
A Appendix

A.1 Magnitude methods

Magnitude Method Accuracy
Random Magnitude 97.3
Constant Magnitude 97.2
Linearly Increasing Magnitude 97.2
Random Magnitude with Increasing Upper Bound 97.3

Table 6: Results for different ways of setting the global magnitude parameter M . All magnitude
methods were run on CIFAR-10 with Wide-ResNet-28-10 for 200 epochs. The reported accuracy
is the average of 10 runs on the validation set for the best hyperparamter setting for that magnitude
method. All magnitude methods searched over had 48 different hyperparameter settings tried.

Here we study four different methods for parameterizing the distortion parameter M . Four different
methods were explores: Random Magnitude, Constant Magnitude, Linearly Increasing Magnitude
and Random Magnitude with Increasing Upper Bound. The Random Magnitude method uniformly
randomly samples the distortion magnitude between two values. Constant Magnitude sets the distor-
tion magnitude to a constant number during the course of training. Linearly Increasing Magnitude
interpolates the distortion magnitude during training between two values (going from low to high).
Random Magnitude with Increasing Upper Bound is similar to Random Magnitude, but the upper
bound is increased linearly during training. In preliminary experiments, we found that all strategies
worked equally well. Thus, we selected a constant magnitude because this strategy includes only a
single hyper-parameter, and we employ this for the rest of the work. The results from our experiment
on trying the different magnitude strategies can be see in Table 6.

A.2 Optimizing individual transformation magnitudes

Figure 5: Performance when magnitude is changed for one image transformation. This plot
uses a shared magnitude for all image transformations and then changes the magnitude of only one
operation while keeping the others fixed. Two different architectures were tried (WRN-28-2 and
WRN-28-10) and two different image transformations were changed (Rotate and TranslateX), which
results in the 4 lines shown. Twenty different magnitudes were tried for the selected transformation
([0�19]). The squares indicate the optimal magnitude found and the diamonds indicate the magnitude
used for all other transformations (4 for WRN-28-2 and 5 for WRN-28-10).

13



Figure 5 demonstrates that changing the magnitude for one transformation, when keeping the rest
fixed results in a very minor accuracy change. This suggests that tying all magnitudes together into
a single value M is not greatly hurting the model performance. Across all for settings in Figure 5
the difference in accuracy of the tied magnitude vs the optimal one found was 0.19% 0.18% for
the rotation operation experiments and 0.07% 0.05% for the TranslateX experiments. Changing
one transformation does not have a huge impact on performance, which leads us to think that tying
all magnitude parameters together is a sensible approach that drastically reduces the size of the
search-space.

A.3 Learning the probabilities for selecting image transformations using gradients

baseline AA RA + 1st

Reduced CIFAR-10
Wide-ResNet-28-2 82.0 85.6 85.3 85.5
Wide-ResNet-28-10 83.5 87.7 86.8 87.4
CIFAR-10
Wide-ResNet-28-2 94.9 95.9 95.8 96.1
Wide-ResNet-28-10 96.1 97.4 97.3 97.4

Table 7: Differentiable optimization for augmentation can improve RandAugment. Test accu-
racy (%) from differentiable RandAugment for reduced (4K examples) and full CIFAR-10. The
1st-order approximation (1st) is based on density matching (Section A.3). Models trained on reduced
CIFAR-10 were trained for 500 epochs. CIFAR-10 models trained using the same hyperparameters
as previous. Each result is averaged over 10 independent runs.

RandAugment selects all image transformations with equal probability. This opens up the question of
whether learning K probabilities may improve performance further. Most of the image transforma-
tions (except posterize, equalize, and autoContrast) are differentiable, which permits back-propagation
to learn the K probabilities [22]. Let us denote ↵ij as the learned probability of selecting image
transformation i for operation j. For K=14 image transformations and N=2 operations, ↵ij consti-
tutes 28 parameters. We initialize all weights such that each transformation is equal probability (i.e.
RandAugment), and update these parameters based on how well a model classifies a held out set of
validation images distorted by ↵ij . This approach was inspired by density matching [17], but instead
uses a differentiable approach in lieu of Bayesian optimization. We label this method as a 1st-order
density matching approximation.

To test the efficacy of density matching to learn the probabilities of each transformation, we trained
Wide-ResNet-28-2 and Wide-ResNet-28-10 on CIFAR-10 and the reduced form of CIFAR-10
containing 4K training samples. Table 7 indicates that learning the probabilities ↵ij slightly improves
performance on reduced and full CIFAR-10 (RA vs 1st). The 1st-order method improves accuracy
by more than 3.0% for both models on reduced CIFAR-10 compared to the baseline of flips and
pad-and-crop. On CIFAR-10, the 1st-order method improves accuracy by 0.9% on the smaller model
and 1.2% on the larger model compared to the baseline. We further see that the 1st-order method
always performs better than RandAugment, with the largest improvement on Wide-ResNet-28-10
trained on reduced CIFAR-10 (87.4% vs. 86.8%). On CIFAR-10, the 1st-order method outperforms
AutoAugment on Wide-ResNet-28-2 (96.1% vs. 95.9%) and matches AutoAugment on Wide-
ResNet-28-10. Although the density matching approach is promising, this method can be expensive
as one must apply all K transformations N times to each image independently. Hence, because
the computational demand of KN transformations is prohibitive for large images, we reserve this
for future exploration. In summary, we take these results to indicate that learning the probabilities
through density matching may improve the performance on small-scale tasks and reserve explorations
to larger-scale tasks for the future.

A.4 Experimental Details

A.4.1 CIFAR

The Wide-ResNet models were trained for 200 epochs with a learning rate of 0.1, batch size of 128,
weight decay of 5e-4, and cosine learning rate decay. Shake-Shake [8] model was trained for 1800
epochs with a learning rate of 0.01, batch size of 128, weight decay of 1e-3, and cosine learning rate

14



decay. ShakeDrop [38] models were trained for 1800 epochs with a learning rate of 0.05, batch size
of 64 (as 128 did not fit on a single GPU), weight decay of 5e-5, and cosine learning rate decay.

On CIFAR-10, we used 3 for the number of operations applied (N ) and tried 4, 5, 7, 9, and 11 for
magnitude. For Wide-ResNet-2 and Wide-ResNet-10, we find that the optimal magnitude is 4 and
5, respectively. For Shake-Shake (26 2x96d) and PyramidNet + ShakeDrop models, the optimal
magnitude was 9 and 7, respectively.

A.4.2 SVHN

For both SVHN datasets, we applied cutout after RandAugment as was done for AutoAugment and
related methods. On core SVHN, for both Wide-ResNet-28-2 and Wide-ResNet-28-10, we used a
learning rate of 5e-3, weight decay of 5e-3, and cosine learning rate decay for 200 epochs. We set
N = 3 and tried 5, 7, 9, and 11 for magnitude. For both Wide-ResNet-28-2 and Wide-ResNet-28-10,
we find the optimal magnitude to be 9.

On full SVHN, for both Wide-ResNet-28-2 and Wide-ResNet-28-10, we used a learning rate of 5e-3,
weight decay of 1e-3, and cosine learning rate decay for 160 epochs. We set N = 3 and tried 5, 7, 9,
and 11 for magnitude. For Wide-ResNet-28-2, we find the optimal magnitude to be 5; whereas for
Wide-ResNet-28-10, we find the optimal magnitude to be 7.

A.4.3 ImageNet

The ResNet models were trained for 180 epochs using the standard ResNet-50 training hyperparame-
ters. The image size was 224 by 224, the weight decay was 0.0001 and the momentum optimizer with
a momentum parameter of 0.9 was used. The learning rate was 0.1, which gets scaled by the batch
size divided by 256. A global batch size of 4096 was used, split across 32 workers. For ResNet-50
the optimal distortion magnitude was 9 and (N = 2). The distortion magnitudes we tried were 5, 7,
9, 11, 13, 15 and the values of N that were tried were 1, 2 and 3.

The EfficientNet experiments used the default hyper parameters and training schedule, which can be
found in [34]. We trained for 350 epochs, used a batch size of 4096 split across 256 replicas. The
learning rate was 0.016, which gets scaled by the batch size divided by 256. We used the RMSProp
optimizer with a momentum rate of 0.9, epsilon of 0.001 and a decay of 0.9. The weight decay used
was 1e-5. For EfficientNet B5 the image size was 456 by 456 and for EfficientNet B7 it was 600 by
600. For EfficientNet B5 we tried N = 2 and N = 3 and found them to perform about the same. We
found the optimal distortion magnitude for B5 to be 17. The different magnitudes we tried were 8,
11, 14, 17, 21. For EfficientNet B7 we used N = 2 and found the optimal distortion magnitude to be
28. The magnitudes tried were 17, 25, 28, 31.

The default augmentation of horizontal flipping and random crops were used on ImageNet, applied
before RandAugment. The standard training and validation splits were employed for training and
evaluation.

A.4.4 COCO

We applied horizontal flipping and scale jitters in addition to RandAugment. We used the same list of
data augmentation transformations as we did in all other classification tasks. Geometric operations
transformed the bounding boxes the way it was defined in Ref. [45]. We used a learning rate of 0.08
and a weight decay of 1e�4. The focal loss parameters are set to be ↵ = 0.25 and � = 1.5. We set
N = 1 and tried distortion magnitudes between 4 and 9. We found the optimal distortion magnitude
for ResNet-101 and ResNet-200 to be 5 and 6, respectively.

15


