper.
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A3 DeepRC implementation details
The implementation of our method is provided at https://github.com/ml-jku/DeepRC.

Input layer. For the input layer of the CNN, the characters in the input sequence, i.e. the amino
acids (AAs), are encoded in a one-hot vector of length 20. To also provide information about the
position of an AA in the sequence, we add 3 additional input features with values in range [0, 1] to
encode the position of an AA relative to the sequence. These 3 positional features encode whether
the AA is located at the beginning, the center, or the end of the sequence, respectively, as shown in
Figure A1. We concatenate these 3 positional features with the one-hot vector of AAs, which results
in a feature vector of size 23 per sequence position. Each repertoire, now represented as a bag of
feature vectors, is then normalized to unit variance.
We feed the sequences with 23 features per position into the CNN. Sequences of different lengths
were zero-padded to the maximum sequence length per batch at the sequence ends.

AA position in sequence
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Figure A1: We use 3 input features with values in range [0, 1] to encode the relative position of each
AA in a sequence with respect to the sequence. “feature 1” encodes if an AA is close to the sequence
start, “feature 2” to the sequence center, and “feature 3” to the sequence end. For every position in
the sequence, the values of all three features sum up to 1.

Sequence duplicates and abundance. The cytomegalovirus dataset (CMV dataset) (Emerson et al.,
2017) provides sequences with an associated pre-processed abundance value per sequence, which
indicates the number of occurrences of a sequence in a repertoire. We incorporate this information
into the input of DeepRC such that the one-hot AA features of a sequence are multiplied by a scaling
factor of log(sequence_abundance) before normalization.
Other duplicated sequences are fed as separate sequences into the network, i.e. multiple sequence
instances might be identical if the sequence occurs multiple times in the repertoire.

1D CNN for motif recognition. In the following, we describe how DeepRC identifies patterns
in the individual sequences and reduces each sequence in the input object to a fixed-size feature
vector. DeepRC employs 1D convolution layers to extract patterns, where trainable weight kernels
are convolved over the sequence positions. In principle, also recurrent neural networks (RNNs) or
transformer networks could be used instead of 1D CNNs, however, (a) the computational complexity
of the network must be low to be able to process millions of sequences for a single update. Addition-
ally, (b) the learned network should be able to provide insights in the recognized patterns in form
of motifs. Both properties (a) and (b) are fulfilled by 1D convolution operations that are used by
DeepRC.
We use one 1D CNN layer (Hu et al., 2014) with SELU activation functions (Klambauer et al.,
2017) to identify the relevant patterns in the input sequences with a computationally light-weight
operation. The larger the kernel size, the more surrounding sequence positions are taken into account,
which influences the length of the motifs that can be extracted. We therefore adjust the kernel size
during hyperparameter search. In prior works (Ostmeyer et al., 2019), a k-mer size of 4 yielded
good predictive performance, which could indicate that a kernel size in the range of 4 may be a
proficient choice. For dv trainable kernels, this produces a feature vector of length dv at each sequence
position. Subsequently, global max-pooling over all sequence positions of a sequence reduces the
sequence-representations zi to vectors of the fixed length dv . Given the challenging size of the input
data per repertoire, the computation of the CNN activations and weight updates is performed using

3

https://github.com/ml-jku/DeepRC


16-bit floating point values. A list of hyperparameters evaluated for DeepRC is given in Table A4. A
comparison of RNN-based and CNN-based sequence embedding for motif recognition in a smaller
experimental setting is given in Sec. A11.

Regularization. During training, we apply random subsampling of repertoire sequences, which can
be interpreted as random drop-out (Hinton et al., 2012) on the input sequences or attention weights,
to reduce over-fitting and decrease the computational cost. For this, each repertoire is subsampled to
10, 000 input sequences, which are randomly drawn from the respective repertoire.
Additionally, one might employ further regularization techniques, which we only partly investigated
further in a smaller experimental setting in Sec. A11 due to high computational demands. Such
regularization techniques include l1 and l2 weight decay, noise in the form of random AA permu-
tations in the input sequences, noise on the attention weights, or random shuffling of sequences
between repertoires that belong to the negative class. The last regularization technique assumes that
the sequences in positive-class repertoires carry a signal, such as an AA motif corresponding to an
immune response, whereas the sequences in negative-class repertoires do not. Hence, the sequences
can be shuffled randomly between negative class repertoires without obscuring the signal in the
positive class repertoires.

Reduction of computational cost and memory consumption. We took measures to address the
high computational demands, especially GPU memory consumption, in order to make the large
number of experiments feasible:
We train the DeepRC model with a small batch size of 4 samples and perform computation of
inference and updates of the 1D CNN using 16-bit floating point values. The rest of the network is
trained using 32-bit floating point values. The Adam parameter for numerical stability was therefore
increased from the default value of ε = 10−8 to ε = 10−4.
During training and evaluation, we apply attention-based subsampling of repertoire sequences to
reduce the memory consumption and computational cost. For this, the attention weights computed by
the attention network are used to rank the input sequences. Based on this ranking, the repertoire is
reduced to the 10% of sequences with the highest attention weights. These top 10% of sequences are
then used to compute the weight updates and the prediction for the repertoire.

Computation time. Training was performed on various GPU types, mainly NVIDIA RTX 2080
Ti. Computation times were highly dependent on the number of sequences in the repertoires and
the number and sizes of CNN kernels. A single forward and backward pass with weight update
on an NVIDIA RTX 2080 Ti GPU took approximately 0.0109 to 0.0135 seconds, while requiring
approximately 8 to 11 GB GPU memory. The average total required time for one update step,
including the loading of 4 samples, their reduction to the 10% of sequences with the highest attention
weights, the weight update, the computation of validation scores for early-stopping (pro rata), and the
logging of results, was approximately 0.1 seconds. Taking GPUs with larger memory (≥ 16 GB) into
account, it is already possible to train DeepRC on larger datasets, possibly with multi-head attention
and a larger network architectures (see Sec. A11). Our network implementation is based on PyTorch
1.3.1 (Paszke et al., 2019).

Incorporation of additional inputs and metadata. Additional metadata in the form of sequence-
level or repertoire-level features could be incorporated into the input via concatenation with the
feature vectors that result from taking the maximum of the 1D CNN outputs w.r.t. the sequence
positions. This has the benefit that the attention mechanism and output network can utilize the
sequence-level or repertoire-level features for their predictions. Sparse metadata or metadata that is
only available during training could be used as auxiliary targets to incorporate the information via
gradients into the DeepRC model.

Limitations. The current methods are mostly limited by computational complexity, since both
hyperparameter and model selection is computationally demanding. For hyperparameter selection, a
large number of hyperparameter settings have to be evaluated. For model selection, a single repertoire
requires the propagation of many thousands of sequences through a neural network and keeping
those quantities in GPU memory in order to perform the attention mechanism and weight update.
Thus, increased GPU memory would significantly boost our approach. Increased computational
power would also allow for more advanced architectures and attention mechanisms, which may
further improve predictive performance. Another limiting factor is over-fitting of the model due to
the currently relatively small number of samples (bags) in real-world immunosequencing datasets in
comparison to the large number of instances per bag and features per instance.
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Hyperparameters. For the hyperparameter search of DeepRC for the category “simulated im-
munosequencing data”, we only conducted a full hyperparameter search on the more difficult datasets
with motif implantation probabilities below 1%, as described in Table A4. This process was repeated
for all 5 folds of the 5-fold cross-validation (CV) and the average score on the 5 test sets constitutes
the final score of a method.
Table A4 provides an overview of the hyperparameter search, which was conducted as a grid search
for each of the datasets in a nested 5-fold CV procedure, as described in section A5.

A4 Datasets
We aimed at constructing immune repertoire classification scenarios with varying degree of realism
and difficulties in order to compare and analyze the suggested machine learning methods. To this
end, we either use simulated or experimentally-observed immune receptor sequences and we implant
signals, which are sequence motifs (Akbar et al., 2019; Weber et al., 2020), into sequences of
repertoires of the positive class. It has been shown previously that interaction of immune receptors
with antigens occur via short sequence stretches (Akbar et al., 2019). Thus, implantation of short
motif sequences simulating an immune signal is biologically meaningful. Our benchmarking study
comprises four different categories of datasets: (a) Simulated immunosequencing data with implanted
signals (where the signal is defined as sets of motifs), (b) LSTM-generated immunosequencing
data with implanted signals, (c) real-world immunosequencing data with implanted signals, and (d)
real-world immunosequencing data. Each of the first three categories consists of multiple datasets
with varying difficulty depending on the type of the implanted signal and the ratio of sequences with
the implanted signal. The ratio of sequences with the implanted signal, where each sequence carries
at most 1 implanted signal, corresponds to the witness rate (WR). We consider binary classification
tasks to simulate the immune status of healthy and diseased individuals. We randomly generate
immune repertoires with varying numbers of sequences, where we implant sequence motifs in the
repertoires of the diseased individuals, i.e. the positive class. The sequences of a repertoire are also
randomly generated by different procedures (detailed below). Each sequence is composed of 20
different characters, corresponding to amino acids, and has an average length of 14.5 AAs.

A4.1 Simulated immunosequencing data
In the first category, we aim at investigating the impact of the signal frequency, i.e. the WR, and
the signal complexity on the performance of the different methods. To this end, we created 21
datasets, whereas each dataset contains a large number of repertoires with a large number of random
AA sequences per repertoire. We then implanted signals in the AA sequences of the positive class
repertoires, where the 21 datasets differ in frequency and complexity of the implanted signals. In
detail, the AAs were sampled randomly independent of their respective position in the sequence, while
the frequencies of AAs, distribution of sequence lengths, and distribution of the number of sequences
per repertoire, i.e. the number of instances per bag, are following the respective distributions observed
in the real-world CMV dataset (Emerson et al., 2017). For this, we first sampled the number of
sequences for a repertoire from a Gaussian N (µ = 316k, σ = 132k) distribution and rounded to
the nearest positive integer. We re-sampled if the size was below 5k. We then generated random
sequences of AAs with a length of N (µ = 14.5, σ = 1.8), again rounded to the nearest positive
integers. Each simulated repertoire was then randomly assigned to either the positive or negative
class, with 2, 500 repertoires per class. In the repertoires assigned to the positive class, we implanted
motifs with an average length of 4 AAs, following the results of the experimental analysis of antigen-
binding motifs in antibodies and T-cell receptor sequences by Akbar et al. (2019). We varied the
characteristics of the implanted motifs for each of the 21 datasets with respect to the following
parameters: (a) ρ, the probability of a motif being implanted in a sequence of a positive repertoire,
i.e. the average ratio of sequences containing the motif, which is the witness rate. (b) The number
of wildcard positions in the motif. A wildcard position contains a random AA, which is randomly
sampled for each sequence. Wildcard positions are located in the center of the implanted motif. (c)
The number of deletion positions in the implanted motif. A deletion position has a probability of 0.5
of being removed from the motif. Deletion positions are located in the center of the implanted motifs.
In this way, we generated 18 different datasets of variable difficulty containing in total roughly 28.7
billion sequences. Additionally, we added 3 datasets in which every position has a 20% probability
of behaving like a wildcard position to evaluate the performance on motifs with increased noise,
resulting in a total of 21 different datasets. See Table A2 for an overview of the properties of the
implanted motifs in the 21 datasets.
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A4.2 LSTM-generated data
In the second dataset category, we investigate the impact of the signal frequency and complexity in
combination with more plausible immune receptor sequences by taking into account the positional
AA distributions and other sequence properties. To this end, we trained an LSTM (Hochreiter &
Schmidhuber, 1997) in a standard next character prediction (Graves, 2013) setting to create AA
sequences with properties similar to experimentally observed immune receptor sequences.
In the first step, the LSTM model was trained on all immuno-sequences in the CMV dataset (Emerson
et al., 2017) that contain valid information about sequence abundance and have a known CMV label.
Such an LSTM model is able to capture various properties of the sequences, including position-
dependent probability distributions and combinations, relationships, and order of AAs. We then used
the trained LSTM model to generate 1, 000 repertoires in an autoregressive fashion, starting with a
start sequence that was randomly sampled from the trained-on dataset. Based on a visual inspection
of the frequencies of 4-mers (see section A8), the similarity of LSTM generated sequences and real
sequences was deemed sufficient for the purpose of generating the AA sequences for the datasets in
this category. Further details on LSTM training and repertoire generation are given in Section A8.
After generation, each repertoire was assigned to either the positive or negative class, with 500
repertoires per class. We implanted motifs of length 4 with varying properties in the center of the
sequences of the positive class to obtain 5 different datasets. Each sequence in the positive repertoires
has a probability ρ to carry the motif, which was varied throughout 5 datasets and corresponds to
the WR (see Table A2). Each position in the motif has a probability of 0.9 to be implanted and
consequently a probability of 0.1 that the original AA in the sequence remains, which can be seen as
noise on the motif.

Simulated LSTM gen. Real-world

seq. per bag N(316k, 132k) N(285k, 156k) 10k
repertoires 5, 000 1, 000 1, 500
motif noise 0% 10% ∗
wildcards {0; 1; 2} 0 0
deletions {0; 1} 0 0
mot. freq. ρ {1; 0.1; {10; 1; 0.5; {1; 0.1}
(in %) 0.01} 0.1; 0.05}

Table A2: Properties of simulated repertoires, variations of motifs, and motif frequencies, i.e. the
witness rate, for the datasets in categories “simulated immunosequencing data”, “LSTM-generated
data”, and “real-world data with implanted signals”. Noise types for ∗ are explained in paragraph
“real-world data with implanted signals”.

A4.3 Real-world data with implanted signals
In the third category, we implanted signals into experimentally obtained immuno-sequences, where
we considered 4 dataset variations. Each dataset consists of 750 repertoires for each of the two classes,
where each repertoire consists of 10k sequences. In this way, we aim to simulate datasets with a low
sequencing coverage, which means that only relatively few sequences per repertoire are available.
The sequences were randomly sampled from healthy (CMV negative) individuals from the CMV
dataset (see below paragraph for explanation). Two signal types were considered: (a) One signal
with one motif. The AA motif LDR was implanted in a certain fraction of sequences. The pattern
is randomly altered at one of the three positions with probabilities 0.2, 0.6, and 0.2, respectively.
(b) One signal with multiple motifs. One of the three possible motifs LDR, CAS, and GL-N was
implanted with equal probability. Again, the motifs were randomly altered before implantation. The
AA motif LDR changed as described above. The AA motif CAS was altered at the second position
with probability 0.6 and with probability 0.3 at the first position. The pattern GL-N, where - denotes
a gap location, is randomly altered at the first position with probability 0.6 and the gap has a length
of 0, 1, or 2 AAs with equal probability.
Additionally, the datasets differ in the values for ρ, the average ratio of sequences carrying a signal,
which were chosen as 1% or 0.1%. The motifs were implanted at positions 107, 109, and 114
according to the IMGT numbering scheme for immune receptor sequences (Lefranc et al., 2003) with
probabilities 0.3, 0.35 and 0.2, respectively. With the remaining 0.15 chance, the motif is implanted
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at any other sequence position. This means that the motif occurrence in the simulated sequences is
biased towards the middle of the sequence.

A4.4 Real-world data: CMV dataset
We used a real-world dataset of 785 repertoires, each of which containing between 4, 371 to 973, 081
(avg. 299, 319) TCR sequences with a length of 1 to 27 (avg. 14.5) AAs, originally collected
and provided by Emerson et al. (2017). 340 out of 785 repertoires were labelled as positive for
cytomegalovirus (CMV) serostatus, which we consider as the positive class, 420 repertoires with
negative CMV serostatus, considered as negative class, and 25 repertoires with unknown status. We
changed the number of sequence counts per repertoire from −1 to 1 for 3 sequences. Furthermore,
we exclude a total of 99 repertoires with unknown CMV status or unknown information about the
sequence abundance within a repertoire, reducing the dataset for our analysis to 686 repertoires, 312
of which with positive and 374 with negative CMV status.

A4.5 Comparison to other MIL datasets
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A5 Compared methods
We evaluate and compare the performance of DeepRC against a set of machine learning methods that
serve as baseline, were suggested, or can readily be adapted to immune repertoire classification. In
this section, we describe these compared methods.

A5.1 Known motif
This method serves as an estimate for the achievable classification performance using prior knowledge
about which motif was implanted. Note that this does not necessarily lead to perfect predictive
performance since motifs are implanted with a certain amount of noise and could also be present
in the negative class by chance. The known motif method counts how often the known implanted
motif occurs per sequence for each repertoire and uses this count to rank the repertoires. From this
ranking, the Area Under the receiver operator Curve (AUC) is computed as performance measure.
Probabilistic AA changes in the known motif are not considered for this count, with the exception
of gap positions. We consider two versions of this method: (a) Known motif binary: counts the
occurrence of the known motif in a sequence and (b) Known motif continuous: counts the maximum
number of overlapping AAs between the known motif and all sequence positions, which corresponds
to a convolution operation with a binary kernel followed by max-pooling. Since the implanted signal
is not known in the experimentally obtained CMV dataset, this method cannot be applied to this
dataset.

A5.2 Support Vector Machine (SVM)
The Support Vector Machine (SVM) approach uses a fixed mapping from a bag of sequences to the
corresponding k-mer counts. The function hkmer maps each sequence si to a vector representing the
occurrence of k-mers in the sequence. To avoid confusion with the sequence-representation obtained
from the CNN layers of DeepRC, we denote ui = hkmer(si), which is analogous to zi. Specifically,
uim = (hkmer(si))m = #{pm ∈ si}, where #{pm ∈ si} denotes how often the k-mer pattern pm
occurs in sequence si. Afterwards, average-pooling is applied to obtain u = 1/N

∑N
i=1 ui, the

k-mer representation of the input object X . For two input objects X(n) and X(l) with representations
u(n) and u(l), respectively, we implement the MinMax kernel (Ralaivola et al., 2005) as follows:

k(X(n), X(l)) = kMinMax(u(n),u(l))

=

∑du

m=1 min(u
(n)
m , u

(l)
m )∑du

m=1 max(u
(n)
m , u

(l)
m )

,
(1)

where u(n)m is them-th element of the vector u(n). The Jaccard kernel (Levandowsky & Winter, 1971)
is identical to the MinMax kernel except that it operates on binary u(n). We used a standard C-SVM,
as introduced by Cortes & Vapnik (1995). The corresponding hyperparameter C is optimized by
random search. The settings of the full hyperparameter search as well as the respective value ranges
are given in Table A5.

A5.3 K-Nearest Neighbor (KNN)
The same k-mer representation of a repertoire, as introduced above for the SVM baseline, is used for
the K-Nearest Neighbor (KNN) approach. As this method clusters samples according to distances
between them, the previous kernel definitions cannot be applied directly. It is therefore necessary to
transform the MinMax as well as the Jaccard kernel from similarities to distances by constructing the
following (Levandowsky & Winter, 1971):

dMinMax(u(n),u(l)) = 1− kMinMax(u(n),u(l)),

dJaccard(u(n),u(l)) = 1− kJaccard(u(n),u(l)).
(2)

The amount of neighbors is treated as the hyperparameter and optimized by an exhaustive grid search.
The settings of the full hyperparameter search as well as the respective value ranges are given in
Table A6.

A5.4 Logistic regression
We implemented logistic regression on the k-mer representation u of an immune repertoire. The
model is trained by gradient descent using the Adam optimizer (Kingma & Ba, 2014). The learning
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rate is treated as the hyperparameter and optimized by grid search. Furthermore, we explored
two regularization settings using combinations of l1 and l2 weight decay. The settings of the full
hyperparameter search as well as the respective value ranges are given in Table A7.

A5.5 Burden test
We implemented a burden test (Emerson et al., 2017; Li & Leal, 2008; Wu et al., 2011) in a machine
learning setting. The burden test first identifies sequences or k-mers that are associated with the
individual’s class, i.e., immune status, and then calculates a burden score per individual. Concretely,
for each k-mer or sequence, the phi coefficient of the contingency table for absence or presence and
positive or negative immune status is calculated. Then, J k-mers or sequences with the highest phi
coefficients are selected as the set of associated k-mers or sequences. J is a hyperparameter that
is selected on a validation set. Additionally, we consider the type of input features, sequences or
k-mers, as a hyperparameter. For inference, a burden score per individual is calculated as the sum
of associated k-mers or sequences it carries. This score is used as raw prediction and to rank the
individuals. Hence, we have extended the burden test by Emerson et al. (2017) to k-mers and to
adaptive thresholds that are adjusted on a validation set.

A5.6 Logistic MIL (Ostmeyer et al)
The logistic multiple instance learning (MIL) approach for immune repertoire classification (Ostmeyer
et al., 2019) applies a logistic regression model to each k-mer representation in a bag. The resulting
scores are then summarized by max-pooling to obtain a prediction for the bag. Each amino acid
of each k-mer is represented by 5 features, the so-called Atchley factors (Atchley et al., 2005). As
k-mers of length 4 are used, this gives a total of 4×5 = 20 features. One additional feature per 4-mer
is added, which represents the relative frequency of this 4-mer with respect to its containing bag,
resulting in 21 features per 4-mer. Two options for the relative frequency feature exist, which are (a)
whether the frequency of the 4-mer (“4MER”) or (b) the frequency of the sequence in which the 4-mer
appeared (“TCRβ”) is used. We optimized the learning rate, batch size, and early stopping parameter
on the validation set. The settings of the full hyperparameter search as well as the respective value
ranges are given in Table A9.
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A6 Hyperparameter selection
For all competing methods a hyperparameter search was performed, for which we split each of the 5
training sets into an inner training set and inner validation set. The models were trained on the inner
training set and evaluated on the inner validation set. The model with the highest AUC score on the
inner validation set is then used to calculate the score on the respective test set. Here we report the
hyperparameter sets and search strategy that is used for all methods.

DeepRC. The set of hyperparameters of DeepRC is shown in Table A4. These hyperparameter
combinations are adjusted via a grid search procedure.

learning rate 10−4

number of kernels (dv) {8; 16; 32; 64∗; 128∗; 256∗}
number of CNN layers {1}
number of layers in key-NN {2}
number of units in key-NN {32}
kernel size {5; 7; 9}
subsampled seqences 10, 000
batch size 4

Table A4: DeepRC hyperparameter search space. We apply early stopping, where the model with
the best loss on the validation fold after 5 ·105 updates was selected. For this, the model was evaluated
against the validation fold every 5 · 103 updates during training. ∗) Experiments for {64; 128; 256}
kernels were omitted for simulated datasets with motif implantation probabilities > 0.1%.

Known motif. This method does not have hyperparameters and has been applied to all datasets
except for the CMV dataset.

SVM. The corresponding hyperparameter C of the SVM is optimized by randomly drawing 103

values in the range of [−6; 6] according to a uniform distribution. These values act as the exponents
of a power of 10 and are applied for each of the two kernel types (see Table A5).

C 10{−6;6}

type of kernel {MinMax; Jaccard}
number of trials 103

Table A5: Settings used in the hyperparameter search of the SVM baseline approach. The number of
trials defines the quantity of random values of the C penalty term (per type of kernel).

KNN. The amount of neighbors is treated as the hyperparameter and optimized by grid search
operating in the discrete range of [1; max{N, 103}] with a step size of 1. The corresponding tight
upper bound is automatically defined by the total amount of samples N ∈ N>0 in the training set,
capped at 103 (see Table A6).

number of neighbors {1; max{N, 103}}
type of kernel {MinMax; Jaccard}

Table A6: Settings used in the hyperparameter search of the KNN baseline approach. The number of
trials (per type of kernel) is automatically defined by the total amount of samples N ∈ N>0 in the
training set, capped at 103.

Logistic regression. For this method, we applied a grid search over the hyperparameters listed in
Table A7. We varied the learning rate and the strength of the weight decay.
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learning rate 10−{1;2;3;4}

batch size 4
max. updates 105

coefficient β1 (Adam) 0.9
coefficient β2 (Adam) 0.999
l1 weight decay factor 10−7

l2 weight decay factor 10−{3;5}

Table A7: Settings used in the hyperparameter search of the logistic regression method.

Burden test. The burden test selects two hyperparameters: the number of features in the burden
set and the type of features, as listed in Table A8. Due to the lack of shared sequences between
repertoires in category “simulated immunosequencing data”, we omitted the sequence-based burden
test for this category.

number of features in burden set {50, 100, 150, 250}
type of features {4MER; sequence∗}

Table A8: Settings used in the hyperparameter search of the burden test approach. ∗) Experiments for
sequence features were omitted for datasets of category “simulated immunosequencing data” due to
the lack of shared sequences between repertoires.

Logistic MIL. For this method, we adjusted the learning rate as well as the batch size as hyperpa-
rameters by randomly drawing 25 different hyperparameter combinations from a uniform distribution.
The corresponding range of the learning rate is [−4.5;−1.5], which acts as the exponent of a power
of 10. The batch size lies within the range of [1; 32]. For each hyperparameter combination, a model
is optimized by gradient descent using Adam, whereas the early stopping parameter is adjusted
according to the corresponding validation set (see Table A9).

learning rate 10{−4.5;−1.5}

batch size {1; 32}
relative abundance term {4MER; TCRβ}
number of trials 25
max. epochs 102

coefficient β1 (Adam) 0.9
coefficient β2 (Adam) 0.999

Table A9: Settings used in the hyperparameter search of the logistic MIL baseline approach. The
number of trials (per type of relative abundance) defines the quantity of combinations of random
values of the learning rate as well as the batch size.
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A7 Results

In this section, we report the detailed results on all four categories of datasets (a) simulated immunose-
quencing data (Table A10) (b) LSTM-generated data (Table A11), (c) real-world data with implanted
signals (Table A12), and (d) real-world data on the CMV dataset (Table A13), as discussed in the
main paper.
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ID 0 1 2 3 4 avg.

motif freq. ρ 10% 1% 0.5% 0.1% 0.05% –

implanted motif GrSrArFr GrSrArFr GrSrArFr GrSrArFr GrSrArFr –

DeepRC 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.998 ± 0.002 1.000 ± 0.001

SVM (MinMax) 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.001 0.999 ± 0.002 0.985 ± 0.014 0.997 ± 0.007

SVM (Jaccard) 0.981 ± 0.041 1.000 ± 0.000 1.000 ± 0.000 0.904 ± 0.036 0.768 ± 0.068 0.931 ± 0.099

KNN (MinMax) 0.699 ± 0.272 0.717 ± 0.263 0.732 ± 0.263 0.536 ± 0.156 0.516 ± 0.153 0.640 ± 0.105

KNN (Jaccard) 0.698 ± 0.285 0.606 ± 0.237 0.523 ± 0.164 0.550 ± 0.186 0.539 ± 0.194 0.583 ± 0.071

Logistic Regression 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.697 ± 0.164 0.466 ± 0.103 0.833 ± 0.243

Logistic MIL (KMER) 0.997 ± 0.004 0.718 ± 0.112 0.637 ± 0.144 0.571 ± 0.146 0.528 ± 0.129 0.690 ± 0.186

Logistic MIL (TCRβ) 0.541 ± 0.086 0.566 ± 0.162 0.468 ± 0.086 0.505 ± 0.067 0.500 ± 0.121 0.516 ± 0.038

Burden test 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.003 0.792 ± 0.280 0.958 ± 0.093

Known motif b. 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.003 0.999 ± 0.003 1.000 ± 0.001

Known motif c. 1.000 ± 0.000 1.000 ± 0.000 0.989 ± 0.011 0.722 ± 0.085 0.626 ± 0.094 0.867 ± 0.180

Table A11: AUC estimates based on 5-fold CV for all 5 datasets in category “LSTM-generated data”.
The reported errors are standard deviations across the 5 cross-validation folds except for the last
column “avg.”, in which they show standard deviations across datasets. Characters affected by noise,
as described in A4, paragraph “LSTM-generated data”, are indicated by r.
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s.m. 1% s.m. 0.1% m.m. 1% m.m. 0.1% Avg.

DeepRC 1.000 ± 0.000 0.984 ± 0.008 0.999 ± 0.001 0.938 ± 0.009 0.980 ± 0.029

SVM (MinMax) 1.000 ± 0.000 0.578 ± 0.020 1.000 ± 0.000 0.531 ± 0.019 0.777 ± 0.258

SVM (Jaccard) 0.988 ± 0.003 0.527 ± 0.016 1.000 ± 0.000 0.574 ± 0.019 0.772 ± 0.257

KNN (MinMax) 0.744 ± 0.237 0.486 ± 0.031 0.674 ± 0.182 0.500 ± 0.022 0.601 ± 0.128

KNN (Jaccard) 0.652 ± 0.155 0.484 ± 0.025 0.695 ± 0.200 0.508 ± 0.025 0.585 ± 0.104

Logistic Regression 1.000 ± 0.000 0.585 ± 0.045 1.000 ± 0.000 0.512 ± 0.015 0.774 ± 0.262

Logistic MIL (KMER) 0.541 ± 0.074 0.506 ± 0.034 0.994 ± 0.004 0.620 ± 0.153 0.665 ± 0.224

Logistic MIL (TCRβ) 0.503 ± 0.032 0.501 ± 0.016 0.992 ± 0.003 0.782 ± 0.030 0.695 ± 0.238

Burden test 1.000 ± 0.000 0.640 ± 0.048 1.000 ± 0.000 0.891 ± 0.016 0.883 ± 0.170

Known motif b. 1.000 ± 0.000 0.704 ± 0.028 0.994 ± 0.003 0.620 ± 0.038 0.830 ± 0.196

Known motif c. 0.920 ± 0.004 0.562 ± 0.028 0.647 ± 0.030 0.515 ± 0.031 0.661 ± 0.181

Table A12: AUC estimates based on 5-fold CV for all 4 datasets in category “real-world data with
implanted signals”. The reported errors are standard deviations across the 5 cross-validation folds
except for the last column “avg.”, in which they show standard deviations across datasets. s.m. 1%:
In this dataset, a single motif with a frequency of 1% was implanted. s.m. 0.1%: In this dataset, a
single motif with a frequency of 0.1% was implanted. m.m. 1%: In this dataset, multiple motifs with
a frequency of 1% were implanted. m.m. 0.1%: In this dataset, multiple motifs with a frequency
of 0.1% were implanted. A detailed description of the motifs is provided in section A4, paragraph
“Real-world data with implanted signals.”.

AUC F1 score Balanced accuracy Accuracy

DeepRC 0.832 ± 0.022 0.721 ± 0.030 0.734 ± 0.032 0.735 ± 0.037

SVM (MinMax) 0.825 ± 0.022 0.680 ± 0.056 0.734 ± 0.037 0.742 ± 0.031

SVM (Jaccard) 0.546 ± 0.021 0.272 ± 0.184 0.523 ± 0.026 0.542 ± 0.032

KNN (MinMax) 0.679 ± 0.076 0.000 ± 0.000 0.500 ± 0.000 0.545 ± 0.044

KNN (Jaccard) 0.534 ± 0.039 0.073 ± 0.101 0.508 ± 0.012 0.551 ± 0.042

Logistic regression 0.613 ± 0.044 0.405 ± 0.211 0.558 ± 0.046 0.577 ± 0.058

Logistic MIL (KMER) 0.582 ± 0.065 0.118 ± 0.264 0.503 ± 0.007 0.515 ± 0.058

Logistic MIL (TCRβ) 0.515 ± 0.073 0.000 ± 0.000 0.496 ± 0.008 0.541 ± 0.039

Burden test 0.699 ± 0.041 - - -

Table A13: Results on the CMV dataset (real-world data) in terms of AUC, F1 score, balanced
accuracy, and accuracy. For F1 score, balanced accuracy, and accuracy, all methods use their default
thresholds. Each entry shows mean and standard deviation across 5 cross-validation folds.
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A8 Repertoire generation via LSTM
We trained a conventional next-character LSTM model (Graves, 2013) based on the implementation in
https://github.com/spro/practical-pytorch (access date 1st of May, 2020) using PyTorch
1.3.1 (Paszke et al., 2019). For this, we applied an LSTM model with 100 LSTM blocks in 2 layers,
which was trained for 5, 000 epochs using the Adam optimizer (Kingma & Ba, 2014) with learning
rate 0.01, an input batch size of 100 character chunks, and a character chunk length of 200. As
input we used the immuno-sequences in the CDR3 column of the CMV dataset, where we repeated
sequences according to their counts in the repertoires, as specified in the templates column of the
CMV dataset. We excluded repertoires with unknown CMV status and unknown sequence abundance
from training.
After training, we generated 1, 000 repertoires using a temperature value of 0.8. The number of
sequences per repertoire was sampled from a Gaussian N (µ = 285k, σ = 156k) distribution, where
the whole repertoire was generated by the LSTM at once. That is, the LSTM can base the generation
of the individual AA sequences in a repertoire, including the AAs and the lengths of the sequences,
on the generated repertoire. A random immuno-sequence from the trained-on repertoires was used as
initialization for the generation process. This immuno-sequence was not included in the generated
repertoire.
Finally, we randomly assigned 500 of the generated repertoires to the positive (diseased) and 500 to
the negative (healthy) class. We then implanted motifs in the positive class repertoires as described in
section A4.2.
As illustrated in the comparison of histograms given in Fig. A2, the generated immuno-sequences
exhibit a very similar distribution of 4-mers and AAs compared to the original CMV dataset.
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Real-world data LSTM-generated data

a) b)

c) d)

e) f)

Figure A2: Distribution of AAs and k-mers in real-world CMV dataset and LSTM-generated data.
Left: Histograms of real-world data. Right: Histograms of LSTM-generated data. a) Frequency of
AAs in sequences of the CMV dataset. b) Frequency of AAs in sequences of the LSTM-generated
datasets. c) Frequency of top 200 4-mers in sequences of the CMV dataset. d) Frequency of top 200
4-mers in sequences of the LSTM-generated datasets. e) Frequency of top 20 4-mers in sequences
of the CMV dataset. f) Frequency of top 20 4-mers in sequences of the LSTM-generated datasets.
Overall the distributions of AAs and 4-mers are similar in both datasets.
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A9 Interpreting DeepRC
DeepRC allows for two forms of interpretability methods. (a) Due to its attention-based design, a
trained model can be used to compute the attention weights of a sequence, which directly indicates
its importance. (b) DeepRC furthermore allows for the usage of contribution analysis methods,
such as Integrated Gradients (IG) (Sundararajan et al., 2017) or Layer-Wise Relevance Propagation
(Montavon et al., 2018; Arras et al., 2019; Montavon et al., 2019; Preuer et al., 2019). We apply
IG to identify the input patterns that are relevant for the classification. To identify AA patterns
with high contributions in the input sequences, we apply IG to the AAs in the input sequences.
Additionally, we apply IG to the kernels of the 1D CNN, which allows us to identify AA motifs with
high contributions. In detail, we compute the IG contributions for the AAs and positional features
in the kernels for every repertoire in the validation and test set, so as to exclude potential artifacts
caused by over-fitting. Averaging the IG values over these repertoires then results in concise AA
motifs. We include qualitative visual analyses of the IG method on different datasets below.
Here, we provide examples for the interpretation of trained DeepRC models using Integrated Gradients
(IG) (Sundararajan et al., 2017) as contribution analysis method. The following illustrations were
created using 50 IG steps, which we found sufficient to achieve stable IG results.
A visual analysis of DeepRC models on the simulated datasets, as illustrated in Tab. A14 and Fig. A3,
shows that the implanted motifs can be successfully extracted from the trained model and are straight-
forward to interpret. In the real-world CMV dataset, DeepRC finds complex patterns with high
variability in the center regions of the immuno-sequences, as illustrated in figure A4.

Simulated

extracted motif

implanted motif(s) SFEN SFdEN SZZN SZdZN

motif freq. ρ 0.01% 0.01% 0.1% 0.1%

LSTM-generated Real-world data with implanted signals

extracted motif

implanted motif(s) GrSrArFr LrDrRr {LrDrRr; CrArS; GrL-N}

motif freq. ρ 0.05% 0.1% 0.1%

Table A14: Visualization of motifs extracted from trained DeepRC models for datasets from categories
“simulated immunosequencing data”, “LSTM-generated data”, and “real-world data with implanted
signals”. Motif extraction was performed using Integrated Gradients on the 1D CNN kernels over
the validation set and test set repertoires of one CV fold. Wildcard characters are indicated by Z,
random noise on characters by r, characters with 50% probability of being removed by d, and gap
locations of random lengths of {0; 1; 2} by -. Larger characters in the extracted motifs indicate
higher contribution, with blue indicating positive contribution and red indicating negative contribution
towards the prediction of the diseased class. Contributions to positional encoding are indicated by
< (beginning of sequence), ∧ (center of sequence), and > (end of sequence). Only kernels with
relatively high contributions are shown, i.e. with contributions roughly greater than the average
contribution of all kernels.
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a)

b)

c)

Figure A3: Integrated Gradients applied to input sequences of positive class repertoires. Three
sequences with the highest contributions to the prediction of their respective repertoires are shown.
a) Input sequence taken from “simulated immunosequencing data” with implanted motif SZdZdN
and motif implantation probability 0.1%. The DeepRC model reacts to the S and N at the 5th and
8th sequence position, thereby identifying the implanted motif in this sequence. b) and c) Input
sequence taken from “real-world data with implanted signals” with implanted motifs {LrDrRr; CrArS;
GrL-N} and motif implantation probability 0.1%. The DeepRC model reacts to the fully implanted
motif CAS (b) and to the partly implanted motif AAs C and A at the 5th and 7th sequence position (c),
thereby identifying the implanted motif in the sequences. Wildcard characters in implanted motifs are
indicated by Z, characters with 50% probability of being removed by d, and gap locations of random
lengths of {0; 1; 2} by -. Larger characters in the sequences indicate higher contribution, with blue
indicating positive contribution and red indicating negative contribution towards the prediction of the
diseased class.
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Figure A4: Visualization of the contributions of characters within a sequence via IG. Each sequence
was selected from a different repertoire and showed the highest contribution in its repertoire. The
model was trained on CMV dataset, using a kernel size of 9, 32 kernels and 137 repertoires for early
stopping. Larger characters in the extracted motifs indicate higher contribution, with blue indicating
positive contribution and red indicating negative contribution towards the prediction of the disease
class.
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A10 Attention values for previously associated CMV sequences

index sequence attention quantile index sequence attention quantile index sequence attention quantile index sequence attention quantile

1 CASSGQGAYEQYF 1.000 0.999 42 CASSLGGAGDTQYF 1.000 1.000 83 CASSYVRTGGNYGYTF 0.967 0.932 124 CASSLTGGNSGNTIYF 0.991 0.977

2 CASSIGPLEHNEQFF 0.947 0.900 43 CASNRDRGRYEQYF 0.991 0.978 84 CASSLAGVDYEQYF 0.999 0.996 125 CASSRNRGQETQYF 0.978 0.952

3 CASSPDRVGQETQYF 0.995 0.987 44 CSVRDNHNQPQHF 0.965 0.929 85 CASSLGAGNQPQHF 1.000 0.999 126 CASSLGQGLAEAFF 0.996 0.989

4 CASSLEAEYEQYF 0.992 0.980 45 CASSAQGAYEQYF 0.998 0.995 86 CASSRDRNYGYTF 0.998 0.995 127 CASRTGESGYTF 0.985 0.965

5 CASSIEGNQPQHF 0.993 0.983 46 CATSRGTVSYEQYF 0.990 0.975 87 CASGRDTYEQYF 0.999 0.997 128 CASSSDSGGTDTQYF 0.951 0.906

6 CATSDGDEQFF 0.998 0.996 47 CASSPPSGLTDTQYF 0.978 0.951 88 CAWSVSDLAKNIQYF 0.954 0.911 129 CASSVDGGRGTEAFF 0.995 0.987

7 CASSLVAGGRETQYF 0.988 0.971 48 CASSGDRLYEQYF 0.998 0.994 89 CASSPNQETQYF 0.999 0.996 130 CSVEVRGTDTQYF 0.955 0.912

8 CASSRGRQETQYF 0.997 0.993 49 CASSLNRGQETQYF 0.996 0.988 90 CSASDHEQYF 0.995 0.986 131 CASSESGDPSSYEQYF 0.980 0.955

9 CASSAGQGVTYEQYF 0.998 0.995 50 CASSLGVGPYNEQFF 0.986 0.967 91 CASSWDRDNSPLHF 0.918 0.855 132 CASSEEAGGSGYTF 0.982 0.959

10 CASSQNRGQETQYF 0.995 0.987 51 CATSDSVTNTGELFF 0.989 0.973 92 CASSPGQEAGANVLTF 0.823 0.728 133 CAISESQDRGHEQYF 0.823 0.728

11 CASSPQRNTEAFF 1.000 0.999 52 CASSRNRESNQPQHF 0.968 0.934 93 CASSLVAAGRETQYF 0.959 0.919 134 CASSPTGGELFF 0.989 0.974

12 CASSLAPGATNEKLFF 0.976 0.949 53 CASSEARTRAFF 0.927 0.869 94 CASSPHRNTEAFF 0.999 0.998 135 CASSVETGGTEAFF 0.995 0.986

13 CASSLIGVSSYNEQFF 0.983 0.961 54 CASSYNPYSNQPQHF 0.892 0.819 95 CASRGQGWDEKLFF 0.994 0.984 136 CASASANYGYTF 0.816 0.720

14 CSVRDNFNQPQHF 0.915 0.851 55 CASSLGHRDSSYEQYF 0.987 0.969 96 CASSQVETDTQYF 0.994 0.984 137 CASSSRTGEETQYF 0.996 0.988

15 CASSQTGGRNQPQHF 0.997 0.992 56 CASSRLAASTDTQYF 0.992 0.979 97 CASRDWDYTDTQYF 0.994 0.984 138 CASSLGRGYEKLFF 0.985 0.965

16 CASSLVIGGDTEAFF 0.966 0.931 57 CASSVTGGTDTQYF 1.000 0.999 98 CASSSDRVGQETQYF 0.980 0.955 139 CASSGLNEQFF 0.994 0.984

17 CASSLRREKLFF 0.998 0.993 58 CASSPPGQGSDTQYF 0.975 0.946 99 CASSLGDRPDTQYF 0.940 0.889 140 CASSRNRAQETQYF 0.994 0.984

18 CASSFHGFNQPQHF 0.991 0.978 59 CATSDSRTGGQETQYF 0.900 0.829 100 CASSLEGQGFGYTF 0.944 0.895 141 CASTPGDEQFF 0.988 0.971

19 CATSRDTQGSYGYTF 0.917 0.854 60 CASSSPGRSGANVLTF 0.995 0.986 101 CASSSGQVYGYTF 0.999 0.996 142 CASSLGIDTQYF 0.997 0.991

20 CASSRLAGGTDTQYF 0.999 0.998 61 CASSPLSDTQYF 0.998 0.994 102 CASSEEGIQPQHF 0.998 0.994 143 CASSIRTNYYGYTF 0.996 0.990

21 CASSFPTSGQETQYF 0.982 0.959 62 CASSLTGGRNQPQHF 0.999 0.997 103 CASSLETYGYTF 0.998 0.995 144 CASSPISNEQFF 0.967 0.933

22 CASSPGDEQYF 0.998 0.993 63 CASSIQGYSNQPQHF 0.993 0.983 104 CASSFPGGETQYF 0.992 0.979 145 CASSQNRAQETQYF 0.984 0.962

23 CASSLPSGLTDTQYF 0.994 0.985 64 CASSTTGGDGYTF 0.978 0.952 105 CASSSGQVQETQYF 0.997 0.993 146 CASSALGGAGTGELFF 0.985 0.964

24 CASSEIPNTEAFF 0.997 0.992 65 CASSVLAGPTDTQYF 0.951 0.906 106 CASSEGARQPQHF 0.999 0.998 147 CASSLAVLPTDTQYF 0.996 0.989

25 CASSIWGLDTEAFF 0.959 0.919 66 CASSHRDRNYEQYF 0.987 0.969 107 CSALGHSNQPQHF 0.926 0.867 148 CASSLQAGANEQFF 0.969 0.935

26 CASSPGDEQFF 0.999 0.997 67 CASSPSRNTEAFF 0.999 0.998 108 CASSLLWDQPQHF 0.986 0.967 149 CASSTGGAQPQHF 0.998 0.993

27 CATSRDSQGSYGYTF 0.980 0.955 68 CASSLGGPGDTQYF 0.993 0.982 109 CASSLVGDGYTF 1.000 1.000 150 CASSLGASGSRTDTQYF 0.932 0.876

28 CASSYGGLGSYEQYF 0.995 0.987 69 CASSEARGGVEKLFF 0.989 0.974 110 CASSSRGTGELFF 0.999 0.997 151 CASSRGTGATDTQYF 0.999 0.998

29 CASSPSTGTEAFF 0.997 0.992 70 CASSTGTSGSYEQYF 0.999 0.998 111 CATSRVAGETQYF 0.980 0.955 152 CASSYPGETQYF 0.997 0.992

30 CSVEEDEGIYGYTF 0.964 0.927 71 CASRSDSGANVLTF 0.973 0.942 112 CASRGQGAGELFF 0.987 0.969 153 CASSLTDTGELFF 0.994 0.984

31 CASSPAGLNTEAFF 0.996 0.988 72 CASSLEAENEQFF 0.973 0.943 113 CASSPGGTQYF 0.999 0.996 154 CASRPQGNYGYTF 0.998 0.996

32 CASSLGLKGTQYF 0.964 0.928 73 CASSEAPSTSTDTQYF 0.989 0.973 114 CASSLQGINQPQHF 0.999 0.997 155 CASSTSGNTIYF 1.000 0.999

33 CASMGGASYEQYF 0.991 0.978 74 CASSLQGADTQYF 0.997 0.991 115 CASSQGRHTDTQYF 0.960 0.921 156 CASSSGTGDEQYF 1.000 1.000

34 CASSQVPGQGDNEQFF 0.983 0.961 75 CASSLEGQQPQHF 0.994 0.984 116 CASSPRWQETQYF 0.991 0.978 157 CASSPPAGTNYGYTF 0.947 0.900

35 CATSDGDTQYF 0.996 0.989 76 CASSYGGEGYTF 0.999 0.996 117 CASRDRDRVNTEAFF 0.970 0.938 158 CASSPLGGTTEAFF 0.995 0.988

36 CATSDGETQYF 0.998 0.994 77 CASSLRGSSYNEQFF 0.999 0.998 118 CASSWDRGTEAFF 0.999 0.999 159 CASSLGWTEAFF 0.999 0.997

37 CSVRDNYNQPQHF 0.998 0.993 78 CASSISAGEAFF 0.992 0.979 119 CASSRPGQGNTEAFF 0.994 0.984 160 CATSREGSGYEQYF 0.987 0.969

38 CASSLVASGRETQYF 0.997 0.991 79 CASRPTGYEQYF 0.987 0.969 120 CASSPGSGANVLTF 0.999 0.997 161 CASSYAGDGYTF 0.992 0.980

39 CSASPGQGASYGYTF 0.987 0.969 80 CAWRGTGNSPLHF 0.964 0.927 121 CASRRGSSYEQYF 0.999 0.998 162 CASSDRGNTGELFF 0.995 0.986

40 CASSESGHRNQPQHF 0.999 0.997 81 CASSLGDRAYNEQFF 0.996 0.988 122 CASRTDSGANVLTF 0.994 0.986 163 CSARRGPGELFF 0.839 0.749

41 CASSLGHRDPNTGELFF 0.981 0.958 82 CASSLQGYSNQPQHF 1.000 0.999 123 CASSQDPRGTEAFF 0.950 0.905 164 CASSQGLQETQYF 0.996 0.990

Table A15: TCRβ sequences that had been discovered by Emerson et al. (2017) with their associated
attention values by DeepRC. These sequences have significantly (p-value 1.3e-93) higher attention
values than other sequences. The column "quantile" provides the quantile values of the empiricial
distribution of attention values across all sequences in the dataset.
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A11 DeepRC variations and ablation study
In this section we investigate the impact of different variations of DeepRC on the performance on
the CMV dataset. We consider both a CNN-based sequence embedding, as used in the main paper,
and an LSTM-based sequence embedding. In both cases we vary the number of attention heads and
the β parameter for the softmax function the attention mechanism (see Eq. 2 in main paper). For the
CNN-based sequence embedding we also vary the number of CNN kernels and the kernel sizes used
in the 1D CNN. For the LSTM-based sequence embedding we use one one-directional LSTM layer,
where the output values at the last sequence position (without padding) are taken as embedding of
the sequence. Here we vary the number of LSTM blocks in the LSTM layer. To counter over-fitting
due to the increased complexity of these DeepRC variations, we added a l2 weight penalty to the
training loss. The factor with which the l2 weight penalty contributes to the training loss is varied
over 3 orders of magnitudes, where suitable value ranges were manually determined on one of the
training folds beforehand.
To reduce the computational cost, we do not consider all numbers of kernels that were considered
in the main paper. Furthermore, we only compute the AUC scores on 3 of the 5 cross-validation
folds. The hyperparameters, which were used in a grid search procedure, are listed in Tab. A16 for
the CNN-based sequence embedding and Tab. A17 for the LSTM-based sequence embedding.

Results. We show performance in terms of AUC score with single hyperparameters set to fixed
values so as to investigate their influence in Tab. A19 for the CNN-based sequence embedding and
Tab. A18 for the LSTM-based sequence embedding. We note that due to restricted computational
resources this study was conducted with fewer different numbers of CNN kernels, with the AUC
estimated from only 3 of the 5 cross-validation folds, which leads to a slight decrease of performance
in comparison to the full hyperparameter search and cross-validation procedure used in the main
paper. As can be seen in Tab. A19 and A18, the LSTM-based sequence embedding generalizes
slightly better than the CNN-based sequence embedding. The performance of DeepRC, however,
remains rather robust w.r.t. the different hyperparameter settings.

learning rate 10−4

number of attention heads {1; 16; 64}
β of attention softmax {0.1; 1.0; 10.0}
l2 weight penalty {1.0; 0.1; 0.01}
number of kernels {8; 32; 128}
number of CNN layers {1}
number of layers in key-NN {2}
number of units in key-NN {32}
kernel size {5; 7; 9}
subsampled seqences 10, 000

batch size 4

Table A16: Hyperparameter search space for DeepRC variations with CNN-based sequence embed-
ding. Every 5 · 103 updates, the current model was evaluated against the validation fold. The early
stopping hyperparameter was determined by selecting the model with the best loss on the validation
fold after 2 · 105 updates.
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learning rate 10−4

number of attention heads {1; 16; 64}
β of attention softmax {0.1; 1.0; 10.0}
l2 weight penalty {0.01; 0.001; 0.0001}
number of LSTM blocks {8; 32; 128}
number of CNN layers {1}
number of layers in key-NN {2}
number of units in key-NN {32}
subsampled seqences 10, 000

batch size 4

Table A17: Hyperparameter search space for DeepRC variations with LSTM-based sequence embed-
ding. Every 5 · 103 updates, the current model was evaluated against the validation fold. The early
stopping hyperparameter was determined by selecting the model with the best loss on the validation
fold after 2 · 105 updates.

Fixed parameter Test set Validation set Training set

mean std mean std mean std

beta=0.1 0.827 ± 0.02 0.846 ± 0.033 0.976 ± 0.015

beta=1.0 0.82 ± 0.012 0.853 ± 0.031 0.979 ± 0.016

beta=10.0 0.823 ± 0.014 0.858 ± 0.033 0.934 ± 0.026

heads=1 0.838 ± 0.033 0.856 ± 0.029 0.966 ± 0.012

heads=16 0.817 ± 0.015 0.853 ± 0.028 0.972 ± 0.026

heads=64 0.823 ± 0.014 0.858 ± 0.033 0.934 ± 0.026

lstms=8 0.818 ± 0.011 0.837 ± 0.025 0.881 ± 0.013

lstms=32 0.814 ± 0.015 0.853 ± 0.029 0.948 ± 0.033

lstms=128 0.818 ± 0.018 0.859 ± 0.032 0.943 ± 0.028

Table A18: Impact of hyperparameters on DeepRC with LSTM for sequence encoding. Mean
(“mean”) and standard deviation (“std”) for the area under the ROC curve over the first 3 folds of a
5-fold nested cross-validation for different sub-sets of hyperparameters (“sub-set”) are shown. The
following sub-sets were considered: “full”: Full grid search over hyperparameters; “beta=*”: Grid
search over hyperparameters with reduction to specific value ∗ of beta value of attention softmax;
“heads=*”: Grid search over hyperparameters with reduction to specific number ∗ of attention heads;
“lstms=*”: Grid search over hyperparameters with reduction to specific number ∗ of LSTM blocks
for sequence embedding.
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Fixed parameter Test set Validation set Training set

mean std mean std mean std

beta=0.1 0.833 ± 0.031 0.86 ± 0.025 0.94 ± 0.018

beta=1.0 0.799 ± 0.007 0.873 ± 0.017 0.954 ± 0.005

beta=10.0 0.817 ± 0.02 0.87 ± 0.022 0.962 ± 0.034

heads=1 0.822 ± 0.036 0.869 ± 0.022 0.943 ± 0.032

heads=16 0.808 ± 0.01 0.871 ± 0.025 0.965 ± 0.019

heads=64 0.796 ± 0.039 0.864 ± 0.018 0.927 ± 0.024

ksize=5 0.822 ± 0.036 0.866 ± 0.021 0.926 ± 0.026

ksize=7 0.817 ± 0.02 0.87 ± 0.022 0.962 ± 0.034

ksize=9 0.821 ± 0.016 0.869 ± 0.025 0.95 ± 0.031

kernels=8 0.825 ± 0.024 0.86 ± 0.027 0.928 ± 0.019

kernels=32 0.801 ± 0.001 0.877 ± 0.018 0.974 ± 0.017

kernels=128 0.824 ± 0.027 0.864 ± 0.023 0.931 ± 0.062

Table A19: Impact of hyperparameters on DeepRC with 1D CNN for sequence encoding. Mean
(“mean”) and standard deviation (“std”) for the area under the ROC curve over the first 3 folds of a
5-fold nested cross-validation for different sub-sets of hyperparameters (“sub-set”) are shown. The
following sub-sets were considered: “full”: Full grid search over hyperparameters; “beta=*”: Grid
search over hyperparameters with reduction to specific value ∗ of beta value of attention softmax;
“heads=*”: Grid search over hyperparameters with reduction to specific number ∗ of attention heads;
“ksize=*”: Grid search over hyperparameters with reduction to specific kernel size ∗ of 1D CNN
kernels for sequence embedding; “kernels=*”: Grid search over hyperparameters with reduction to
specific number ∗ of 1D CNN kernels for sequence embedding.

24



References
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