
Supplementary Material:

Asymptotic normality and confidence intervals for derivatives of 2-layer neural
network in the random features model

We gather here the supporting propositions, the proofs and additional figures. The python code
used to generate the figures is also attached. In Figure 4 on page 2 we plot R(ψp, λ, ρ, σ) under
various regimes as a supplement to Figure 3.
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Appendix A. Outline of the proof of the main result

Since Theorem 1 can be regarded as a special case of Theorem 2, it suffices to prove Theorem 2.
The formal proof of Theorem 2 is provided in Section D.1. The proof combines three supporting
results using Slutsky’s Theorem: the asymptotic results

(A.1)
ζ(ej)

(Varj [ζ(ej)])
1/2

d→ N(0, 1),
‖y −Aα̂‖2

(Varj [ζ(ej)])
1/2

P→ 1 and
ζ(ej)− ζL(ej)

‖y −Aα̂‖2
P→ 0.

The first two are proved in Proposition C.2.5 while the third is proved in Proposition C.2.6. The
asymptotic results are shown to hold for most j ∈ [p], in the sense that the current proof shows
that (A.1) holds for all j ∈ [p] \ J for some set J with negligible cardinality compared to p. More
specifically, Proposition C.2.5 leverages the flexible central limit theorems in Bellec and Zhang

[2019] to obtain asymptotic normality of
ζ(ej)

(Varj [ζ(ej)])
1/2 . Proposition C.2.6 shows that the nonlinear

component (induced by the nonlinear perturbation) in ζ(ej)− ζL(ej) is negligible.
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Appendix B. Figure 4
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Figure 4. The indicator R(ψp, λ, ρ, σ) (see Definition C.3.2) of the squared
length in the infinite width. The activation functions are ReLU max(x, 0), leaky

ReLU max(x, 0.1x), Swish x
1+e−x , softplus ln(1+exp(x)), tanh ex−e−x

ex+e−x and sigmoid
1

1+e−x . Activation functions σ(x) with γ1 := E [σ′(Z)] = 0 for Z ∼ N(0, 1) have

limit R = 1 always. We consider Ridge penalty parameter λ ∈ {10−3, 1} and
signal-to-noise ratio ρ ∈ {5, 2, 0.5, 0.2}.
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Appendix C. Supporting propositions

C.1. Notation and constants. The proof will require some further notation and constants.

C.1.1. Notation. Let ‖M‖F denote the Frobenius norm of a matrix M and ‖M‖op its operator
norm.

For the functions f : Rp → R and G : Rp → R, denote by ∂j the partial derivative with respect
to the j-th coordinate for each j ∈ [p], as well as

f := (f(xi))
i∈[n] ∈ Rn, f ′ := [∂jf(xi)]

(i,j)∈[n]×[p] ∈ Rn×p,

G := (G(xi))
i∈[n] ∈ Rn, G′ := [∂jG(xi)]

(i,j)∈[n]×[p] ∈ Rn×p

where x1 ∈ Rp, ...,xn ∈ Rp are the observed feature vectors, i.e., the rows of X.
Let Ej and Varj be the conditional expectation and the conditional variance given (X−j , G,W , ε),

where X−j is the matrix X with j-th column removed. Let Eε be the conditional expectation
given X, G,W . Let P and E be with respect to the total probability PX,W ,ε,G. We let a+ denote
max(a, 0).

We will also consider gradients with respect to columns of X or with respect to the noise ε.
Consider an expression r ∈ Rq which is a function of (X, ε,W , G).

• For two given indices (i, j) ∈ [n]× [p], the column vector ∂xijr has the same dimension as
r and denotes the partial derivative of r with respect to xij while

((xi′,j′)i′∈[n],j′∈[p]:(i′,j′) 6=(i,j), ε,W , G)

remain fixed. If the dimension q of r is greater than 1, then ∇xij acts componentwise on
the components of r.

• The matrix ∇Xj
r is the derivative (in the sense of the Frechet derivative) of r with respect

to the j-th column Xj of X while (X−j , ε,W , G) (which are random variables independent
of Xj) remain fixed; if the dimension q of r is greater than 1, then ∇Xj

acts componentwise
on the components of r. For instance, the derivative of the residuals r = y −Aα̂ with
respect to Xj while (X−j , ε,W , G) remain fixed is the n×n matrix ∇Xj (y−Xα̂) whose
i-th column is ∂xij (y −Xα̂), the directional derivative with respect to the (i, j)-th entry
of X. We may refer to ∇Xj

(y −Aα̂) as the Jacobian of the map Xj 7→ y −Aα̂.
• Similarly, ∇εr is the derivative of r with respect to the noise vector ε while (X,W , G)

(which are random variables independent of ε) remain fixed. If the dimension q of r is
greater than 1, then ∇ε acts componentwise on the components of r. For instance, the
derivative of the residuals y −Aα̂ with respect to ε while (X,W , G) remain fixed is the
n × n matrix ∇ε(y −Xα̂) whose i-th column is the i-th entry of ε. We may refer to
∇ε(y −Aα̂) as the Jacobian of the map ε 7→ y −Aα̂.

• (This is only used in Section C.4) If u0 ∈ Rp has ‖u0‖2 = 1, we define X0 = Xu0.
Then ∇X0

r is the derivative with respect to X0 while (X(Ip − u0u
>
0 ), ε,W , G), (which

are random variables independent of X0) remain fixed. If r = y −Xα̂, the Jacobian
∇X0(y −Xα̂) is the matrix whose i-th column is the derivative with respect to the i-th
entry of X0.

C.1.2. Constants. The following positive finite constants L, c1, c8, δ, L2 are independent of n, p, d.

(i) The activation function σ is Lipschitz with constant L.
(ii) W is deterministic with ‖W ‖op < c1.
(iii) For some δ > 0, Σ′′p(x) exists in (1− δ, 1 + δ) and (−δ, δ) and is L2-Lipschitz in (1− δ, 1 + δ)

and (−δ, δ).
(iv) max

(∣∣Σ′p(1)
∣∣ , ∣∣Σ′′p(0)

∣∣ , ∣∣Σ′′p(1)
∣∣) < c8.
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For the proof of the asymptotic normality result in Theorem 2, we only consider the case when
W is deterministic. The proof is applicable for W with entries iid N(0, 1/p) by Corollary 7.3.3 in
Vershynin [2018] by conditioning on W .

C.2. Asymptotic normality result. In this section, we present supporting propositions for the
asymptotic normality result in Theorem 2. Proposition C.2.1 provides the calculation of the
Jacobian matrix ∇Xj

(y −Aα̂).

Proposition C.2.1 (Calculation of the Jacobian matrix). Under model (5),

(C.1)

∇Xj (y −Aα̂) =− (In −H) diag(σ′(XW>) diag(Wej)α̂)

−A(A>A+ nτIn)−1 diag(Wej)σ
′(WX>) diag(y −Aα̂)

+ (In −H)
[
(e>j β)In + diag(G′ej)

]
.

Under Definitions 1 and C.2.1, we have

(C.2) ∇Xj
(y −Aα̂) = T 0(ej) + T 1(ej) + T L(ej) + TNL(ej).

Definition C.2.1. Let ζL(ej) be in Definition 1. Let

(C.3) ζ(ej) = ζL(ej)− trace [TNL(ej)] ,

where

(C.4)
TNL(ej) = (In −H) diag

(
G′ej

)
,

G′ = [∂jG(xi)]
(i,j)∈[n]×[p] ∈ Rn×p.

Proposition C.2.2 provides upper bounds on the components of the Jacobian matrix∇Xj
(y−Aα̂).

Proposition C.2.2. Let T 0,T 1,T L,TNL be as in Definitions 1 and C.2.1. Let c1, L,f
′ be as in

§C.1.

(i) ‖A(nτId +A>A)−1‖op ≤ 1/(2
√
nτ).

(ii) ‖In −H‖op ≤ 1.
(iii)

∑
j∈[p] ‖T 0(ej) + T L(ej) + TNL(ej)‖2F ≤ 2c21L

2n‖α̂‖22 + 2‖f ′‖2F .
(iv) ‖T 1(ej)‖2F ≤ L2c21/(4nτ) · ‖y −Aα̂‖22.
(v) E‖α̂‖22 = O(1).

Proposition C.2.3 shows that the training error ‖y −Aα̂‖22 is of order at least n with large
probability.

Proposition C.2.3. There exists a large event Ω such that P(Ωc) ≤ o(exp(−c6n)) for some c6 > 0
and that on Ω,

(i) ‖X‖2F /n2 ≤ c4,n,
(ii) 1/n ·minj∈[p] Ej‖y −Aα̂‖22 ≥ c2,n,

(iii) 1/n · ‖y −Aα̂‖22 ≥ c2,n.

The constant c6 is independent of n, d, p. The constants c4,n and c2,n are given in Proposition
C.2.4.

Proposition C.2.4. Let

(1) c3,n := ψ
−1/2
p,n + 1 + c−1/2 → c3 := ψ

−1/2
p + 1 + c−1/2 where c > 0 is some universal constant

specified in the proof.

(2) c4,n := ψp,n + 2ψ
1/2
p,n + 2→ c4 := ψp + 2ψ

1/2
p + 2.

(3) Fn := 2c21L
2‖X‖2F /n2 + 2ψd,n(σ(0))2.

(4) Fn := 2c21L
2(n+ ‖X‖2F )/n2 + 2ψd,n(σ(0))2.
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(5) c̄2,n := (1 + 2c21L
2n−1τ−1 + 2c21L

2c4,nτ
−1 + 2ψd,n(σ(0))2τ−1)−1 → c̄2 := (1 + 2c21L

2c4τ
−1 +

2ψd(σ(0))2τ−1)−1 > 0.
(6) c2,n := θ2

ε(2c̄2,n/3− n−1/2)2
+ → c2 := θ2

ε(2c̄2/3)2 > 0.

Then

(i) P
(∥∥X/

√
p
∥∥
op
≥ c3,n

)
≤ 2 exp(−p).

(ii) P(‖X‖2F /n2 > c4,n) ≤ exp(−n2).

(iii) ‖σ(XW>)‖2F /n2 ≤ Fn.

(iv) ‖In −H‖2F /n ≥ (1 + Fn/τ)−2.

(v) minj∈[p]

(
n−1/2Ej ‖In −H‖F

)
≥ (1 + Fn/τ)−1.

Proposition C.2.5 helps us prove the asymptotic normality of ζ(ej) and helps us estimate the
variance term in the asymptotic normality result with the training error: Propositions C.2.5(i)
and C.2.5(iii) imply the asymptotic normality of ζ(ej) for most j ∈ [p]; Propositions C.2.5(ii)

and C.2.5(iii) imply that we can estimate Varj(ζ(ej)) using ‖y −Aα̂‖22 for most j ∈ [p].

Proposition C.2.5. Let

(i) ζ(ej) be as in Definition C.2.1.
(ii) r = y −Aα̂.

(iii) ε2j := Ej
[
‖∇Xjr‖2F

]
/
(
Ej
[
‖r‖22

]
+ Ej

[
‖∇Xjr‖2F

])
.

Then

(i) Ej

[(
ζ(ej)

(Varjζ(ej))1/2
− X>j Ej [r]

‖Ej [r]‖2

)2
]
≤ 6ε2j .

(ii) Ej
[∣∣∣ ‖r‖2

(Varj [ζ(ej)])1/2
− 1
∣∣∣] ≤ (1 +

√
2
)
εj/(1− 2ε2j )

1/2
+ .

(iii) E
[∑

j∈[p] ε
2
j

]
= O(1).

Proposition C.2.6 shows that the nonlinear component trace(TNL(ej))/ ‖y −Aα̂‖2 of the as-
ymptotic normality quantity ζ(ej)/ ‖y −Aα̂‖2 is negligible. Since ζL(ej) = ζ(ej)+trace [TNL(ej)],
we will then have the asymptotic normality of ζL(ej)/ ‖y −Aα̂‖2.

Proposition C.2.6. Under Assumptions 1, 2, 3 and 4, we have the following convergence in
probability: for all ε > 0,

(C.5) lim
n→+∞

P

(
max
j∈[p]

∣∣∣∣∣ trace
(
(In −H) diag(G′ej)

)
‖y −Aα̂‖2

∣∣∣∣∣ > ε

)
= 0.

Proposition C.2.7 characterizes the expected value of the derivatives of the nonlinear perturbation
function G in terms of Σ′p and Σ′′p .

Proposition C.2.7. For all vector v1,v2 ∈ Rp such that the derivatives below exist,

EG [∂j1G(v1)∂j2G(v2)] = Σ′′p(v>1 v2/p)v1j2v2j1/p
2 + Σ′p(v

>
1 v2/p)δ(j1 = j2)/p.

C.3. The limits V (ψd, ψp, λ, ρ, σ) and R(ψp, λ, ρ, σ). In this section we present the results related
to the limits V (ψd, ψp, λ, ρ, σ) and R(ψp, λ, ρ, σ) in (18).

Assumption C.3.1 recalls the setting in Mei and Montanari [2019] that is comparable to our
Gaussian setting.

Assumption C.3.1. Let us assume that

(i) (xi)i∈[n] ∼iid Unif(Sp−1(
√
p)).

(ii) (wk)k∈[d] ∼iid Unif(Sp−1(1)).

(iii) G(x) is a centered Gaussian process indexed by x ∈ Sp−1(
√
p), such that

(i) EG [G(x)] = 0 and EG [G(x1)G(x2)] = Σp(x
>
1 x2/p),
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(ii) Ex∼Unif(Sp−1(
√
p))

[
Σp(x1/

√
p)
]

= 0, Ex∼Unif(Sp−1(
√
p))

[
Σp(x1/

√
p)x1

]
= 0 and limp→+∞ Σp(1) =

θ2
NL.

(iv) E [ε1] = 0, E
[
ε2

1

]
= θ2

ε, E
[
ε4

1

]
< +∞.

(v) β0 → θ0, ‖β‖22 → θ2
β and Σp(1)→ θ2

NL. The signal-to-noise ratio ρ = θ2
β/(θ

2
ε + θ2

NL).

Proposition C.3.1 provides the limiting squared length of our confidence intervals under Assump-
tion C.3.1.

Proposition C.3.1. Let L2 := ‖y−Aα̂‖22/(trace(In−H))2. Under the model (5) in the asymptotic
setting (6), Assumption C.3.1 and Definition C.3.1,

Var(y1)→ θ2
β + θ2

ε + θ2
NL, nL2/Var(y1)

PX,W ,G,ε−→ V.

Definition C.3.1 defines V (ψd, ψp, λ, ρ, σ).

Definition C.3.1 (Definition 2 in Mei and Montanari [2019]). Let Z ∼ N(0, 1), ρ = θ2
β/(θ

2
ε+θ2

NL),

µ1 = E [σ(Z)] , µ2 = E
[
(σ(Z))2

]
, γ1 = E [σ′(Z)] ,

µ2
∗ = µ2 − µ2

1 − γ2
1 , %2 = γ2

1/µ
2
∗, λ = λ/µ2

∗,

ψ1 = ψd/ψp, ψ2 = 1/ψp, z̄ = i(ψ1ψ2λ)1/2/µ∗.

Let =(z) be the imaginary part of complex number z. Let C+ be the set of complex numbers with
positive imaginary parts. Let ν1, ν2 ∈ C+ solves uniquely

(C.6)

ν1 = ψ1

(
−z̄ − ν2 −

%2ν2

1− %2ν1ν2

)−1

,

ν2 = ψ2

(
−z̄ − ν1 −

%2ν1

1− %2ν1ν2

)−1

,

under constraint |ν1| ≤ ψ1/=(z̄) and |ν2| ≤ ψ2/=(z̄). Let

χ =ν1ν2,

Q =1 + ψ−1
2

(
χ+

χ%2

1− χ%2

)
,

L =Q ·
[

ρ

1 + ρ
· 1

1− χ%2
+

1

1 + ρ

]
,

A1 =
ρ

1 + ρ

[
−χ2

(
χ%4 − χ%2 + ψ2%

2 + %2 − χψ2%
4 + 1

)]
+

1

1 + ρ

[
χ2
(
χ%2 − 1

) (
χ2%4 − 2χ%2 + %2 + 1

)]
,

A0 =− χ5%6 + 3χ4%4 + (ψ1ψ2 − ψ2 − ψ1 + 1)χ3%6 − 2χ3%4 − 3χ3%2,

+ (ψ1 + ψ2 − 3ψ1ψ2 + 1)χ2%4 + 2χ2%2 + χ2 + 3ψ1ψ2χ%
2 − ψ1ψ2,

A =A1/A0,

V (ψd, ψp, λ, ρ, σ) = (L − ψ1λA )/Q2.

Random vectors uniformly distributed on the sphere Sp−1(
√
p) are close to standard normal

vectors (e.g., in the sense of § 3.3.3 in Vershynin [2018]). We expect the limit in Proposition C.3.1
to be valid for Gaussian xi,wk as well. Proposition C.3.2 guarantees that the limit V is valid for
Gaussian vectors (xi)i∈[n] ∼iid N(0p, Ip), (wk)k∈[d] ∼iid N(0p, (1/p)Ip) for the pure linear model
(4).
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Proposition C.3.2. Under the pure linear model (4) in the asymptotic setting (6), Assumption 1
and 2 with (ii) and Definition C.3.1,

Var(y1)→ θ2
β + θ2

ε, nL2/Var(y1)
PX,W ,ε−→ V.

Proposition C.3.3 provides the ψd → +∞ limit of V .

Proposition C.3.3. Let V,R be in Definitions C.3.1 and C.3.2. Then

lim
ψd→+∞

V (ψd, ψp, λ, ρ, σ) = R(ψp, λ, ρ, σ).

Definition C.3.2. Let %, ρ, ψ1, ψ2, λ be as in Definition C.3.1. Let

R(ψp, λ, ρ, σ) =

{
1 % = 0

(L − λA1/A∗)/Q
2

% 6= 0
,

where

χ =


− ψ2

1+ψ2λ
% = 0(

%−2− ψ2−1

1+ψ2λ

)
−
√(

%−2− ψ2−1

1+ψ2λ

)2
+4

ψ2
1+ψ2λ

%−2

2 % 6= 0

,

Q = −χλ,

L =
(
−χλ

) [ ρ

1 + ρ

1

1− χ%2
+

1

1 + ρ

]
,

A1 =
ρ

1 + ρ

[
−χ2

(
χ%4 − χ%2 + ψ2%

2 + %2 − χψ2%
4 + 1

)]
+

1

1 + ρ

[
χ2
(
χ%2 − 1

) (
χ2%4 − 2χ%2 + %2 + 1

)]
,

A∗ = (ψ2 − 1)χ3%6 + (1− 3ψ2)χ2%4 + 3ψ2χ%
2 − ψ2.

C.4. Asymptotic normality result for a general direction. In this section we consider a
general u0 ∈ Unif (Sp−1(1)) instead of a canonical basis ej . Defined in Definitions 1 and C.2.1, the
functions T 0,T 1,T L,TNL, ζL and ζ are linear in ej . So we can naturally extend the functions for

a general direction u0 ∈ Unif (Sp−1(1)) by linear combinations, for e.g., ζL(u0) = u>0 (ζL(ej))
j∈[p].

Extending the functions by linear combinations is equivalent to replacing ej with u0 in the definitions
of the functions.

Theorem C.4.1 provides the asymptotic normality of ζL(u0) for a general u0 satisfying ‖u0‖2 = 1.

Theorem C.4.1. Let t ∈ R. Under model (5), Assumption 1, 2, 3 and 4, Definition 1 and a
further assumption that Σ′p(0) = O(1/p), we have

(C.7) sup
u0∈Sp

∣∣∣∣PX,W ,ε,G|u0

(
ζL(u0)

‖y −Aα̂‖2
≤ t
)
− Φ(t)

∣∣∣∣→ 0

for some Sp ⊂ Sp−1(1) satisfying |Sp|/|Sp−1(1)| ≥ 1− log(p)/p→ 1.

The operations of taking expectations in this section are defined as follows:

(i) Let E0,Var0 denote the conditional expectation and the conditional variance givenXQ0, ε,W , G,u0.
(ii) Let Eu0,X,W ,ε,G or E denote the expectation with respect to the total probability.
(iii) Let EX,W ,ε,G|u0

or EX,W ,ε,G denote the conditional expectation given u0.
(iv) Let Eu0

denote the conditional expectation given X,W , ε, G.

Proposition C.4.1 is comparable to Proposition C.2.5 but for a general direction u0.

Proposition C.4.1. Let

(i) u0 ∼ Unif (Sp−1(1)) independent with X,W , G, ε.
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(ii) X0 := Xu0.

(iii) ζ(u0) := u>0 (ζ(ej))
j∈[p]

where ζ(ej) is defined in Definition C.2.1.
(iv) r = y −Aα̂.
(v) ε20 := E0

[
‖∇X0r‖2F

]
/
(
E0

[
‖r‖22

]
+ E0

[
‖∇X0r‖2F

])
.

Then

(i) E0

[(
ζ(u0)

(Var0ζ(u0))1/2
− X>0 E0[r]
‖E0[r]‖2

)2
]
≤ 6ε20.

(ii) E0

[∣∣∣ ‖r‖2
(Var0[ζ(u0)])1/2

− 1
∣∣∣] ≤ (1 +

√
2
)
ε0/(1− 2ε20)

1/2
+ .

(iii) Eu0,X,W ,ε,G

[
ε20
]

= O(1/p).

Proposition C.4.2 is comparable to Proposition C.2.6 but for a general direction u0.

Proposition C.4.2. Let Ω be as in Proposition C.2.3. Let δi,j = 1 if i = j, 0 otherwise. Let

Ω3 := Ω ∩
{

maxi1,i2∈[n] |xTi1xi2/p− δi1,i2 | < δ
}

where δ is a fixed positive defined in Assumption 4.

Let u0 ∼ Unif (Sp−1(1)) be independent of X,W , ε, G. Under Assumptions 1, 2, 3 and 4 and a
further assumption that Σ′p(0) = O(1/p), we have that

(C.8) Eu0,X,W ,ε,G

( trace
(
(In −H) diag(G′u0)

)
‖y −Aα̂‖2

)2

IΩ3

 = O(1/p).

Appendix D. Proofs

In this section we provide the proofs of our theorems and the supporting propositions.

D.1. Proofs of Theorem 1 and 2. Theorem 1 is a special case of Theorem 2 when there is no
intercept nor perturbation. We prove in this section Theorem 2 based on supporting propositions.

D.1.1. Proof of Theorem 2.

Proof. Let ζ be as in Definition C.2.1. As we explain in the next paragraphs, Propositions C.2.5
and C.2.6 imply that, for a large subset Jp ⊂ [p], for all j ∈ Jp we have

(i)
ζ(ej)

(Varj [ζ(ej)])
1/2

d→ N(0, 1).

(ii)
‖y−Aα̂‖2

(Varj [ζ(ej)])
1/2

P→ 1.

(iii)
ζ(ej)−ζL(ej)
‖y−Aα̂‖2

P→ 0.

The above convergence are uniform over j ∈ Jp, where Jp is a large subset of [p]. So by Slut-
sky’s Theorem we obtain the convervence in distribution of ζ(ej)/‖y −Aα̂‖2 to N(0, 1) and the
convergence is uniform over all j ∈ Jp.

We first specify the subset Jp ⊂ [p]. Notice that (iii) in Proposition C.2.5 provides the existence
of a constant c11 > 0 independent of n, p, d such that

∑
j∈[p] E

[
ε2j
]
≤ c11. We can specify the large

volume index set Jp ⊂ [p] as

Jp :=

{
j ∈ [p] : E

[
ε2j
]
≤ c11

log(p)

}
.

Since

1

p
#

{
j ∈ [p] : E

[
ε2j
]
≥ c11

log(p)

}
≤

1
p

∑
j∈[p] E

[
ε2j
]

c11/ log(p)
≤ log(p)

p
,

we have |Jp|/p ≥ 1− log(p)
p .
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We claim that (i) is provided by Proposition C.2.5 and (iii) is provided by Proposition C.2.6
directly. Now let us explain (ii) rigorously based on Proposition C.2.5 (ii). From the definition of
Jp and Chebyshev’s inequality, we can see that for all ε̄ > 0,

max
j∈Jp

P(|εj | > ε̄) ≤ c11

ε̄2 log(p)
.

Let r = Aα̂ − y, Vj := Varj [ζ(ej)] and Uj :=
∣∣∣‖r‖2 /V 1/2

j − 1
∣∣∣. If εj ≤ 1

2 , by Proposition C.2.5

and simple algebra,

Ej [Uj ] ≤
(

1 +
√

2
)
εj/(1− 2ε2j )

1/2
+ ≤ (2 +

√
2)εj .

Let us consider ε̄ ≤ 1
2 . We let Ωj(ε̄) :=

{
Ej [Uj ] < (2 +

√
2)ε̄
}
. Then

P(Ωj(ε̄)) ≥ P(|εj | ≤ ε̄) ≥ 1− c11

ε̄2 log(p)
.

Then, letting I(·) := I{·} be the indicator function, we have

P(Uj > ε) := E [I(Uj > ε)]

= E
[
Ej [I(Uj > ε)] IΩj(ε̄)

]
+ E

[
Ej [I(Uj > ε)] IΩcj(ε̄)

]
≤ E

[
Ej [Uj ]

ε
IΩj(ε̄)

]
+ P(Ωcj(ε̄))

≤
(

2 +
√

2
)
ε̄/ε+

c11

ε̄2 log(p)
.

Choosing ε̄ := min
(

1
log log(p) ,

1
2

)
, we have that, for all ε > 0,

lim
p→+∞

max
j∈Jp

P(Uj > ε) = 0.

Thus we have (ii). �

D.1.2. Proof of Proposition C.2.1. Propositions are restated before their proofs for convenience.

Proposition C.2.1 (Calculation of the Jacobian matrix). Under model (5),

(C.1)

∇Xj
(y −Aα̂) =− (In −H) diag(σ′(XW>) diag(Wej)α̂)

−A(A>A+ nτIn)−1 diag(Wej)σ
′(WX>) diag(y −Aα̂)

+ (In −H)
[
(e>j β)In + diag(G′ej)

]
.

Proof. The calculation of ∇Xjy follows directly by

(D.1) ∇Xj
y = ∇Xj

f = diag(f ′ej) = (e>j β)In + diag(G′ej).

For the calculation of ∇Xj
(y −Aα̂), we notice that by the KKT condition,

y −Aα̂ = (In −H)y.

Proposition C.2.1 follows by the following intermediate steps:

(i) ∇Xj
[(In −H)y] = (−1)

[(
(∂xi2jH)y

)
i1

]i1,i2∈[n]

+ (In −H)∇Xj
y.

(ii)

∂xi2 jH = (In −H)(∂xi2jA)(A>A+ nτIn)−1A>

+A(A>A+ nτIn)−1(∂xi2 jA)>(In −H).

(iii) ∂xi2 jA = diag(ei2)σ′(XW>) diag(Wej).

The above intermediate steps can be seen from the followings.

(i) By the chain rule for multiplication.
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(ii) Notice that H := A(A>A+ nτIn)−1A. For the inverse matrix, we use the fact that

∂xi2j

[
(A>A+ nτIn)−1

]
= (−1)(A>A+ nτIn)−1(∂xi2j (A

>A))(A>A+ nτIn)−1.

(iii) We notice that A = σ(XW>). So that by the chain rule,

∂xi2 jA =
[
δi=i2σ

′(x>i wk)wkj
]i∈[n],k∈[d]

= diag(ei2)σ′(XW>) diag(Wej).

Combining the intermediate steps above, noticing that[(
(In −H) diag(ei2)σ′(XW>) diag(Wej)(A

>A+ nτIn)−1A>y
)
i1

]i1,i2∈[n]

= (In −H) diag
(
σ′(XW>) diag(Wej)α̂

)
,

and [(
A(A>A+ nτIn)−1 diag(Wej)σ

′(WX>) diag(ei2)(In −H)y
)
i1

]i1,i2∈[n]

= A(A>A+ nτIn)−1 diag(Wej)σ
′(WX>) diag(y −Aα̂),

we have our calculation. �

D.1.3. Proof of Proposition C.2.2.

Proposition C.2.2. Let T 0,T 1,T L,TNL be as in Definitions 1 and C.2.1. Let c1, L,f
′ be as in

§C.1.

(i) ‖A(nτId +A>A)−1‖op ≤ 1/(2
√
nτ).

(ii) ‖In −H‖op ≤ 1.
(iii)

∑
j∈[p] ‖T 0(ej) + T L(ej) + TNL(ej)‖2F ≤ 2c21L

2n‖α̂‖22 + 2‖f ′‖2F .
(iv) ‖T 1(ej)‖2F ≤ L2c21/(4nτ) · ‖y −Aα̂‖22.
(v) E‖α̂‖22 = O(1).

Proof. (i) Let A = UΣV > be the SVD of A where Σ ∈ Rn×d has diagonal elements the

singular values σl for l ∈ [min(n, d)]. Then the singular values of A(nτId +A>A)−1 are
either σl/(nτ + σ2

l ) or 0. We notice that

σl/(nτ + σ2
l ) ≤ 1/(2

√
nτ).

So that the operator norm is no more than 1/(2
√
nτ).

(ii) Let A = UΣV > be the SVD of A where Σ ∈ Rn×d has diagonal elements the singular
values σl for l ∈ [min(n, d)]. Then the singular values of In −H are either (nτ)/(nτ + σ2

l )
or 1, no more than 1.

(iii)∑
j∈[p]

‖T 0(ej) + T L(ej) + TNL(ej)‖2F ≤
∑
j∈[p]

‖In −H‖2op

∥∥∥(σ′(XW>) diag(α̂)W − f ′
)
ej

∥∥∥2

2

≤
∑
j∈[p]

∥∥∥(σ′(XW>) diag(α̂)W − f ′
)
ej

∥∥∥2

2

=
∥∥∥σ′(XW>) diag(α̂)W − f ′

∥∥∥2

F

≤ 2
∥∥∥σ′(XW>) diag(α̂)W

∥∥∥2

F
+ 2

∥∥f ′∥∥2

F
.

≤ 2 ‖W ‖2op

∥∥∥σ′(XW>) diag(α̂)
∥∥∥2

F
+ 2

∥∥f ′∥∥2

F

≤ 2c21L
2n ‖α̂‖22 + 2

∥∥f ′∥∥2

F
.
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We used ‖In −H‖op ≤ 1 in the above display.

(iv)

‖T 1(ej)‖2F ≤ ‖A(nτId +A>A)−1‖2op · ‖ diag(Wej)σ
′(WX>) diag(y −Aα̂)‖2F

≤ 1/(4nτ) · L2 · ‖(Wej)(y −Aα̂)>‖2F
= L2/(4nτ) · ‖Wej‖22‖y −Aα̂‖22
≤ L2/(4nτ) · ‖W ‖2op‖y −Aα̂‖22.
≤ L2c21/(4nτ) · ‖y −Aα̂‖22 .

We used
∥∥∥A(nτId +A>A)−1

∥∥∥2

op
≤ 1/(4nτ) in the above display.

(v) From the KKT condition, we have

nτ‖α̂‖22 = (Aα̂)>(y −Aα̂) = y>H>(In −H)y.

Let the singular values of A be σl for l ∈ [min(n, d)], then the singular value of H>(In−H)

are
σ2
l

nτ+σ2
l
· nτ
nτ+σ2

l
∈ [0, 1/4]. So that ‖α̂‖22 ≤ 1/(4nτ) · ‖y‖22. Taking expectation we have

E‖α̂‖22 ≤ 1/(4nτ) · E ‖β01n +Xβ +G+ ε‖22
= 1/(4τ) ·

(
β2

0 + ‖β‖22 + E
[
Σp(‖x1‖22/p)

]
+ θ2

ε

)
= O(1).

�

D.1.4. Proof of Proposition C.2.3.

Proposition C.2.3. There exists a large event Ω such that P(Ωc) ≤ o(exp(−c6n)) for some c6 > 0
and that on Ω,

(i) ‖X‖2F /n2 ≤ c4,n,
(ii) 1/n ·minj∈[p] Ej‖y −Aα̂‖22 ≥ c2,n,

(iii) 1/n · ‖y −Aα̂‖22 ≥ c2,n.

The constant c6 is independent of n, d, p. The constants c4,n and c2,n are given in Proposition
C.2.4.

Proof. We first notice that by the KKT condition for the ridge regression type estimator α̂, we
have

Eε‖y −Aα̂‖22 = Eε‖(In −H)y‖22 ≥ Eε‖(In −H)ε‖22 = θ2
ε‖In −H‖2F .

Next we show that ‖y −Aα̂‖ is concentrated around Eε ‖y −Aα̂‖: By KKT condition, ∇ε(y−
Aα̂) = In−H . Since ‖In −H‖op ≤ 1, ‖y−Aα̂‖ is 1-Lipschitz in ε (see also Bellec and Tsybakov

[2017] for general results of this kind). By the triangle inequality and the independence between
Xj and ε, if u(ε,Xj) is a function that is 1-Lipschitz with respect to ε for every value of Xj , then

|Eju(ε,Xj)− Eju(ε̃,Xj)| ≤ Ej |u(ε,Xj)− u(ε̃,Xj)| ≤ ‖ε− ε̃‖2Ej [1] = ‖ε− ε̃‖2.
This implies that Ej‖y−Aα̂‖2 is also 1-Lipschitz in ε. By the concentration inequality for Lipschitz
functions of a standard normal random vector (See Theorem 5.2.2 in Vershynin [2018] or Theorem
5.5 in Boucheron et al. [2013]) applied to the mappings ε 7→ ‖y −Aα̂‖2 and ε 7→ Ej‖y −Aα̂‖2,
we have that for some universal constant c5 > 0 and for all t > 0,

P(Ej‖y −Aα̂‖2 ≥ EεEj‖y −Aα̂‖2 −
√
nθεt) ≥ 1− 2 exp(−c5nt2),

P(‖y −Aα̂‖2 ≥ Eε‖y −Aα̂‖2 −
√
nθεt) ≥ 1− 2 exp(−c5nt2).

By the union bound, the following event occurs with probability at least 1− 2(p+ 1) exp(−c5nt2):⋂
j∈[p]

{
Ej‖y −Aα̂‖2 ≥ EεEj‖y −Aα̂‖2 −

√
nθεt, ‖y −Aα̂‖2 ≥ Eε‖y −Aα̂‖2 −

√
nθεt

}
.
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Since Xj ,X−j , ε are independent, we can exchange the order of expectation by Fubini’s Theorem,

EεEj‖y −Aα̂‖2 −
√
nθεt = EjEε‖y −Aα̂‖2 −

√
nθεt,

= Ej
[
(Eε‖y −Aα̂‖22 −Varε‖y −Aα̂‖2)1/2

]
−√nθεt,

≥ θεEj
[(
‖In −H‖2F − 1

)1/2
+

]
−√nθεt

≥ θεEj‖In −H‖F − (θε +
√
nθεt)

= θε
[
Ej‖In −H‖F −

√
nt− 1

]
.

The first inequality above is due to the fact that Eε ‖y −Aα̂‖22 ≥ θ2
ε ‖In −H‖2F and the fact that

Varε‖y −Aα̂‖2 ≤ θ2
ε by the Gaussian Poincaré Inequality [Boucheron et al., 2013, Theorem 3.20]

with respect to the 1-Lipschitz mapping ε 7→ ‖y −Aα̂‖2. The second last inequality above is due

to the fact that for any two positive real number a, b, (a2 − b2)
1/2
+ ≥ a− b. By a similar argument,

Eε‖y −Aα̂‖2 −
√
nθεt ≥ θε[‖In −H‖F −

√
nt− 1].

From Proposition C.2.4 we can have for all t > 0 and some universal constant c5 > 0,

P
(

1/n · min
j∈[p]

Ej‖y −Aα̂‖22 ≥ θ2
ε

(
(1 + Fn/τ)−1 − t− 1/

√
n
)2

+

)
≥ 1− 2p exp(−c5nt2).

P
(

1/n · ‖y −Aα̂‖22 ≥ θ2
ε

(
(1 + Fn/τ)−1 − t− 1/

√
n
)2

+

)
≥ 1− exp(−c5nt2).

Consider the intersection of the above events with the event {‖X‖2F /n2 ≤ c4,n}. We notice that
on that intersection,

Fn ≤ 2c21L
2/n+ 2c21L

2c4,n + 2ψd,n(σ(0))2

≤ 2c21L
2c4 + 2ψd(σ(0))2 + o(1),

(1 + Fn/τ)−1 ≥ c̄2,n = c̄2 + o(1).

Taking t = c̄2,n/3, we obtain

P
(

1/n · min
j∈[p]

Ej‖y −Aα̂‖22 ≥ θ2
ε

(
2c̄2,n/3− 1/

√
n
)2

+

)
≥ 1− 2p exp(−9−1c5c̄

2
2,nn)

− exp(−n2)

as well as P
(

1/n · ‖y −Aα̂‖22 ≥ θ2
ε

(
2c̄2,n/3− 1/

√
n
)2

+

)
≥ 1− exp(−9−1c5c̄

2
2,nn).

− exp(−n2).

�

D.1.5. Proof of Proposition C.2.4.

Proposition C.2.4. Let

(1) c3,n := ψ
−1/2
p,n + 1 + c−1/2 → c3 := ψ

−1/2
p + 1 + c−1/2 where c > 0 is some universal constant

specified in the proof.

(2) c4,n := ψp,n + 2ψ
1/2
p,n + 2→ c4 := ψp + 2ψ

1/2
p + 2.

(3) Fn := 2c21L
2‖X‖2F /n2 + 2ψd,n(σ(0))2.

(4) Fn := 2c21L
2(n+ ‖X‖2F )/n2 + 2ψd,n(σ(0))2.

(5) c̄2,n := (1 + 2c21L
2n−1τ−1 + 2c21L

2c4,nτ
−1 + 2ψd,n(σ(0))2τ−1)−1 → c̄2 := (1 + 2c21L

2c4τ
−1 +

2ψd(σ(0))2τ−1)−1 > 0.
(6) c2,n := θ2

ε(2c̄2,n/3− n−1/2)2
+ → c2 := θ2

ε(2c̄2/3)2 > 0.

Then
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(i) P
(∥∥X/

√
p
∥∥
op
≥ c3,n

)
≤ 2 exp(−p).

(ii) P(‖X‖2F /n2 > c4,n) ≤ exp(−n2).

(iii) ‖σ(XW>)‖2F /n2 ≤ Fn.

(iv) ‖In −H‖2F /n ≥ (1 + Fn/τ)−2.

(v) minj∈[p]

(
n−1/2Ej ‖In −H‖F

)
≥ (1 + Fn/τ)−1.

Proof. (i) Corollary 7.3.3 in Vershynin [2018] provides the high probability upper bound for
the operator norm of random matrix,

P(‖X‖op ≥
√
n+
√
p+ t) ≤ 2 exp(−ct2)

for some universal constant c > 0. Taking ct2 = p, we have

P
(
‖X/

√
p‖op ≥ ψ−1/2

p,n + 1 + c−1/2
)
≤ 2 exp(−p).

(ii) By Lemma 1 in Laurent and Massart [2000], we have the concentration for ‖X‖2F , the
chi-square random-variable with degree of freedom np, as follows: For any x > 0,

P(‖X‖2F − np ≥ 2
√
xnp+ 2x) ≤ exp(−x).

Here we take x = n2 for simplicity of proof.
(iii) If σ is L-Lipschitz, then

|σ(x)| ≤ L|x|+ |σ(0)|,
=⇒ (σ(x))2 ≤ 2L2x2 + 2(σ(0))2.

Taking x = x>i wk and summing over (i, k) ∈ [n]× [d] we have

‖σ(XW>)‖2F /n2 ≤ 2L2‖XW>‖2F /n2 + 2ψd,n(σ(0))2

≤ 2c21L
2‖X‖2F /n2 + 2ψd,n(σ(0))2.

(iv) Let σl, l ∈ [min(n, d)] be the singular values of A. If n > d, we define σi = 0 for i ∈ (d, n].
We notice that by the SVD of H,

‖In −H‖2F =
∑
i∈[n]

(
1

1 + σ2
i /(nτ)

)2

≥ n
(

1

1 +
∑
l∈min(n,d) σ

2
l /(n

2τ)

)2

= n
(
1 + ‖A‖2F /(n2τ)

)−2

where the inequality is due to Jensen’s Inequality.
(v) This is by the convexity of x 7→ 1

1+x on R+ and Jensen’s Inequality, Ej( 1
1+X ) ≥ 1

1+EjX for

any random variable X supported on R+. We then notice that Ej [‖X‖2F ] ≤ n+ ‖X‖2F .
�

D.1.6. Proof of Proposition C.2.5.

Proposition C.2.5. Let

(i) ζ(ej) be as in Definition C.2.1.
(ii) r = y −Aα̂.

(iii) ε2j := Ej
[
‖∇Xj

r‖2F
]
/
(
Ej
[
‖r‖22

]
+ Ej

[
‖∇Xj

r‖2F
])
.

Then

(i) Ej

[(
ζ(ej)

(Varjζ(ej))1/2
− X>j Ej [r]

‖Ej [r]‖2

)2
]
≤ 6ε2j .
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(ii) Ej
[∣∣∣ ‖r‖2

(Varj [ζ(ej)])1/2
− 1
∣∣∣] ≤ (1 +

√
2
)
εj/(1− 2ε2j )

1/2
+ .

(iii) E
[∑

j∈[p] ε
2
j

]
= O(1).

Proof. (i) The first inequality follows directly from Theorem 2.1 in Bellec and Zhang [2019].
(ii) By Second Order Stein’s lemma applied to the mapping Xj 7→ r (cf. Theorem 2.1 in Bellec

and Zhang [2018]), we have

V := Varj [ζ(ej)] = Ej
[
‖r‖22

]
+ Ej [trace[(∇Xj

r)2]].

By Second Order Stein’s lemma applied to the mapping Xj 7→ r − Ej [r], we have

V := Varj

(
X>j (r − Ej [r])− trace

[
∇Xjr

])
= Ej

[
‖r − Ejr‖22 + trace[(∇Xj

r)2]
]

= Varj [ζ(ej)]− ‖Ej [r]‖22 .
By the fact that 2ab ∈ [−a2 − b2, a2 + b2] for two real a and b,∣∣Ej [trace[(∇Xj

r)2]
]∣∣ ≤ Ej

[
‖∇Xj

r‖2F
]
.

By Gaussian Poincaré Inequality [Boucheron et al., 2013, Theorem 3.20] applied to the
mapping Xj 7→ ri(Xj) for each i ∈ [n],

Ej
[
‖r − Ej [r] ‖22

]
≤ Ej

[
‖∇Xj

r‖2F
]
.

So that V ≤ 2Ej
[
‖∇Xjr‖2F

]
. We also notice that

Ej
[∣∣∣∣‖r‖2V 1/2

− 1

∣∣∣∣] = V −1/2Ej
[∣∣∣‖r‖2 − V 1/2

∣∣∣]
≤ V −1/2Ej

[∣∣‖r‖2 − ‖Ej [r]‖2
∣∣]+ V −1/2

∣∣∣‖Ej [r]‖2 − V 1/2
∣∣∣ .

By Jensen’s Inequality,

Ej [|‖r‖2 − ‖Ej [r] ‖2|] ≤
(
Ej
[
(‖Ej [r] ‖ − ‖r‖)2

])1/2

≤
(
Ej
[
‖r − Ej [r] ‖22

])1/2
≤
√

Ej [‖∇xjr‖2F ].

The last inequality above follows by the Gaussian Poincaré Inequality [Boucheron et al., 2013,

Theorem 3.20] applied to the mapping Xj 7→ ri(Xj) for each i ∈ [n]. By |a− b| ≤
√
a2 + b2

for two real a, b > 0,∣∣∣‖Ej [r]‖2 − V 1/2
∣∣∣ ≤ V 1/2 ≤

√
2
√

Ej [‖∇xjr‖2F ].

So that

Ej

[∣∣∣∣∣ ‖r‖V
1/2
j

− 1

∣∣∣∣∣
]
≤
(

1 +
√

2
)(Ej

[
‖∇Xj

r‖2F
]

V

)1/2

≤
(

1 +
√

2
)( Ej [‖∇Xj

r‖2F ](
Ej [‖r‖22]− Ej [‖∇Xj

r‖2F ]
)

+

)1/2

≤
(

1 +
√

2
)
εj/(1− 2ε2j )

1/2
+ ,

where ε2j = Ej‖∇Xjr‖2F /
(
Ej‖r‖22 + Ej‖∇Xjr‖2F

)
. In the above we let a/0 = +∞ by

convention.
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(iii) We first recall a large probability event Ω, defined in Proposition C.2.3. Since 1 = IΩ + IΩc

and
∑
j∈[p] ε

2
j ≤ p,

E

∑
j∈[p]

ε2j

 ≤ E

∑
j∈[p]

ε2jIΩ

+ o(p exp(−c6n)).

Let T 0,T 1,T L,TNL be as in Proposition C.2.1. Then ∇Xj
r = T 0 + T 1 + T L + TNL,

‖∇Xj
r‖2F ≤ 2‖T 0 + T L + TNL‖2F + 2‖T 1‖2F .

We have

E

∑
j∈[p]

ε2jIΩ

 ≤ E

∑
j∈[p]

Ej ‖T 0 + T L + TNL‖2F + Ej‖T 1‖2F
Ej‖r‖22 + Ej‖∇Xjr‖2F

IΩ


By Proposition C.2.2 and Proposition C.2.3,

E

∑
j∈[p]

Ej‖T 1(ej)‖2F
Ej‖r‖22 + Ej‖∇Xjr‖2F

IΩ

 ≤ E

∑
j∈[p]

L2c21/(4nτ) · Ej‖r‖22
Ej‖r‖22 + Ej‖∇Xjr‖2F


≤ (1/4)L2c21ψp,nτ

−1,

= (1/4)L2c21ψpτ
−1 + o(1).

E

∑
j∈[p]

Ej‖T 0(ej) + T L(ej) + TNL(ej)‖2F
Ej‖r‖22 + Ej‖∇Xj

r‖2F
IΩ

 ≤ 1/(c2,nn) · E

∑
j∈[p]

‖T 0 + T L + TNL‖2F


≤ 1/(c2,nn) ·

(
2c21L

2nE
[
‖α̂‖22

]
+ 2E

[∥∥f ′∥∥2

F

])
≤ 2c21c

−1
2,nL

2E[‖α̂‖22] + 2c−1
2,nE

[
‖β +∇G(x1)‖22

]
.

Proposition C.2.2 and Assumptions 1 and 3 provide us E
[
‖α̂‖22

]
= O(1) and E

[
‖β +∇G(x1)‖22

]
=

O(1). Combining the above we have E
[∑

j∈[p] ε
2
j

]
≤ O(1).

�

D.1.7. Proof of Proposition C.2.6.

Proposition C.2.6. Under Assumptions 1, 2, 3 and 4, we have the following convergence in
probability: for all ε > 0,

(C.5) lim
n→+∞

P

(
max
j∈[p]

∣∣∣∣∣ trace
(
(In −H) diag(G′ej)

)
‖y −Aα̂‖2

∣∣∣∣∣ > ε

)
= 0.

Proof. Let us first define

(i) vn = 1n − (H11, H22, · · · , Hnn)>.
(ii) qj := trace(TNL(ej)) = trace

[
(In −H) diag(G′ej)

]
= v>n [G′]j .

(iii) r := Aα̂− y.
(iv) Ω be in Proposition C.2.3 such that

(i) Ω :=
{

1/n · ‖y −Aα̂‖22 ≥ c2,n
}
.

(ii) P(Ωc) ≤ o(exp(−c6n)) for some constant c6 > 0.
(v) Ω3 be such that (cf. Corollary 2.8.3 and Proposition 2.5.2 (i) in Vershynin [2018])
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(i)

Ω3 =

{
max

i1,i2∈[n]
|xTi1xi2/p− δi1,i2 | < δ

}
∩
{

max
j1,j2∈[p]

|X>j1Xj2/n− δj1,j2 | < δ

}
∩
{

max
i∈[n],j∈[p]

|xij | ≤ p1/4

}

(ii) P(Ω
c

3) ≤ o(exp(−c10n
1/2)) for some universal constant c10 > 0.

(vi) Ω3 := Ω ∩ Ω3.

By Chebyshev’s inequality,

P
(

max
j∈[p]

|qj |
‖r‖2

> ε

)
≤ P

({
max
j∈[p]

|qj |
‖r‖2

> ε

}
∩ Ω3

)
+ P(Ωc3)

≤ P

({
max
j∈[p]

|qj |
n−1/2c

1/2
2,n

> ε

}
∩ Ω3

)
+ P(Ωc3)

≤ P

({
max
j∈[p]

|qj |
n−1/2c

1/2
2,n

> ε

}
∩ Ω3

)
+ P(Ωc3)

≤ P

({
max
j∈[p]

|qj |
n−1/2c

1/2
2,n

IΩ3
> ε

})
+ P(Ωc3)

≤
E
[
maxj∈[p] q

2
j IΩ3

]
nε2c2,n

+ o(1).

So to show our proposition, it suffices to show that

E
[
max
j∈[p]

q2
j IΩ3

]
= o(n).

Letting vn = 1n − (H11, H22, · · · , Hnn)>, we notice that by some algebra,

E
[
max
j∈[p]

q2
j IΩ3

]
= E

[
max
j∈[p]

(
trace

[
(In −H) diag(G′ej)

])2
IΩ3

]
= E

[
max
j∈[p]

(
v>n [G′]j

)2
IΩ3

]
= E

[
max
j∈[p]

v>nEG
[
[G′]j([G

′]j)
>]vnIΩ3

]

Let

M(ej) := EG
[
[G′]j([G

′]j)
>] .

From Proposition C.2.7, on Ω3, the (i1, i2)-th element of the above matrix is

mi1,i2(ej) = Σ′′p(x>i1xi2/p)xi1jxi2j/p
2 + Σ′p(x

>
i1xi2/p)/p.
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Let δi1,i2 = 1 if i1 = i2, 0 otherwise. We look at Taylor expansions around δi1,i2 , and do some
arrangement as following: for i1, i2 ∈ [n] and

∣∣x>i1xi2/p− δi1,i2∣∣ ≤ δ,
Σ′p(x

>
i1xi2/p) = Σ′p(δi1,i2) + Σ′′p(κi1,i2)(x>i1xi2/p− δi1,i2),

= Σ′p(δi1,i2) + Σ′′p(0)(x>i1xi2/p− δi1,i2)

+
(
Σ′′p(κi1,i2)− Σ′′p(0)

)
(x>i1xi2/p− δi1,i2)(1− δi1,i2)

+
(
Σ′′p(κi1,i2)− Σ′′p(0)

)
(x>i1xi2/p− δi1,i2)δi1,i2 ,

Σ′′p(x>i1xi2/p)xi1jxi2j = Σ′′p(0)xi1jxi2j +
(
Σ′′p(x>i1xi2/p)− Σ′′p(0)

)
xi1jxi2j(1− δi1,i2)

+
(
Σ′′p(x>i1xi2/p)− Σ′′p(0)

)
xi1jxi2jδi1,i2 ,

where κi1,i2 satisfies |κi1,i2 − δi1,i2 | ≤
∣∣x>i1xi2/p− δi1,i2∣∣. From this we have decomposition of

M(ej) := EG
[
[G′]j [G

′]>j
]

into several matrices with small operator norm easy to calculate. With
a slight abuse of notations A,B,C,D,E,F ,G,H, we have

M = A+B +C +D +E + F +G+H,

where
A =

(
Σ′p(1)− Σ′p(0)

)
In/p,

B = Σ′p(0)1n1>n /p,

C = Σ′′p(0)(XXT /p)/p,

Di1,i2 =
(
Σ′′p(κi1,i2)− Σ′′p(0)

)
(x>i1xi2/p)δi1 6=i2/p,

Ei1,i2 =
[
Σ′′p(κi1,i2)x>i1xi2/p− Σ′′p(0)x>i1xi2/p− Σ′′p(κi1,i2)

]
δi1=i2/p,

F = Σ′′p(0)XjX
T
j /p

2,

Gi1,i2(ej) =
(
Σ′′p(x>i1xi2/p)− Σ′′p(0)

)
xi1jxi2jδi1 6=i2/p

2,

Hi1,i2(ej) =
(
Σ′′p(x>i1xi2/p)− Σ′′p(0)

)
xi1jxi2jδi1=i2/p

2.

It suffices to show that q(N) := E
[
maxj∈[p] v

>
nN(ej)vnIΩ3

]
= o(p) for N being from A to H.

We notice that ‖In −H‖op ≤ 1 implies |vn,i| ≤ 1 for all i ∈ [n]. Then we have

(i) q(A) = o(p) provided that Σ′p(1),Σ′p(0) = o(p).
(ii) q(B) = o(p) provided that Σ′p(0) = o(1).

(iii) q(C) = o(p) provided that E
[∥∥X/

√
p
∥∥

op

]
= O(1) and Σ′′p(0) = o(p).

(iv) q(E) = o(p) provided that supx∈[1−δ,1+δ] Σ′′p(x),Σ′′p(0) = o(p) .

(v) q(F ) = o(p) provided that Σ′′p(0) = o(p).
(vi) q(H) = o(p) provided that supx∈[1−δ,1+δ] Σ′′p(x),Σ′′p(0) = o(p).

We notice that the above are true by assumptions on Σp and X. For D and G, we notice the
following:

|q(D)| :=
∣∣∣∣E [max

j∈[p]
v>nD(ej)vnIΩ3

]∣∣∣∣ ≤ E
[
|vn|>|D||vn|IΩ3

]
≤ 1>nE[|D|IΩ3

]1n,

where the absolute value operation is taken element-wise for the vector vn and matrix D. By the
Lipschitz assumption of Σ′′p around 0, for i1 6= i2,

E
[
|di1,i2 |IΩ3

]
≤ E

[∣∣(Σ′′p(κi1,i2)− Σ′′p(0)
)∣∣ ∣∣x>i1xi2/p∣∣ IΩ3

/p
]
≤ L2/p · E

[
(x>i1xi2/p)

2
]

= L2/p
2.

This implies |q(D)| = O(1). For |q(G)|, we notice that

|q(G)| :=
∣∣∣∣E [max

j∈p
v>nG(ej)vnIΩ3

]∣∣∣∣ ≤ E
[
max
j∈[p]
|vn|> |G(ej)| |vn| IΩ3

]
≤ E

[
max
j∈[p]

1>n |G(ej)|1nIΩ3

]
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where the absolute value operation is taken element-wise for the vector vn and matrix G(ej). By
the Lipschitz assumption of Σ′′p around 0, for i1 6= i2,

E
[
max
j∈[p]
|gi1,i2(ej)|IΩ3

]
≤ L2E

[
max
j∈[p]
|(x>i1xi2/p)xi1jxi2j |IΩ3

]
/p2

≤ L2δ · E
[
max
j∈[p]
|xi1jxi2j |IΩ3

]
/p2

≤ L2δp
−3/2,

where we used that maxj |xi1jxi2j |IΩ3
≤ p1/2. So that |q(G)| = O(p1/2) . Combining the above we

have our proposition. �

D.1.8. Proof of Proposition C.2.7.

Proposition C.2.7. For all vector v1,v2 ∈ Rp such that the derivatives below exist,

EG [∂j1G(v1)∂j2G(v2)] = Σ′′p(v>1 v2/p)v1j2v2j1/p
2 + Σ′p(v

>
1 v2/p)δ(j1 = j2)/p.

Proof. Let t1, t2 ∈ Rp. Let

G (t1, t2) = EG [G(v1 + t1)G(v2 + t2)] = Σp((v1 + t1)>(v2 + t2)/p).

Let j1, j2 ∈ [p]. Let us assume that the derivatives below exists,

∂t2j2∂t1j1 G (t1, t2) = EG [∂j1G(v1 + t1)∂j2G(v2 + t2)] ,

∂t2j2∂t1j1 G (t1, t2) = Σ′′p((v1 + t1)>(v2 + t2)/p)(v1j2 + t1j2)(v2j1 + t2j1)/p2

+ Σ′p((v1 + t1)>(v2 + t2)/p)δ(j1 = j2)/p.

Then
EG [∂j1G(v1)∂j2G(v2)] = ∂t2j2∂t1j1 G (0p,0p)

= Σ′′p(v>1 v2/p)v1j2v2j1/p
2 + Σ′p(v

>
1 v2/p)δ(j1 = j2)/p.

�

D.2. Proofs of the limits V (ψd, ψp, λ, ρ, σ) and R(ψp, λ, ρ, σ).

D.2.1. Proof of Proposition C.3.1.

Proposition C.3.1. Let L2 := ‖y−Aα̂‖22/(trace(In−H))2. Under the model (5) in the asymptotic
setting (6), Assumption C.3.1 and Definition C.3.1,

Var(y1)→ θ2
β + θ2

ε + θ2
NL, nL2/Var(y1)

PX,W ,G,ε−→ V.

Proof. In this proof we consider the model in Mei and Montanari [2019]. Under this model, the

limit of (1/n) ‖y −Aα̂‖22 is given in Theorem 6 in Mei and Montanari [2019] as

lim
n→+∞

E
∣∣∣∣(1/n) ‖y −Aα̂‖22 − (θ2

β + θ2
ε + θ2

NL)

(
L − ψdλ

ψpµ2
∗
A

)∣∣∣∣ = 0.

The limit of Var(y1) follows by

Var(y1) = E
[
y2

1

]
− β2

0

= E
[
(β0 + x>1 β +G(x1) + ε1)2

]
− β2

0

= E
[
(x>1 β)2

]
+ E

[
(G(x1))2

]
+ E

[
ε2

1

]
→ θ2

β + θ2
NL + θ2

ε.
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The limit of (1/n) trace(In −H) is implied in Mei and Montanari [2019] by the following facts.

Let us first denote Z = (1/
√
p)σ(XW>). Let

Z(t) = (1 + t)

[
0 Z>

Z 0

]
∈ R(n+d)×(n+d).

Let u = (ψ1ψ2λ)1/2 ∈ R+ and let log denote the complex logarithm with branch cut on the negative
real axis. Let λi(Z(t)) be the eigenvalues of Z(t) in non-increasing order. Let

J (u, t) = (1/p)
∑

i∈[n+d]

log(λi(Z(t))− iu).

From Proposition 7.3 in Mei and Montanari [2019],

∂tJ (u, 0) =
2

p
trace((u2Id +Z>Z)−1Z>Z) =

2

p
trace(H).

From the fact that Z(t) = (1 + t)Z(0), we have from the chain rule and the definition of J ,

∂tJ (u, 0) = (1/p)
∑

i∈[n+d]

(λi(Z(0))− iu)−1 · (iu) + ψ1 + ψ2.

From Proposition 7.2 and Step 2 in Lemma C.1. in Mei and Montanari [2019],

lim
n→+∞

E

∣∣∣∣∣∣(1/p)
∑

i∈[n+d]

(λi(Z(0))− iu)−1 − (ν1 + ν2)/µ∗

∣∣∣∣∣∣ = 0.

So that we have

lim
n→+∞

E |(1/n) trace(In −H)− (1/2)(1− ψp((ν1 + ν2)/µ∗)ui− ψd)| = 0.

We notice by the definition of u and by (C.6),

1− ψp((ν1 + ν2)/µ∗)ui− ψd = 1 + ψp(ν1 + ν2)(−z̄)− ψd

= 1 + ψp

(
ψ1 + ψ2 + 2χ+

2%2χ

1− %2χ

)
− ψd

= 2 + ψp(2χ+
2%2χ

1− %2χ
).

This implies

lim
n→+∞

E |(1/n) trace(In −H)−Q| = 0.

Combining the above, we have the limit of nL2/Var(y1). �

D.2.2. Sketch of Proof of Proposition C.3.2.

Proposition C.3.2. Under the pure linear model (4) in the asymptotic setting (6), Assumption 1
and 2 with (ii) and Definition C.3.1,

Var(y1)→ θ2
β + θ2

ε, nL2/Var(y1)
PX,W ,ε−→ V.

Proof. In this sketch of proof, we consider the setting for the pure linear model,

y = Xβ + ε,

with Gaussian xi and wk under Assumptions 1 and 2 with (ii). The limit of (1/n) trace(In −H)
satisfies

lim
n→+∞

E |(1/n) trace(In −H)−Q| = 0,

under the same reasoning in Section D.2.1, which also holds for xi,wk being Gaussian.
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So it suffices to show that the limit of (1/n) ‖y −Aα̂‖2 is the same as that in Section D.2.1,
that is,

lim
n→+∞

E
∣∣∣∣(1/n) ‖y −Aα̂‖22 − (θ2

β + θ2
ε)

(
L − ψdλ

ψpµ2
∗
A

)∣∣∣∣ = 0.

First, by Remark 8 in Mei and Montanari [2019], we can consider β ∈ Sp−1(‖β‖22) independent of

X, ε,W , instead of β being deterministic, since the training error ‖y −Aα̂‖22 as a function of β is in-
variant in distribution after orthogonal rotation of β. So letting E denote EX,W ,ε,β∼Unif(Sp−1(‖β‖22)),

by the fact that y −Aα̂ = (In −H)y, we have

(1/n)E
[
‖y −Aα̂‖22

]
= (1/n)E

[
‖(In −H)y‖22

]
= (1/n)E

[
‖(In −H)(Xβ + ε)‖22

]
= (1/n)

[
E
[
trace(H̃Xββ>X>)

]
+ E

[
trace(H̃εε>)

]]
= (1/n)

[
θ2
βE
[
trace

(
H̃XX>/p

)]
+ θ2

εE
[
trace

(
H̃
)]]

where

H̃ := (In −H)2 = (nτ)2(AA> + nτIn)−2.

We notice that the expected value of traces above can be calculated by the quantities in (228) in
Mei and Montanari [2019]. We also claim that the calculations of the traces in the (228) are the
same for the random vectors on the spheres and the Gaussian random vectors, cf. Section C in
the Appendix of Mei and Montanari [2019], especially Lemma C.1, Proposition 7.2 and Lemma

C.7 there. So that ‖y −Aα̂‖22 has the same limit as that in Theorem 6 in Mei and Montanari
[2019]. �

D.2.3. Proof of Proposition C.3.3.

Proposition C.3.3. Let V,R be in Definitions C.3.1 and C.3.2. Then

lim
ψd→+∞

V (ψd, ψp, λ, ρ, σ) = R(ψp, λ, ρ, σ).

Proof. In this proof we let → denote the convergence when ψd → +∞. We recall all the notations
in Definition C.3.1 and C.3.2. We notice that |χ| ≤ |ν1| · |ν2| ≤ 1/λ̄2 is always bounded when
ψd → +∞. From (C.6),

(D.2)

ν1(−z̄) = ψ1 + χ+
%2χ

1− %2χ
,

ν2(−z̄) = ψ2 + χ+
%2χ

1− %2χ
.

The quantities ν1, ν2 are purely imaginary with positive imaginary part, so that χ is a negative
real. In fact,

ν1 − ν2 = (ψ1 − ψ2)/(−z̄) =
ψ1 − ψ2

(ψ1ψ2λ)1/2
µ∗i

is purely imaginary. We can specify the real and the imaginary parts of ν1, ν2,

ν1 = a+ (b+ c)i, ν2 = a+ bi, c =
ψ1 − ψ2

(ψ1ψ2λ)1/2
µ∗, χ = (a2 − b2 − bc) + (2ab+ ac)i.

From the fact that L ,Q,A are real numbers, we deduce that χ is real number. So that a(2b+c) = 0.
From the fact that ν1, ν2 ∈ C+, we have 2b+ c > 0 so that a = 0. This shows that ν1, ν2 are purely



21

imaginary numbers and χ < 0. Next, from (D.2), we have

χ(−ψ1ψ2λ) =

(
ψ1 + χ+

%2χ

1− %2χ

)(
ψ2 + χ+

%2χ

1− %2χ

)
,

=⇒ ψ1 =
−
(
χ+ %2χ

1−%2χ

)(
ψ2 + χ+ %2χ

1−%2χ

)
ψ2 + χ+ %2χ

1−%2χ + χψ2λ
.

When ψ1 → +∞ and % 6= 0 and ψ2 6= 0 fixed and χ is bounded, negative, we have

ψ2 + χ+
%2χ

1− %2χ
+ χψ2λ→ 0,

=⇒ χ2 +

(
ψ2 − 1

1 + ψ2λ
− %−2

)
χ− ψ2

1 + ψ2λ
%−2 → 0,

=⇒ χ→ χ :=

(
%−2 − ψ2−1

1+ψ2λ

)
−
√(

%−2 − ψ2−1

1+ψ2λ

)2

+ 4 ψ2

1+ψ2λ
%−2

2
.

When % = 0, we define χ := − ψ2

1+ψ2λ
and we have χ→ χ still holds.

The quantities have limits

Q → Q := ψ−1
2 (−χψ2λ) = −χλ,

L → L :=
(
−χλ

) [ ρ

1 + ρ

1

1− χ%2
+

1

1 + ρ

]
,

A1 → A1 :=
ρ

1 + ρ

[
−χ2

(
χ%4 − χ%2 + ψ2%

2 + %2 − χψ2%
4 + 1

)]
+

1

1 + ρ

[
χ2
(
χ%2 − 1

) (
χ2%4 − 2χ%2 + %2 + 1

)]
,

A0/ψ1 → A∗ := (ψ2 − 1)χ3%6 + (1− 3ψ2)χ2%4 + 3ψ2χ%
2 − ψ2.

So that

V = (L − ψ1λA )/Q2 → R = (L − λA1/A∗)/Q
2
.

Furthermore, by simple algebra, we have that when % = 0, (L − λA1/A∗)/Q
2

= 1. �

D.3. Proof of Theorem C.4.1.

Theorem C.4.1. Let t ∈ R. Under model (5), Assumption 1, 2, 3 and 4, Definition 1 and a
further assumption that Σ′p(0) = O(1/p), we have

(C.7) sup
u0∈Sp

∣∣∣∣PX,W ,ε,G|u0

(
ζL(u0)

‖y −Aα̂‖2
≤ t
)
− Φ(t)

∣∣∣∣→ 0

for some Sp ⊂ Sp−1(1) satisfying |Sp|/|Sp−1(1)| ≥ 1− log(p)/p→ 1.

D.3.1. Proof of Theorem C.4.1.

Proof. Let ζ be as in Definition C.2.1. Provided with Propositions C.4.1 and C.4.2, we will show
that, for a large proportion of u0 ∈ Sp−1, given u0,

(i) ζ(u0)

(Var0[ζ(u0)])1/2
d→ N(0, 1).

(ii)
‖y−Aα̂‖2

(Var0[ζ(u0)])1/2
P→ 1.

(iii) ζ(u0)−ζL(u0)
‖y−Aα̂‖2

P→ 0.
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The above convergence are uniform over u0 ∈ Sp, where Sp is a large subset of Sp−1(1). So by
Slutsky’s Theorem we have our proposition.

We specify Sp as follows. Let vn = 1n − (H11, H22, · · · , Hnn)>, r := y − Aα̂ and q0 :=
trace(TNL(u0)) = trace

[
(In −H) diag(G′u0)

]
= v>nG

′u0. Notice that (iii) in Proposition C.4.1
and Proposition C.4.2 provide the existence of a constant c9 > 0 independent of n, p, d such that

max
(
Eu0,X,W ,G,ε

[
ε20
]
,Eu0,X,W ,G,ε

[
q2
0/ ‖r‖22 IΩ3

])
≤ c9/p

We specify the large volume index set Sp ⊂ Sp−1(1) as

Sp :=

{
u0 ∈ Sp−1 : max

(
EX,W ,ε,G|u0

[
ε20
]
,EX,W ,ε,G|u0

[
q2
0/ ‖r‖22 IΩ3

])
≤ 2c9

log(p)

}
.

Since

Pu0
(Scp) = Pu0

(
EX,W ,ε,G|u0

[
ε20
]
≥ 2c9

log(p)
or EX,W ,ε,G|u0

[
q2
0/ ‖r‖22 IΩ3

]
≥ 2c9

log(p)

)

≤
Eu0,X,W ,ε,G

[
ε20
]

+ Eu0,X,W ,ε,G

[
q2
0/ ‖r‖22 IΩ3

]
2c9

log(p) ≤ log(p)/p,

the relative volume |Sp|/|Sp−1(1)| ≥ 1− log(p)/p→ 1 as p→ +∞.
We notice that (i) can be directly obtained from Proposition C.4.1 (i), by noticing that

(Xu0)>E0 [r] / ‖E0 [r]‖2 ∼ N(0, 1).
For (iii), we notice that for any ε > 0,

sup
u0∈Sp

PX,W ,ε,G|u0

(∣∣∣∣ζ(u0)− ζL(u0)

‖y −Aα̂‖2

∣∣∣∣ > ε

)
= sup
u0∈Sp

PX,W ,ε,G|u0

(∣∣∣∣ q0

‖r‖2

∣∣∣∣ > ε

)
≤ sup
u0∈Sp

PX,W ,ε,G|u0

(∣∣∣∣ q0

‖r‖2

∣∣∣∣ IΩ3
> ε

)
+ PX,W ,ε,G(IcΩ3

)

≤ 2c9
log(p)ε2

+ o(− exp(−min(c6, c11)n))

= o(1).

For (ii), we first recall Proposition C.4.1 (ii). Let ε > 0 be a fixed number. From the definition
of Sp combined with Chebyshev’s inequality, we can see that for all ε̄ > 0,

sup
u0∈Sp

PX,W ,ε,G|u0
(|ε0| > ε̄) ≤ 2c9

ε̄2 log(p)
.

Let u0 ∈ Sp. Letting r = Aα̂− y, V0 := Var0 [ζ(u0)] and U0 :=
∣∣∣‖r‖2 /V 1/2

0 − 1
∣∣∣, we have that if

ε0 ≤ 1
2 ,

E0 [U0] ≤
(

1 +
√

2
)
ε0/(1− 2ε20)

1/2
+ ≤ (2 +

√
2)ε0.

Now let us focus on ε̄ < 1/2. We let Ω0(ε̄) :=
{
E0 [U0] < (2 +

√
2)ε̄
}
. Then

PX,W ,ε,G|u0
(Ω0(ε̄)) = PX,W ,ε,G|u0

(
E0 [U0] < (2 +

√
2)ε̄
)
≥ PX,W ,ε,G|u0

(|ε0| ≤ ε̄) ≥ 1− 2c9
ε̄2 log(p)

.
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Then, letting I(·) := I{·} be the indicator function, we have

PX,W ,ε,G|u0
(U0 > ε) := EX,W ,ε,G|u0

[I(U0 > ε)]

= EX,W ,ε,G|u0

[
E0 [I(U0 > ε)] IΩ0(ε̄)

]
+ EX,W ,ε,G|u0

[
E0 [I(U0 > ε)] IΩc0(ε̄)

]
≤ EX,W ,ε,G|u0

[
E0 [U0]

ε
IΩ0(ε̄)

]
+ PX,W ,ε,G|u0

(Ωc0(ε̄))

≤
(

2 +
√

2
)
ε̄/ε+

2c9
ε̄2 log(p)

.

Choosing ε̄ := min
(

1
log log(p) ,

1
2

)
, we have that, for all ε > 0,

lim
p→+∞

sup
u0∈Sp

PX,W ,ε,G|u0
(U0 > ε) = 0.

Thus we have (ii). �

D.3.2. Proof of Proposition C.4.1.

Proposition C.4.1. Let

(i) u0 ∼ Unif (Sp−1(1)) independent with X,W , G, ε.
(ii) X0 := Xu0.

(iii) ζ(u0) := u>0 (ζ(ej))
j∈[p]

where ζ(ej) is defined in Definition C.2.1.
(iv) r = y −Aα̂.
(v) ε20 := E0

[
‖∇X0

r‖2F
]
/
(
E0

[
‖r‖22

]
+ E0

[
‖∇X0

r‖2F
])
.

Then

(i) E0

[(
ζ(u0)

(Var0ζ(u0))1/2
− X>0 E0[r]
‖E0[r]‖2

)2
]
≤ 6ε20.

(ii) E0

[∣∣∣ ‖r‖2
(Var0[ζ(u0)])1/2

− 1
∣∣∣] ≤ (1 +

√
2
)
ε0/(1− 2ε20)

1/2
+ .

(iii) Eu0,X,W ,ε,G

[
ε20
]

= O(1/p).

Proof. (i) The proof is the same as that of Proposition C.2.5 (i).
(ii) The proof is the same as that of Proposition C.2.5 (ii).
(iii) For a general vector u0 satisfying ‖u0‖2 = 1, the propositions discussed before for canonical

basis ej can be updated as follows.
Step 1. We show that Proposition C.2.2 (iii) and (iv) can be replaced with

pEu0
‖T 0(u0) + T L(u0) + TNL(u0)‖2F ≤ 2c21L

2n‖α̂‖22 + 2‖f ′‖2F .
and

‖T 1(u0)‖2F ≤ L2c21/(4nτ) · ‖y −Aα̂‖22.
We will use the fact that Eu0

u0u
>
0 = (1/p)Ip and ‖u0‖2 = 1.

pEu0
‖T 0(u0) + T L(u0) + TNL(u0)‖2F ≤ pEu0

‖In −H‖2op

∥∥∥(σ′(XW>) diag(α̂)W − f ′
)
u0

∥∥∥2

2

≤ pEu0

∥∥∥(σ′(XW>) diag(α̂)W − f ′
)
u0

∥∥∥2

2

=
∥∥∥σ′(XW>) diag(α̂)W − f ′

∥∥∥2

F

≤ 2
∥∥∥σ′(XW>) diag(α̂)W

∥∥∥2

F
+ 2

∥∥f ′∥∥2

F
.

≤ 2 ‖W ‖2op

∥∥∥σ′(XW>) diag(α̂)
∥∥∥2

F
+ 2

∥∥f ′∥∥2

F

≤ 2c21L
2n ‖α̂‖22 + 2

∥∥f ′∥∥2

F
.
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We used ‖In −H‖op ≤ 1 in the second inequality in the above display. In the equality

above, We used the fact that Eu0
u0u

>
0 = (1/p)Ip and that

Eu0

∥∥∥(σ′(XW>) diag(α̂)W − f ′
)
u0

∥∥∥2

2

= Eu0
trace

((
σ′(XW>) diag(α̂)W − f ′

)
u0u

>
0

(
σ′(XW>) diag(α̂)W − f ′

)>)
= trace

((
σ′(XW>) diag(α̂)W − f ′

)
Eu0

[
u0u

>
0

] (
σ′(XW>) diag(α̂)W − f ′

)>)
= (1/p)

∥∥∥σ′(XW>) diag(α̂)W − f ′
∥∥∥2

F
.

Noticing that ‖u0‖2 = 1, we have

‖T 1(u0)‖2F ≤ ‖A(nτId +A>A)−1‖2op · ‖ diag(Wu0)σ′(WX>) diag(y −Aα̂)‖2F
≤ 1/(4nτ) · L2 · ‖(Wu0)(y −Aα̂)>‖2F
= L2/(4nτ) · ‖Wu0‖22‖y −Aα̂‖22
≤ L2/(4nτ) · ‖W ‖2op‖y −Aα̂‖22.
≤ L2c21/(4nτ) · ‖y −Aα̂‖22 .

Step 2. By the proof of Proposition C.2.3, there exists a class of large events
{Ω(u0)}u0∈Sp−1(1) such that EX,ε|W ,G,u0

(IΩ(u0)) ≥ 1− o(exp(−c12n)) for some constant
c12 > 0 independent of u0 and that on Ω(u0),

E0 ‖y −Aα̂‖22 ≥ n · c2,n.

The starting point of the construction is as follows: Since the mapping ε 7→ E0 ‖y −Aα̂‖2
is 1-Lipschitz, by Theorem 5.2.2 in Vershynin [2018], for some universal constant c5 > 0
and for all t > 0, there exists an event Ω2(u0, t) such that:
(i) On Ω2(u0, t), E0 ‖y −Aα̂‖2 ≥ EεE0 ‖y −Aα̂‖2 −

√
nθεt

(ii) P(Ω2(u0, t)) ≥ 1− 2 exp(−c5nt2).
By the reasoning in the proof of Proposition C.2.3,

EεE0 ‖y −Aα̂‖2 −
√
nθεt ≥ θε

[
E0 ‖In −H‖F −

√
nt− 1

]
.

From Proposition C.2.4 and its proof,

E0 ‖In −H‖F /
√
n ≥ E0(1 + Fn/τ)−1 ≥ (1 +

[
2c21L

2E0 ‖X‖2F /n2 + 2ψd,n(σ(0))2
]
/τ)−1.

Since In = u0u
>
0 +Q0, u>0 = u>0 + u>0 Q0, u>0 Q0 = 0>n .

E0 ‖X‖2F = E0

∥∥X0u
>
0 +XQ0

∥∥2

F

= E0

[∥∥X0u
>
0

∥∥2

F

]
+ ‖XQ0‖2F + 2E0 trace

(
X0u

>
0 Q
>
0 X

>
)

= n+ ‖XQ0‖2F + 0 ≤ n+ ‖X‖2F .

So that we have

E0 ‖In −H‖F /
√
n ≥ (1 + F̄n/τ)−1

where F̄n is as given in Proposition C.2.4. Following the rest of the proof of Proposition
C.2.3, we will have a desired large event Ω(u0) for u0 ∈ Sp−1(1).
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We notice that, letting E := Eu0,X,W ,ε,G, we have

E
[
ε20
]

= E

[
E0

[
‖∇X0

r‖2F
]

E0 [‖r‖22] + E0 [‖∇X0
r‖2F ]

]

≤ E

[
E0

[
‖∇X0

r‖2F
]

E0 [‖r‖22] + E0 [‖∇X0r‖2F ]
IΩ(u0)

]
+ P (Ω(u0)c)

≤ E

[
E0

[
‖∇X0r‖2F

]
E0 [‖r‖22] + E0 [‖∇X0

r‖2F ]
IΩ(u0)

]
+ o(exp(−c12n))

≤ E

E0

[
2 ‖T 0(u0) + T L(u0) + TNL(u0)‖2F

]
E0 [‖r‖22] + E0 [‖∇X0r‖2F ]

IΩ(u0)


+ E

 E0

[
2 ‖T 1(u0)‖2F

]
E0 [‖r‖22] + E0 [‖∇X0

r‖2F ]
IΩ(u0)

+ o(exp(−c12n))

≤ (2/n)c−1
2,nE

[
‖T 0(u0) + T L(u0) + TNL(u0)‖2F

]
+ L2c21/(2nτ) + o(exp(−c12n))

≤ (2/n)c−1
2,n(1/p)

(
2c21L

2nE
[
‖α̂‖22

]
+ 2E

[∥∥f ′∥∥2

F

])
+ L2c21/(2nτ) + o(exp(−c12n))

= O(1/p).

The last two inequalities above are due to Step 1. The fact that E
[
‖α̂‖22

]
= O(1) is provided

in Proposition C.2.2. Assumption 1 and 3 provide us E
[∥∥f ′∥∥2

F

]
/n = E

[
‖β +∇G(x1)‖22

]
=

O(1).
�

D.3.3. Proof of Proposition C.4.2.

Proposition C.4.2. Let Ω be as in Proposition C.2.3. Let δi,j = 1 if i = j, 0 otherwise. Let

Ω3 := Ω ∩
{

maxi1,i2∈[n] |xTi1xi2/p− δi1,i2 | < δ
}

where δ is a fixed positive defined in Assumption 4.

Let u0 ∼ Unif (Sp−1(1)) be independent of X,W , ε, G. Under Assumptions 1, 2, 3 and 4 and a
further assumption that Σ′p(0) = O(1/p), we have that

(C.8) Eu0,X,W ,ε,G

( trace
(
(In −H) diag(G′u0)

)
‖y −Aα̂‖2

)2

IΩ3

 = O(1/p).

Proof. Let us first define

(i) vn = 1n − (H11, H22, · · · , Hnn)>.
(ii) q0 := trace(TNL(u0)) = trace

[
(In −H) diag(G′u0)

]
= v>nG

′u0.
(iii) r := y −Aα̂.
(iv) Ω be in Proposition C.2.3 such that

(i) Ω :=
{

1/n · ‖y −Aα̂‖22 ≥ c2,n
}
.

(ii) P(Ωc) ≤ o(exp(−c6n)) for some constant c6 > 0.
(v) Ω3 be such that (cf. Corollary 2.8.3 in Vershynin [2018])

(i)

Ω3 =

{
max

i1,i2∈[n]
|xTi1xi2/p− δi1,i2 | < δ

}
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(ii) P(Ω
c

3) ≤ o(exp(−c10n)) for some universal constant c10 > 0.
(vi) Ω3 := Ω ∩ Ω3.

We abbreviate E := Eu0,X,W ,G,ε. The order of ‖r‖2 is specified on event Ω so that

E
[
q2
0/ ‖r‖22 · IΩ3

]
≤ (1/n)c−1

2,nE
[
q2
0IΩ3

]
.

By some algebra,

E
[
q2
0IΩ3

]
= E

[(
trace

[
(In −H) diag(G′u0)

])2
IΩ3

]
= E

[(
v>nG

′u0

)2
IΩ3

]
= E

[
v>nEG

[
G′Eu0 [u0u

>
0 ]G′>

]
vnIΩ3

]
= (1/p)E

[
v>nEG

[
G′G′>

]
vnIΩ3

]
,

where we used Eu0

[
u0u

>
0

]
= (1/p)Ip. So it suffices to show that

E
[
v>nEG

[
G′G′>

]
vnIΩ3

]
= O(p).

Let M := EG
[
G′G′>

]
. From Proposition C.2.7, on Ω3, the (i1, i2)-th element of the above

matrix is

mi1,i2 = Σ′′p(x>i1xi2/p)(x
>
i1xi2/p)/p+ Σ′p(x

>
i1xi2/p).

We look at Taylor expansions around δi1,i2 , and do some arrangement as following: for i1, i2 ∈ [n]
and

∣∣x>i1xi2/p− δi1,i2 ∣∣ ≤ δ,
Σ′p(x

>
i1xi2/p) = Σ′p(δi1,i2) + Σ′′p(κi1,i2)(x>i1xi2/p− δi1,i2),

= Σ′p(δi1,i2) + Σ′′p(0)(x>i1xi2/p− δi1,i2)

+
(
Σ′′p(κi1,i2)− Σ′′p(0)

)
(x>i1xi2/p− δi1,i2)(1− δi1,i2)

+
(
Σ′′p(κi1,i2)− Σ′′p(0)

)
(x>i1xi2/p− δi1,i2)δi1,i2 ,

Σ′′p(x>i1xi2/p)(x
>
i1xi2/p)/p = Σ′′p(0)(x>i1xi2/p)/p+

(
Σ′′p(x>i1xi2/p)− Σ′′p(0)

)
(x>i1xi2/p)(1− δi1,i2)/p

+
(
Σ′′p(x>i1xi2/p)− Σ′′p(0)

)
(x>i1xi2/p)δi1,i2/p,

where κi1,i2 satisfies |κi1,i2 − δi1,i2 | ≤
∣∣x>i1xi2/p− δi1,i2∣∣. From this we have decomposition of

M := EG
[
G′G′>

]
into several matrices with small operator norm easy to calculate. With a slight

abuse of notations A,B,C,D,E,F ,G,H, we have

M = A+B +C +D +E + F +G+H,

where
A =

(
Σ′p(1)− Σ′p(0)

)
In,

B = Σ′p(0)1n1>n ,

C = Σ′′p(0)(XXT /p),

Di1,i2 =
(
Σ′′p(κi1,i2)− Σ′′p(0)

)
(x>i1xi2/p)δi1 6=i2 ,

Ei1,i2 =
[
Σ′′p(κi1,i2)x>i1xi2/p− Σ′′p(0)x>i1xi2/p− Σ′′p(κi1,i2)

]
δi1=i2 ,

F = Σ′′p(0)(XXT /p)/p,

Gi1,i2 =
(
Σ′′p(x>i1xi2/p)− Σ′′p(0)

)
(x>i1xi2/p)δi1 6=i2/p,

Hi1,i2 =
(
Σ′′p(x>i1xi2/p)− Σ′′p(0)

)
(x>i1xi2/p)δi1=i2/p.
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It suffices to show that q(N) := E
[
v>nNvnIΩ3

]
= O(p) for N being from A to H . We notice that

‖In −H‖op ≤ 1 implies |vn,i| ≤ 1 for all i ∈ [n]. Then we have

(i) q(A) = O(p) provided that Σ′p(1),Σ′p(0) = O(1).
(ii) q(B) = O(p) provided that Σ′p(0) = O(1/p).

(iii) q(C) = O(p) provided that E
[∥∥X/

√
p
∥∥

op

]
= O(1) and Σ′′p(0) = O(1).

(iv) q(E) = O(p) provided that supx∈[1−δ,1+δ] Σ′′p(x),Σ′′p(0) = O(1) .

(v) q(F ) = O(p) provided that Σ′′p(0) = O(1).
(vi) q(H) = O(p) provided that supx∈[1−δ,1+δ] Σ′′p(x),Σ′′p(0) = O(p).

We notice that the above are true by assumptions on Σp and X. For D and G, we notice the
following:

|q(D)| :=
∣∣E [v>nDvnIΩ3

]∣∣ ≤ E
[
|vn|>|D||vn|IΩ3

]
≤ 1>nE[|D|IΩ3

]1n,

where the absolute value operation is taken element-wise for the vector vn and matrix D. By the
Lipschitz assumption of Σ′′p around 0, for i1 6= i2,

E
[
|di1,i2 |IΩ3

]
≤ E

[∣∣(Σ′′p(κi1,i2)− Σ′′p(0)
)∣∣ ∣∣x>i1xi2/p∣∣ IΩ3

]
≤ L2 · E

[
(x>i1xi2/p)

2
]

= L2/p.

This implies |q(D)| = O(p). For |q(G)|, we notice that

|q(G)| :=
∣∣E [v>nGvnIΩ3

]∣∣ ≤ E
[
|vn|> |G| |vn| IΩ3

]
≤ 1>nE

[
|G|IΩ3

]
1n,

where the absolute value operation is taken element-wise for the vector vn and matrix G. By the
Lipschitz assumption of Σ′′p around 0, for i1 6= i2,

E
[
|gi1,i2 |IΩ3

]
≤ L2E

[
(x>i1xi2/p)

2
]
/p ≤ L2/p

2.

So that |q(G)| = O(1). Combining the above we have our proposition. �
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