A DisARM Derivation

To finish the derivation of Eq. [6} we need to compute

B 2exp(—(z — ap))
1+ exp(—(z — ap)

Eq(z|b,5) [V@ log qg(z)] = Eq(z|b,l§) [1 ] V@Cm (10)

= Eq(u\b,f)) [2u — 1] Voay = (2Eq(u\b,l~)) [u] — 1) Voag,

where we have used the change of variables z = log(u) — log(1 — u) 4+ ap, and thus u = o(z — ap).
This is a common reparameterization of a Logistic variable in terms of a Uniform variable, so when
z ~ Logistic(ag, 1), then u ~ Uniform(0,1). Thus, the joint distribution ¢(w, b, b) is generated
by sampling v ~ Uniform(0, 1) and setting b = 1,50 = 11_y<o(ay) and b = 1;50 = Luco(ag)-
Conditioning on b, b imposes constraints on the value of u, hence q(uld, 5) is a truncated Uniform
variable. To compute E_ ;7 [u], it suffices to enumerate the possibilities:

e b =0, b=0implies o(ag) < u < o(—ay), which is symmetric around o(0) = 1,50
Eq(uw,é) [u] = %

e b=1,b=1implies o(—ay) < u < (), which is symmetric around ¢ (0) = 2,80
Eq(uw,é) [u] = %

e b=0, b=1implies u < min(c(—ag),o(ag)) = o(—|ag|) = 1 — o(|ag]|). Thus,

1 - o(|agl)
E ooy Wl = ———
e b=1, b=0implies u > max(c(—ay), o(ag)) = o(|agl|). Thus,
1+ o(|agl)
E ooy Wl = ——5—

Combining the cases, we have that

2,y [1] = 1 = (=1)"1, 50 (|ao]).
B Interpolated Estimator

Depending on the properties of the function, antithetic samples can result in higher variance estimates
compared to an estimator based on the same number of independent samples. This can be resolved
by constructing an interpolated estimator.

Let g4 (b, b) be the antithetic Bernoulli distribution and g (b, b) by the independent Bernoulli distri-
bution. Explicitly, when p = o(ap) < 0.5, we have

1-2p b=b=0,
at(b,b) =40 b=b=1,
D 0.W.,
and when p > 0.5
0 b=b=0,
@bb)=4{2p—-1 b=b=1,
1—p ow

Let 8 € [0,1] and define g} (b, b,7) = ¢°(i)qq (b, b|i) with ¢°(i) = Bernoulli(3) and gy (b, b|i) =
iqp' (b, b) + (1 —i)q) (b, b).
Then, the interpolated estimator is
glﬁnterpolated(b7 ZN)) = qu(ﬂb,l;) [igDiSARM(bv B) + (1 - Z')QLOO (bv B)}
= Qg(i = 1|b,b)gpisarm (b, b) + qgﬁ(i = 0}b,b)groo (b, b),
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where explicitly

~ 1

groo(b,b) = 3 ((f(b) — f(b)Velogge(b) + (f(b) — f(b))Vglog qé)(?’)) :

Note that when 3 = 0, glﬁnterpolated reduces to gr.oo and when 3 = 1, it reduces to gpisarm. To
compute ¢ (i|b, b), we use Bayes rule to rewrite it as

(i =1|b,b) =

in terms of known values.

From the definition, we have
Ey2 iy [Shnerpotatca(®D)] = Eys i [igmmama(®.5) + (1~ )gr00(0.D)]
= BEqa 05 [gDisARM(b7 B)} + (1= BEy 5 [QLOO(ba 5)} ;

so because gpisarmM and gr,oo are unbiased, glﬂnterpolated is also unbiased. Because this estimator is
unbiased for any choice of 8 € [0, 1], we can optimize /3 to reduce variance as in (Ruiz et al. 2016;
Tucker et al. 2017) and thus automatically choose the coupling which is favorable for the function
under consideration.

C Algorithm for Training Multi-layer Bernoulli VAE

For hierarchical VAEs, we use an inference network of the form gy(b|z) = [], go(b¢|bi—1) =
[ I, Bernoulli(b¢; cig(b¢—1)), where by is the set of binary latent variables for the ¢-th layer (with
by = z for convenience). The algorithm for computing the DisARM gradient estimator is summarized
in Algorithm 1]

Algorithm 1: DisARM gradient estimator for a T-stochastic-hidden-layer binary network

input :A mini-batch x of data.

Initialize go = 0.
bo = .
Sample w17 ~ [] Uniform(0,1)
/I Sample trunk.
fort=1:T do
| bt =1i_u,<c(agbi_1))-
end
for t = 1:T do
// Antithetic sampling.
be = Lui<o(ag(bi-1))-
/1 Sample branch. B
Sample bi11.7 ~ qo(+|bs). :
fa = f(bo:t—1,ber) — f(b():t—l, bur).
90 += 312 X0 (1%, 5,0 (@0 (be-1))i]) ) Volaro (b)) ).
end
Return gp.

D Experimental Details

Input images to the networks were centered with the global mean of the training dataset. For the
nonlinear network activations, we used leaky rectified linear units (LeakyReL.U, Maas et al., 2013)
activations with the negative slope coefficient of 0.3 as in (Yin and Zhou, 2019). The parameters
of the inference and generation networks were optimized with Adam (Kingma and Bal, 2015)) using
learning rate 10~%. The logits for the prior distribution p(b) were optimized using SGD with learning
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rate 102 as in (Yin and Zhou, 2019). For RELAX, we initialize the trainable temperature and scaling
factor of the control variate to 0.1 and 1.0, respectively. The learned control variate in RELAX was a
single-hidden-layer neural network with 137 LeakyReLU units. The control variate parameters were
also optimized with Adam using learning rate 10~%.

E Additional Experimental Results
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Figure 5: Comparing gradient estimators for the toy problem (Section . We plot the trace of
the estimated Bernoulli probability o(¢), the estimated gradients, and the variance of the estimated
gradients. The variance is measured based on 5000 Monte-Carlo samples at each iteration.

In Appendix Figure[5] we compare gradient estimators for the toy problem Section [5.1] for which the

exact gradient is
(1=2po)o(¢)(1 - o(e)).

Trace plots for the estimated probability o(¢) and the estimated gradients are similar for the three
estimators, REINFORCE LOO, ARM and DisARM. However, DisSARM exhibits lower variance than
REINFORCE LOO and ARM, especially as the problem becomes harder with increasing ¢.
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Figure 6: Training a Bernoulli VAE by maximizing the ELBO using DisARM (red), RELAX (blue),
REINFORCE LOO (orange), and ARM (green). Both MNIST and Omniglot were dynamically
binarized. We report the ELBO on training set (left column), the 100-sample bound on test set
(middle column) and the variance of gradients (right column) for linear (top row) and nonlinear
(bottom row) models. The mean and standard error (shaded area) are estimated given 5 runs from
different random initializations.
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Figure 7: Training 2/3/4-layer Bernoulli VAE on MNIST and FashionMNIST using DisARM,
RELAX, REINFORCE LOO, and ARM. We report the ELBO on the training set (left), the 100-
sample bound on the test set (middle), and the variance of the gradient estimator (right).
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Figure 8: Training a Bernoulli VAE by maximizing the multi-sample variational bound with DisARM
and VIMCO. We report the training and test multi-sample bound and the variance of the gradient
estimators for the linear (a) and nonlinear (b) models. We evaluate the model on three datasets:
MNIST, FashionMNIST and Omniglot, with dynamic binarization.
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Table 2: Results for models trained by maximizing the ELBO. We report the mean and the standard
error of the mean for the ELBO on the training set and of the 100-sample bound on the test set. The
results we computed based on 5 runs from different random initializations and the standard error of
the mean. The best performing method (up to the standard error) for each task is in bold.

Train ELBO

Dynamic MNIST REINFORCE LOO ARM DisARM RELAX
Linear —116.57 £ 0.15 —117.66 +£0.04 —-116.30+0.08 | —115.93+0.15
Nonlinear —-102.45+0.12 —107.32+0.28 —102.56+0.19 | —102.53 £ 0.15
Fashion MNIST
Linear —256.33 +0.14 —256.80 £ 0.16 —255.97+0.07 | —255.83 £ 0.03
Nonlinear —237.66 +0.11 —241.30+0.10 —237.77+0.08 | —238.23 +0.17
Omniglot
Linear —121.66 +0.10 —122.454+0.10 —-121.15+0.12 | —120.79 + 0.09
Nonlinear —-115.26 +0.15 —118.76£0.05 —115.08+0.11 | —116.56 £ 0.15

Test 100-sample bound
Dynamic MNIST REINFORCE LOO ARM DisARM RELAX
Linear —-109.25+0.09 —109.70£0.05 —109.134+0.04 | —108.76 +0.06
Nonlinear —97.41 +0.09 —-101.15+0.39 —97.52+0.11 —-97.76 £0.11
Fashion MNIST
Linear —252.55 +0.12 —252.66 = 0.07 —252.30£0.05 | —252.13 £ 0.06
Nonlinear —236.94+0.09 —239.37+0.15 —237.02+0.07 | —237.95+0.16
Omniglot
Linear —117.70 £ 0.10 —118.01 +£0.06 —117.39+0.09 | —117.10 £ 0.08
Nonlinear —114.39+0.21 —116.56 +0.07 —114.26+0.14 | —116.28 +0.26
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Table 3: Results for training Bernoulli VAEs with 2/3/4 stochastic hidden layers. We report the mean
and the standard error of the mean for the ELBO on training set and of the 100-sample bound on
the test set. The results are computed based on 5 runs with different random initializations. The best
performing methods (up to standard error) for each task is in bold.

Train ELBO

Dynamic MNIST REINFORCE LOO ARM DisARM RELAX
2-Layer —106.34 +0.10 —107.90 £0.10 —105.88£0.04 | —105.48 +0.04
3-Layer —102.13 £ 0.09 —103.76 £0.11 —-101.63+0.09 | —101.22+0.09
4-Layer —101.22 +0.09 —102.82£0.08 —100.96 £0.07 | —99.86 + 0.07
Fashion MNIST
2-Layer —244.67£0.16 —245.76 £0.11 —244.04+0.06 | —243.42+0.11
3-Layer —239.88 +0.03 —241.21+0.12 —239.64+£0.06 | —239.41 +0.07
4-Layer —238.86 + 0.09 —239.99+£0.04 —238.49+0.08 | —238.23 £0.08
Omniglot
2-Layer —116.81 £ 0.08 —-117.74+£0.14 -116.38+0.10 | —115.45+0.08
3-Layer —115.20 £ 0.08 —116.18 £0.13 —-114.81+0.09 | —113.83 +0.06
4-Layer —114.83 £0.13 —116.01 £0.14 —-114.09+£0.09 | —113.64+0.14

Test 100-sample bound
Dynamic MNIST REINFORCE LOO ARM DisARM RELAX
2-Layer —99.45 £ 0.07 —100.31 £0.07 —99.12+0.05 —98.65 £ 0.03
3-Layer —95.40 +0.05 —96.47 + 0.07 —95.08 + 0.04 —94.53 +0.06
4-Layer —94.72 £ 0.06 —95.84 £0.09 —94.60 £ 0.04 —93.34 £0.04
Fashion MNIST
2-Layer —241.98£0.14 —242.58 £0.11 —241.42+0.05 | —240.84 £0.08
3-Layer —237.80 £ 0.06 —238.59+£0.13 —-237.59+0.09 | —237.32+0.08
4-Layer —237.09 £ 0.07 —237.72+£0.05 —236.78£0.09 | —236.43 +£0.10
Omniglot
2-Layer —112.92 +0.04 —113.39+£0.10 —-112.64+0.06 | —111.87+0.09
3-Layer —111.52 £ 0.07 —112.01 £0.09 —-111.25+0.08 | —110.22 £ 0.06
4-Layer —111.16 £0.11 —111.87+0.11 —-110.58+£0.08 | —109.95 £ 0.12
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Table 4: Train and test variational lower bounds for models trained using the multi-sample objective.
We report the mean and the standard error of the mean computed based on 5 runs from different
random initializations. The best performing method (up to the standard error) for each task is in bold.
To provide a computationally fair comparison between VIMCO 2 K -samples and DiSARM K -pairs,
we report the 2K -sample bound for both, even though DisARM optimizes the K -sample bound.

Train multi-sample bound

Dynamic MNIST DisARM 1-pair VIMCO 2-samples  DisARM 10-pairs ~ VIMCO 20-samples

Linear —114.06 +0.13 —115.80 4+ 0.08 —108.61 +0.08 —109.40 £+ 0.07

Nonlinear —100.80 +0.11 —101.14 +£0.10 —93.89 £ 0.06 —94.52 £ 0.05

Fashion MNIST

Linear —254.15+0.09 —255.41 +£0.10 —247.77 £ 0.08 —249.60 £0.11

Nonlinear —236.91 +0.10 —236.41 +0.10 | —231.34 +0.06 —232.01 £ 0.08

Omniglot

Linear —119.89 +0.06 —121.66 4+ 0.08 —116.70 + 0.03 —117.68 +0.07

Nonlinear —114.45 £ 0.06 —114.18 £0.07 | —108.29+0.04 —108.37+£0.05
Test multi-sample bound

Dynamic MNIST DisARM 1-pair VIMCO 2-samples  DisARM 10-pairs  VIMCO 20-samples

Linear —113.63 +0.13 —115.31 £ 0.07 —108.18 £ 0.08 —108.97 + 0.08

Nonlinear —102.03 £0.10 -102.15+0.11 —94.78 £0.07 —95.34 £ 0.06

Fashion MNIST

Linear —256.14 £ 0.10 —257.35+£0.12 —249.71 +£0.10 —251.524+0.13

Nonlinear —239.53 £0.10 —238.99+0.11 | —233.82 +0.08 —234.47 £ 0.09

Omniglot

Linear —120.23 £0.07 —121.99+0.08 —117.29 +0.04 —118.29 £ 0.07

Nonlinear —118.96 £+ 0.07 —118.36 £0.11 | —112.43 +0.07 —112.42 +0.07
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