
Supplementary Material

A Task Details

There is a total of 14 tasks, out of which 10 are prediction and 4 are bandit tasks.

Prediction: The prediction tasks can be grouped according to their observational distributions:

• Bernoulli: The agent observes samples xt drawn from a Bernoulli distribution Ber(θ). The
prior distribution over the bias θ is given by a Beta distribution Beta(α, β), where α > 0 and
β > 0 are the hyperparameters. We have three tasks with three respective prior distributions:
Beta(1, 1), Beta(0.5, 0.5), and Beta(1, 5).

• Categorical: The agent observes samples xt drawn from a categorical distribution Cat(~θ)

where ~θ = [θ1, θ2, θ3]
T . The prior distribution over the bias parameters ~θ is given by a Dirich-

let distribution Dirichlet(~α), where ~α = [α1, α2, α3]
T are the concentration parameters.

We have three categorical tasks with three respective prior distributions: Dirichlet(1, 1, 1),
Dirichlet(1, 1, 0.1), and Dirichlet(0.5, 0.5, 0.5).

• Exponential: The agent observes samples xt drawn from an exponential distribution Exp(λ)
where λ > 0 is the rate parameter. The prior distribution over the rate parameter λ is given
by a Gamma distribution Gamma(α, β), where α > 0 is the shape and β > 0 is the rate. We
use two exponential prediction tasks: their priors are Gamma(1, 0.5) and Gamma(5, 1).

• Gaussian: The agent observes samples xt drawn from a Gaussian distribution
Normal(µ, 1/τ), where µ is an unknown mean and τ is a known precision. The prior
distribution over µ is given by a Gaussian distribution Normal(m, 1/p), where m and p are
the prior mean and precision parameters. We have two Gaussian prediction tasks: their priors
are Normal(0, 1) and Normal(1, 1) and their precisions τ = 1 and τ = 5 respectively.

A prediction task proceeds as follows. As a concrete example, consider the Bernoulli prediction case—
other distributions proceed analogously. In the very beginning of each episode, the bias parameter θ
is drawn from a fixed prior distribution p(θ) = Beta(1, 1). This parameter is never shown to the
agent. Then, in each turn t = 1, 2, . . . , T = 20, the agent makes a probabilistic prediction πt and
then receives an observation xt ∼ p(x|θ) = Ber(θ) drawn from the observational distribution. This
leads to a prediction loss given by − log(πt(xt)), where πt(xt) is the predicted probability of the
observation xt at time t. Then the next round starts.

Bandits: As in the prediction case, the two-armed bandit tasks can also be grouped according to
their reward distributions:

• Bernoulli: Upon pulling a lever a ∈ {1, 2}, the agent observes a reward sampled from a
Bernoulli distribution Ber(θa), where θa is the bias of arm a. The prior distribution over
each arm bias is given by a Beta distribution as in the prediction case. We have two Bernoulli
bandit tasks: the first draws both biases from Beta(1, 1), and the second from Beta(2, 1)
and Beta(1, 2) respectively.

• Gaussian: Upon pulling a lever a ∈ {1, 2}, the agent observes a reward sampled from a
Gaussian distribution Normal(µ, τ), where µ and τ are the unknown mean and the known
precision of arm a respectively. As in the prediction case, the prior distribution over each
arm mean is given by a Normal distribution. We have two Gaussian bandit tasks: the first
with precision τ = 1 and prior Normal(0, 1) for both arms; and the second with precision
τ = 1 and prior Normal(0, 0.1).

The interaction protocol for bandit tasks is as follows. For concreteness we pick the first Bernoulli
bandit—but other bandits proceed analogously. In the very beginning of each episode, the arm
biases θ1 and θ2 are drawn from a fixed prior distribution p(θ) = Beta(1, 1). These parameters are
never shown to the agent. Then, in each turn t = 1, 2, . . . , T , the agent pulls a lever a ∼ πt from its
policy at time t and receives a reward rt ∼ p(r|θa) = Ber(θa) drawn from the reward distribution.
Then the next round starts. The agent’s return is the discounted sum of rewards

∑
t γ

trt with discount
factor γ = 0.95.
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Table 1: Prediction rules for Bayes-optimal agents
Observation Prior Update Posterior Predictive

Bernoulli(θ) Beta(α, β) α← α+ x; β ← β + (1− x) Bernoulli( α
α+β )

Categorical(~θ) Dirichlet(α1, α2, α3) αx ← αx + 1 Categorical( αi∑
j αj

)

Normal(µ, 1/τ) Normal(m, 1/p) m← pm+τx
p+τ ; p← p+ τ Normal(m, 1p +

1
τ )

Exponential(λ) Gamma(α, β) α← α+ 1, β ← β + x Lomax(α, β)

B Agent Details

B.1 Bayes-optimal agents

Our Bayes-optimal agents act and predict according to the standard models in the literature. We
briefly summarize this below.

Prediction: A Bayes-optimal agent makes predictions by combining a prior with observed data
to form a posterior belief. Consider a Bernoulli environment that generates observations according
to Bernoulli(θ), where in each episode θ ∼ Beta(1, 1). In each turn t, the agent makes a prediction
according to the posterior predictive distribution

p(xt|x<t) =
∫
p(xt|θ)p(θ|x<t)dθ, (4)

where the prior p(θ|x<t) is the posterior of the previous turn (in the first step the agent uses its
prior, which, for the optimal agent, coincides with the environment’s prior). Subsequently, the agent
receives an observation xt, which and updates its posterior belief:

p(θ|x≤t) ∝ p(θ|x<t)p(xt|θ). (5)

Note that for the distributions used in our prediction tasks, the posterior can be parameterized
by a small set of values: the minimal sufficient statistics (which compress the whole observation
history x<t into the minimal amount of information required to perform optimally).

For a Bernoulli predictor, the posterior predictive (4) is equal to

p(xt|x<t) = p(xt|α, β) = Ber( α
α+β ).

where, α and β are the sufficient statistics. The posterior belief is given by

p(θ|x≤t) = p(θ|α′, β′) = Beta(α′, β′),

where α′ = α+ xt and β′ = β + (1− xt) are the hyperparameters updated by the observation xt.
For a full list of update and prediction rules, see Table 1.

Bandits: A Bayes-optimal bandit player maintains beliefs for each arm’s distribution over the
rewards. For instance, if the rewards are distributed according to a Bernoulli law, then the agent keeps
track of one (α, β) sufficient-statistic pair per arm. The optimal arm to pull next is then given by

a∗ = argmax
a

Q(a|α1, β1, α1, β1), (6)

where the Q-value is recursively defined as

Q(a|α1, β1, α1, β1) := 0 if t = T

Q(a|α1, β1, α1, β1) :=
∑
r

p(r|αa, βa)
{
r +max

a′
γQ(a′|α′1, β′1, α′2, β′2)

}
if t < T (7)

and where α′1, β
′
1, α
′
2, β
′
2 are the hyperparameters for the next step, updated in accordance to the

action taken and the reward observed. Computing (6) naively is computationally intractable. Instead,
one can pre-compute Gittins indices in polynomial time, and use them as a replacement for the
Q-values in (6) [35, 34, 36]. In particular, we have used the methods presented in [36] to compute
Gittins indices for the Bernoulli- and Gaussian-distributed rewards.
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B.2 RNN agents

Prediction: We trained agents on the prediction tasks (episode length T = 20 steps) using su-
pervised learning with a batch size of 128 using BPTT unroll of 20 timesteps, and a total training
duration of 1e7 steps. We used the Adam optimizer with learning rate 10−4, parameters β1 = 0.9,
β2 = 0.999, and gradients clipped at magnitude 1. Networks were initialised with weights drawn
from a truncated normal with standard deviation 1/

√
Nin, where Nin is the size of the input layer.

We use the following output-parametrization: Bernoulli-predictions - single output corresponding
to the log-probability (of observing “heads”); Categorical predictions - 3-D outputs corresponding
to prediction logits; Normal predictions - 2 linear outputs, one for mean and one for log-precision;
Exponential predictions - 2 linear outputs, one for logα and one for log β.

Bandit: We trained the reinforcement learners on bandit tasks (episode length T = 20 steps) with
the Impala algorithm [39] using a batch size of 16 and discount factor γ = 0.95 for a total number of
1e8 training steps. The BPTT unroll length was 5 timesteps, and the learning rate was 2.5×10−5. We
used an entropy penalty of 0.003 and value baseline loss scaling of 0.48; i.e.„ the training objective
was LVTrace + 0.003LEntropy + 0.48LValue. We used the same initialisation scheme as for the
prediction tasks. RNN outputs in all bandit tasks were 2-dimensional action logits (one for each arm).
Bandit agents are trained to minimize empirical (“sampled”) cumulative discounted rewards. For our
behavioral and output dissimilarity measures we report expected reward instead of sampled reward
(using the environment’s ground-truth parameters to which the agent does not have access to)—this
reduces the impact of sampling noise on our estimates.

C Structural Comparison Details

We implement the map φ from RNN agent states SN to optimal agent states SM using an MLP with
three hidden layers, each of size 64 (prediction tasks where the RNN state is 64-dimensional) or
256 (bandit tasks where the RNN state is 512-dimensional), with ReLu activations. We first project
the high-dimensional RNN agent state space down to a lower-dimensional representation using
PCA. The number of principal components is set to match the dimension of the minimal sufficient
statistics required by the task. We trained the MLP using the Adam optimiser with learning rate 0.001,
β1 = 0.9, β2 = 0.999 and batch size 200. The training set consisted of data from 500 roll-outs—all
results we report were evaluated on 500 held out test-trajectories.

State dissimilarity Ds is measured by providing the same inputs to both agents (same observations in
prediction tasks, and action-reward pairs from a reference trajectory8 in bandit tasks), and then taking
the mean-squared error between the (PCA-projected) original states and the mapped states (compare
Figure 3 in the main paper). Output dissimilarity is computed by comparing the output produced by
the original agent with the output produced after projecting the original agent state into the “surrogate”
agent and evaluating the output. Note that the last step requires inverting the PCA projection in order
to create a “valid” state in the surrogate agent. For the optimal agent the PCA is invertible since its
dimensionality is the same as the agent’s state (i.e., the PCA on the optimal agent simply performs a
rotation and whitening). On the RNN agent, we use the following scheme: we construct an invertible
PCA projection as well, which requires having the same number of components as the internal state’s
dimensionality. Then, to implant a state from the Bayes-optimal agent the first n components are
set according to the mapping φ, all other principal components are set to their mean-value (across
500 episodes).

D Additional Results

D.1 PCA for untrained meta-learner

Figure 5 shows the principal component projection and approximate simulation (mapping the state
of one agent onto the other and computing the resulting output) for meta-learner after random
initialization, without any training. Results for the trained agent (at the end of the training run) are
shown in Figure 3 in the main paper.

8The reference trajectory is always generated from the fully trained RNN agent—also when analyzing RNN
agents during training.
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(a) Categorical-variable prediction task
Dirichlet(1, 1, 1). Colors indicate the output-
probabilities (=posterior predictive dist.) for the
corresponding state. Lines correspond to the three
episodes shown in Figure 1. Dimensionality of srnnt

is 64. MLP-regressor φ has three hidden layers with
64 neurons each.

(b) 2-armed Bernoulli-bandit task ∼ Beta(1, 1). Col-
ors indicate the output-probabilities (=action probabil-
ities) for the corresponding state. Lines correspond to
the three episodes shown in Figure 1. Dimensionality
of srnnt is 512. MLP-regressor φ has three hidden
layers with 256 neurons each.

Figure 5: Structural comparison for untrained agent (compare Figure 3 in main paper). Each sub-figure shows:
(i - top left) Projection of Bayes-optimal state onto first two principal components, (iv - bottom right) projection
of RNN state onto first two principal components, (ii - top right) learned regression from (iv) to (i), (iii - bottom
left) learned regression from (i) to (iv). Scores in panels (ii) and (iii) indicate the mean-squared-error (MSE)
of the learned regression (map φ was trained on training data, plots and numerical results show evaluation on
held-out test-data—500 data-points for training and test respectively).

D.2 Variance explained by PC projections

Table 2 shows the variance explained when projecting the RNN state onto the first n principal
components, which is the first step of our structural analysis (n is the dimensionality of the tasks’
minimal sufficient statistics, and is between 2 and 4 dimensions)—see Section 4.3. Numbers
indicate the variance explained by projecting 500 trajectories of length T = 20 onto first n principal
components. Large number indicate that most of the variance in the data is captured by the PCA
projection, which is the case for us in all tasks.

D.3 Preliminary architecture sweeps

The meta-learners in our main experiments are three-layer RNNs (a fully connected encoder, followed
by a LSTM layer and a fully connected decoder). Each layer has the same width N which was
selected by running preliminary architecture sweeps (on a subset of tasks), shown in Figure D.3.
Generally we found that smaller RNNs suffice to successfully train on the prediction tasks compared
to the RNN tasks. For instance a layer-width of 3 would suffice in principle to perform well on the
prediction tasks (not that the maximum dimensionality of the minimal sufficient statistics is also
exactly 3). However, we found that the smallest networks also tend to require more iterations to
converge, with more noisy convergence in general. We thus selected N = 32 for prediction tasks
(leading to a 64-dimensional RNN state, which is the concatenation of cell- and hidden-states) as
a compromise between RNN-state dimensionality, runtime-complexity and iterations required for
training to converge robustly (in our main experiments we train prediction agents for 1e7 steps, and
bandit agents for 1e8 steps). Using similar trade-offs we chose N = 256 for bandit tasks (leading to
a 512-dimensional RNN state).
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Table 2: Variance of RNN-state explained by PCA projection.
Task at initialization after training

Pr
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tio

n
ta
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s

Beta(1, 1) 0.98 0.94
Beta(0.5, 0.5) 0.98 0.92
Beta(1, 5) 0.98 0.96
Dirichlet(0.5, 0.5, 0.5) 0.93 0.96
Dirichlet(1, 1, 1) 0.93 0.95
Dirichlet(1, 1, 0.1) 0.94 0.96
Gamma(1, 0.5) 0.95 0.97
Gamma(5, 1) 0.97 0.96
Normal(0, 1) 0.95 0.88
Normal(1, 1) 0.97 0.94

B
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ts Beta(1, 1) 0.97 0.96
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Normal(0, 1) 0.94 0.92
Normal(0, 0.1) 0.95 0.90
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(a) Subset of prediction tasks. Lines show difference
between RNN and Bayes-optimal log-loss, averaged
over 10 training runs.
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Figure 6: Architecture sweeps.

D.5 Structural comparison

We report the structural comparison plots for all the tasks. These were generated using the same
methodology as in Figure 3. Figures 8, 9, and 10 show the comparisons for the prediction of discrete
observations, prediction of continuous observations, and bandits respectively.

D.6 Convergence analysis - additional results

Convergence plots for all our tasks (except the two exponential prediction tasks, where the KL-
divergence estimation for the Lomax distribution can cause numerical issues that lead to bad visual
results) are shown in Figure 11 and Figure 12. Note that our agents were trained with episodes of 20
steps, and the figures show how agents generalize when evaluated on episodes of 30 steps.
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(a) Bernoulli(θ), θ ∼ Beta(1, 1) (b) Bernoulli(θ), θ ∼ Beta(0.5, 0.5)

(c) Bernoulli(θ), θ ∼ Beta(1, 5) (d) Categorical(~θ), ~θ ∼ Dir(1, 1, 1)

(e) Categorical(~θ), ~θ ∼ Dir(1, 1, 0.1) (f) Categorical(~θ), ~θ ∼ Dir(0.5, 0.5, 0.5)

Figure 8: Structural comparison I. Prediction probabilities are color-coded.
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(a) Exponential(λ), λ ∼ Gamma(1, 0.5) (b) Exponential(λ), λ ∼ Gamma(5, 1)

(c) Normal(µ, 1), µ ∼ Normal(0, 1) (d) Normal(µ, 0.2), µ ∼ Normal(1, 1)

Figure 9: Structural comparison II. The predicted means are color-coded.

D.7 Reduced-memory agents

In order to understand outcomes when the optimal policy is not in the search space we investigated
the performance of a series of reduced-memory baselines. These were implemented with purely
feedfoward architectures, which observed a context window of the previous k timesteps (padded
for t < k), rather than with an LSTM. Short context windows dramatically impaired performance,
and the degree to which longer context windows allowed for improved performance was strongly
task-dependent. In some cases (Dirichlet and high-precision Gaussian), extending the context
window to match the episode length almost completely recovers performance, whereas in other cases
performance plateaus.
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(a) θ1, θ2 ∼ Beta(1, 1) (b) θ1,∼ Beta(2, 1), θ2 ∼ Beta(1, 2)

(c) µ1, µ2 ∼ Normal(0, 1) (d) µ1, µ2 ∼ Normal(0, 0.1)

Figure 10: Structural comparison III (bandit tasks). Action probabilities are color-coded.
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Figure 11: Convergence plots for our prediction tasks, showing 10 steps of generalisation (demarcated by grey
dashed line).
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(a) θ1, θ2 ∼ Beta(1, 1).
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(b) θ1 ∼ Beta(2, 1), θ2 ∼ Beta(1, 2)
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(c) µ1, µ2 ∼ N (0, 1)
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(d) µ1, µ2 ∼ N (0, 0.01)

Figure 12: Convergence plots for bandit tasks, showing 10 steps of generalisation (demarcated by grey dashed
line).

(a) Prediction tasks.
(b) Bandit tasks

Figure 13: Performance as a percentage of LSTM agent score for reduced-memory baselines. Solid line is mean
over 20 trials, shaded area shows standard error of the mean over 20 repetitions. Reduced-memory baselines are
feedforward agents trained with a fixed-width context of past observations. Adjusting the context width scales
the amount of history the agent can use when computing a prediction/action decision.
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