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A Datasets

As discussed, vast numbers of candidate datasets exist that could be related to the problem of COVID-
19 forecasting. However, these datasets cannot be used indiscriminately. We select data sources based
on whether they could have a predictive signal for the disease outcomes. Selecting multiple datasets
from the same class of causes can obfuscate their predictive power. Therefore, we select datasets, one
each from the classes of econometrics, demographics, mobility, non-pharmaceutical interventions,
hospital resource availability, historical air quality. From each of these datasets, we further select
covariates that could have an impact on the model compartments. We allow covariates to influence
only those compartments (and hence transition rates) on which we posit that there exists a causal
relationship (Table I)).

Ground Truth. We obtain primary ground truth for this work from the Johns Hopkins COVID-19
dataset [1]]. Additional ground truth data that is used in the models for US states are obtained from
the Covid Tracking Project [2].

Mobility. We posit that human mobility with a region, for work and personal reasons, has an effect
on the average contact rates [3]. We use temporal mobility indices provided by Descartes labs at
both state- and county-level resolutions [4]. These temporal indices are encoded to affect the average
contact rates (3(9), 5(#)), at both the state- and county-level of geographic resolution.

Non-Pharmaceutical Interventions. We posit that public policy decisions restricting certain classes
of population movement or interaction can have a beneficial effect on restricting the progression of
the disease [3], at the state-level of geographic resolution. The interventions are presented in 6 binary
valued time series indicating when an intervention has been activated in one of six categories—school
closures, restrictions on bars and restaurants, movement restrictions, mass gathering restrictions,
essential businesses declaration, and emergency declaration [[6]. This temporal covariate is encoded
into the average contact rates (3(4), g(),

Demographics. We posit that the age of the individual has a significant outcome on the severity
of the disease and the mortality. The Kaiser Family Foundation (On BigQuery at c19hcc-info-
ext-data:c19hcc_info_public.Kaiser_Health_demographics_by_Counties_States) reports the number
of individuals over the age of 60 in different US counties. We encode the effect of this static
covariate into the average contact rate (3 (), I5) (“)), the diagnosis (), re-infected (), recovery (p(l )
p(I’“), p(H), p(C), p(V)) and death rates (n(I’d), kKO, nv), at both the state- and county-level of
geographic resolution.

Historical Air Quality. We posit that the historical ambient air quality in a region can have a
deleterious effect on COVID-19 morbidity and mortality [7]. We use the BigQuery public dataset
that comes from the US Environmental Protection Agency (EPA) that documents historical air quality
indices at the county level (bigquery-public-data:epa_historical_air_quality.pm10_daily_summary).
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Table 1: Covariates selected for model.

Covariate

Variables that the covariate affect
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This static covariate is encoded into the recovery rates (1), recovery (p(I:®, p(l:w) - p(H) - 5(C) (V)
and death rates (x(1'D, gH | k€, k"), at both the state- and county-level of geographic resolution.

Econometrics. We posit that an individual’s economic status, as well as the proximity to other
individuals in a region has an effect on the rates of infection, hospitalization and recovery. The
proximity can be due to high population density in urban areas, or due to economic compulsions. The
US census—available from census.gov and on BigQuery Public Datasets [[8]-reports state- and county-
level static data on population, population density, per capita income, poverty levels, households on
public assistance (bigquery-public-data:census_bureau_acs.county_2018_5yr and bigquery-public-
data:census_bureau_acs.county _2018_1yr). All of these measures affect transitions into the exposed
and infected compartments (3(9), 5(®), as well as the recovery rates (p(/>@, p(I:w) | p(H)  p(C) (V)
and death rates (x(!'®, k| k€, k), at both the state- and county-level of geographic resolution.
In addition, for the state-level model, it also influences the hospitalization rate h, ICU rate ¢ and
ventilator rate v.

Hospital Resource Availability. We posit that when an epidemic of like COVID-19 strikes a
community with such a rapid progression, local hospital resources can quickly become overwhelmed
[9]. We use the BigQuery public dataset that comes from the Center for Medicare and Medicaid
Services, a federal agency within the United States Department of Health and Human Services
(bigquery-public-data:cms_medicare.hospital _general_info). These static covariates are encoded into
the diagnosis rate (7), recovery rates (p1>®, ptI:w) | pUH) " 5(C) | 5(V)) re-infected rate (1) and death

rate (k19 KH | k€, V), at both the state- and county-level of geographic resolution.

Confirmed Cases and Deaths. Past confirmed case counts and deaths can have an effect on the
current values of these quantities. We include these as temporal covariates. These have an effect on
the average contact rates (5(?, 3(*)), the diagnosis rate () and the hospitalization rate h.



B Comparisons to IHME model

In this section, we include the comparison of our model with Institute for Health Metrics and
Evaluation (IHME) [10] model, which has been used by major US government organizations. [IHME
is based on curve-fitting considering the nonlinear mixing effects with intervention assumptions.
Since the provided prediction dates are different for IHME model, we run separate comparisons for it
in 12-day ahead forecasting setting (still using our 14-day forecasts). As Table [2]shows, our model
significantly outperforms IHME, consistently across all phases of the disease.

Table 2: 7-day ahead MAE for 12-day forecasting the number of deaths at state-level.

Pred. horizon Pred. date Ours IHME
(days)

05/05/2020 128.6 146.8
05/19/2020 56.1 116.1
06/09/2020 434 60.5

12 06/23/2020 814 99.8
08/25/2020 36.3 106.3
09/22/2020 40.7 69.6

C Comparisons to Berkeley Yu model

In this section we include more comparisons of our model with the Berkeley Yu model [11] on more
recent dates. As Table [3]shows, our model consistently outperforms Berkeley Yu model.

Table 3: 7-day average MAE for 7-day forecasting the number of deaths at county-level.

Pred. date Ours Berkeley-Yu
2020/06/02 0.8 1.82
2020/06/09 1.02 1.79
2020/06/16 0.9 1.75
2020/07/21 1.11 2.11
2020/07/28 1.33 2.68
2020/08/11 1.36 2.33
2020/08/18 1.35 227
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Figure 1: Prediction intervals of confirmed cases for 14-day forecasting. We use the 10-th and the
90-th quantile prediction as the the lower and the upper bound of prediction intervals, respectively.

E Impact of data quality

For fair comparison, we used the data available on the prediction date for model development (training
and model selection), and we use the data from 7 days later after the prediction date for evaluation.
There are numerous data quality issues which are often corrected later. It is not unlikely to see that
the number of confirmed or death cases for a particular day are significantly increased or decreased
few weeks (and sometimes few months) later. Unfortunately, such data quality issues often have
unpredictable patterns (due to human entry errors, reporting changes, or infrastructure issues) and can



be treated as input ‘noise’. The accuracy of our model also suffers from them. To demonstrate the
impact of data quality issues, we perform experiments by training and evaluating our model with the
most recent version of the data (from October), on different cases (note that we still have the same
time-series split for training, validation and test). Table ] shows the significant difference in results
and the potential of our model with better quality data.

Table 4: 7-day average MAE for 14-day forecasting the number of deaths at state-level.

Pred. horizon Pred. date | Ours (data version Ours (recent data
(days) of pred. date) version)
06/02/2020 32.8 29.6
14 06/09/2020 28.8 23.2
06/16/2020 314 20.9

F Rate variable definitions

Table 5: Variables and the covariates that affect them. (doc.: documented, undoc.: undocumented)

| Variable] Description [ Covariates |
153 Average contacts of doc. infected (3 (d)) / undoc. Mobility, Interventions,
infected (5(®) Density
n Re-infected rate Census, Healthcare
a Inverse latency period -
vy Diagnosis rate Census, Test info
h Hospitalization rate for infected
c ICU rate for hospitalized
v Ventilator rate from ICU
P Recovery rate for doc. infected (p(I ’d)), undoc. infected Census, Income,
(p>®)y, hospitalized (p()), ICU (p(U)), ventilator (p(¥)) Healthcare
K Death rate for doc. infected (x7'%), hospitalized (x(7)),
ICU (k(©)), ventilator (k"))

G Effective reproduction number

The effective reproduction number R, is the expected number of new infections arising directly from
one infected individual in a population where all individuals are susceptible to infection [[12]]. For
example, the R, for COVID-19 during the early stages of the pandemic in Wuhan, China has been
estimated to be around 5.7 [13].

The Next-Generation Matrix [[12]] is a method to derive expressions for the R, from a given compart-
ment model. The method involves first finding the disease-free equilibrium (DFE) of the model. The
infected sub-system of the compartment model at DFE is identified and its corresponding differential
equations are isolated. Then the inflow and outflow terms from each compartment in the sub-system
are partitioned between two categories—(i) new infection causing events and (ii) all other flows
between compartments.

Two matrices—the new infections matrix F and the transitions matrix V—are constructed from the
inflow and outflow terms.

The DFE for our model is [S, E, I(¥ 1(¥), R(4) R H C,V,D]=[N,0,0,0,0,0,0,0,0,0]. We
begin by isolating the infection subsystem as shown in Figure All the individuals in these
compartments X} = [E,ID W H C, V] are at some stage of the infection. The individuals in

=[S, R, R™), D] are not infected. From the system of difference equations in Section 22, the



Figure 2: Our compartment model with the infection compartments highlighted, and the variables
from Table 5 indicated next to each transition.

differential equations for the infection subsystem reduces to:
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Examining the right-hand side of the system of equations 2, we see that it is of the form:
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Upon examination of Figure 2, we see that the only new-infection causing events are described by
the rates (9 and (“). We de ne the new infections matri as:

20 (d) W 0 0 03
0O O 0 0 0
0O O 0 00
0O O 0 00 ®)
0O O 0 00
0O O 0 0 0O

We calculate the transitions mathk= (M  F) to be:
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Calculating the eigenvalues &f gives us 5 eigenvalues that are 0, and one non-zero eigenvalue,
which is the spectral radius &f. This is the effective reproduction numbRg:

(d) 4+ (“)(h + (hd) 4+ (I;d))
Ro = . . e (8)
( + Gu)h+ @d) 4+ (1d))

H Training details

The start date of training is set to 1/21/2020. We assume that the compartmental equation
regime start when the number of con rmed cases exceed 10 (before it, to avoid noise, we sim-
ple assign the initial values). We initialize the values as follows, wheye UJ[0; 1] denote

random variables with uniform distributior;[0] = max(100 E. 1,10 g,,Qi[0]), Ii(}j)[O] =
QoD 1[0] = max(100 ¢, ;10 g, ,Qi[0]), R0] = R{0], RM[0] = 5 &, R[0], Hi[0] =
IfH[O]gH [0] + 0:5 4, (1 1fH[0]g)Q[0], Ci[0] = If C[0]gC[0] +0:2 ¢, (1  IfC[0]g)Q[0] and

Vi[0] = IfV[OlgV[0] + (1 O35 v, IfV[0]g)Q[0]. In general, our model is not too sensitive to
random initialization of the initial values, and we just de ne wide ranges to enable exploration.

| Hospitalization forecasts

Fig. 3 exempli es tted hospitalization predictions for 8 states. Our model can provide robust
and accurate forecasts consistently (e.g. in increasing, decreasing or plateauing trends), despite the
uctuations in the past observed data.
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