Supplementary Material of A Matrix Chernoff Bound for Markov Chains and Its Application to Co-occurrence Matrices

A Convergence Rate of Co-occurrence Matrices

A. 1 Proof of Claim 1

Claim 1 (Properties of \boldsymbol{Q}). If \boldsymbol{P} is a regular Markov chain, then \boldsymbol{Q} satisfies:

1. \boldsymbol{Q} is a regular Markov chain with stationary distribution $\sigma_{\left(u_{0}, \cdots, u_{T}\right)}=\pi_{u_{0}} \boldsymbol{P}_{u_{0}, u_{1}} \cdots \boldsymbol{P}_{u_{T-1}, u_{T}}$;
2. The sequence $\left(X_{1}, \cdots X_{L-T}\right)$ is a random walk on \boldsymbol{Q} starting from a distribution $\boldsymbol{\rho}$ such that $\rho_{\left(u_{0}, \cdots, u_{T}\right)}=\phi_{u_{0}} \boldsymbol{P}_{u_{0}, u_{1}} \cdots \boldsymbol{P}_{u_{T-1}, u_{T}}$, and $\|\boldsymbol{\rho}\|_{\boldsymbol{\sigma}}=\|\boldsymbol{\phi}\|_{\boldsymbol{\pi}}$.
3. $\forall \delta>0$, the δ-mixing time of \boldsymbol{P} and \boldsymbol{Q} satisfies $\tau(\boldsymbol{Q})<\tau(\boldsymbol{P})+T$;
4. $\exists \boldsymbol{P}$ with $\lambda(\boldsymbol{P})<1$ s.t. the induced \boldsymbol{Q} has $\lambda(\boldsymbol{Q})=1$, i.e. \boldsymbol{Q} may have zero spectral gap.

Proof. We prove the fours parts of this Claim one by one.
Part 1 To prove \boldsymbol{Q} is regular, it is sufficient to show that $\exists N_{1}, \forall n_{1}>N_{1},\left(v_{0}, \cdots, v_{T}\right)$ can reach $\left(u_{0}, \cdots, u_{T}\right)$ at n_{1} steps. We know \boldsymbol{P} is a regular Markov chain, so there exists $N_{2} \geq T$ s.t., for any $n_{2} \geq N_{2}, v_{T}$ can reach u_{0} at exact n_{2} step, i,e., there is a n_{2}-step walk s.t. $\left(v_{T}, w_{1}, \cdots, w_{n_{2}-1}, u_{0}\right)$ on \boldsymbol{P}. This induces an n_{2}-step walk from $\left(v_{0}, \cdots, v_{T}\right)$ to $\left(w_{n_{2}-T+1}, \cdots, w_{n_{2}-1}, u_{0}\right)$. Take further T step, we can reach $\left(u_{0}, \cdots, u_{T}\right)$, so we construct a $n_{1}=n_{2}+T$ step walk from $\left(v_{0}, \cdots, v_{T}\right)$ to $\left(u_{0}, \cdots u_{T}\right)$. Since this is true for any $n_{2} \geq N_{2}$, we then claim that any state can be reached from any other state in any number of steps greater than or equal to a number $N_{1}=N_{2}+T$. Next to verify $\boldsymbol{\sigma}$ such that $\sigma_{\left(u_{0}, \cdots, u_{T}\right)}=\pi_{u_{0}} \boldsymbol{P}_{u_{0}, u_{1}} \cdots \boldsymbol{P}_{u_{T-1}, u_{T}}$ is the stationary distribution of Markov chain \boldsymbol{Q},

$$
\begin{aligned}
& \sum_{\left(u_{0}, \cdots, u_{T}\right) \in \mathcal{S}} \sigma_{\left(u_{0}, \cdots, u_{T}\right)} \boldsymbol{Q}_{\left(u_{0}, \cdots, u_{T}\right),\left(w_{0}, \cdots, w_{T}\right)} \\
= & \sum_{u_{0}:\left(u_{0}, w_{0}, \cdots, w_{T-1}\right) \in \mathcal{S}} \pi_{u_{0}} \boldsymbol{P}_{u_{0}, w_{0}} \boldsymbol{P}_{w_{0}, w_{1}}, \cdots, \boldsymbol{P}_{w_{T-2}, w_{T-1}} \boldsymbol{P}_{w_{T-1}, w_{T}} \\
= & \left(\sum_{u_{0}} \pi_{u_{0}} \boldsymbol{P}_{u_{0}, w_{0}}\right) \boldsymbol{P}_{w_{0}, w_{1}}, \cdots, \boldsymbol{P}_{w_{T-2}, w_{T-1}} \boldsymbol{P}_{w_{T-1}, w_{T}} \\
= & \pi_{w_{0}} \boldsymbol{P}_{w_{0}, w_{1}}, \cdots, \boldsymbol{P}_{w_{T-2}, w_{T-1}} \boldsymbol{P}_{w_{T-1}, w_{T}}=\sigma_{w_{0}, \cdots, w_{T}} .
\end{aligned}
$$

Part 2 Recall $\left(v_{1}, \cdots, v_{L}\right)$ is a random walk on \boldsymbol{P} starting from distribution ϕ, so the probability we observe $X_{1}=\left(v_{1}, \cdots, v_{T+1}\right)$ is $\phi_{v_{1}} \boldsymbol{P}_{v_{1}, v_{2}} \cdots \boldsymbol{P}_{v_{T}, v_{T}}=\rho_{\left(v_{1}, \cdots, v_{T+1}\right)}$, i.e., X_{1} is sampled from the distribution ρ. Then we study the transition probability from $X_{i}=\left(v_{i}, \cdots, v_{i+T}\right)$ to $X_{i+1}=\left(v_{i+1}, \cdots, v_{i+T+1}\right)$, which is $\boldsymbol{P}_{v_{i+T}, v_{i+T+1}}=\boldsymbol{Q}_{X_{i}, X_{i+1}}$. Consequently, we can claim $\left(X_{i}, \cdots, X_{L-T}\right)$ is a random walk on \boldsymbol{Q}. Moreover,

$$
\begin{aligned}
\|\boldsymbol{\rho}\|_{\boldsymbol{\sigma}}^{2} & =\sum_{\left(u_{0}, \cdots, u_{T}\right) \in \mathcal{S}} \frac{\rho_{\left(u_{0}, \cdots, u_{T}\right)}^{2}}{\sigma_{\left(u_{0}, \cdots, u_{T}\right)}^{2}}=\sum_{\left(u_{0}, \cdots, u_{T}\right) \in \mathcal{S}} \frac{\left(\phi_{u_{0}} \boldsymbol{P}_{u_{0}, u_{1}} \cdots \boldsymbol{P}_{u_{T-1}, u_{T}}\right)^{2}}{\pi_{u_{0}} \boldsymbol{P}_{u_{0}, u_{1}} \cdots \boldsymbol{P}_{u_{T-1}, u_{T}}} \\
& =\sum_{u_{0}} \frac{\phi_{u_{0}}^{2}}{\pi_{u_{0}}} \sum_{\left(u_{0}, u_{1}, \cdots, u_{T}\right) \in \mathcal{S}} \boldsymbol{P}_{u_{0}, u_{1}} \cdots \boldsymbol{P}_{u_{T-1}, u_{T}}=\sum_{u_{0}} \frac{\phi_{u_{0}}^{2}}{\pi_{u_{0}}}=\|\boldsymbol{\phi}\|_{\boldsymbol{\pi}}^{2},
\end{aligned}
$$

which implies $\|\rho\|_{\sigma}=\|\boldsymbol{\phi}\|_{\boldsymbol{\pi}}$.
Part 3 For any distribution \boldsymbol{y} on \mathcal{S}, define $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $x_{i}=\sum_{\left(v_{1}, \cdots, v_{T-1}, i\right) \in \mathcal{S}} y_{v_{1}, \cdots, v_{T-1}, i}$. Easy to see \boldsymbol{x} is a probability vector, since \boldsymbol{x} is the marginal probability of \boldsymbol{y}. For convenience, we
assume for a moment the $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\sigma}, \boldsymbol{\pi}$ are row vectors. We can see that:

$$
\begin{aligned}
\left\|\boldsymbol{y} \boldsymbol{Q}^{\tau(\boldsymbol{P})+T-1}-\boldsymbol{\sigma}\right\|_{T V} & =\frac{1}{2}\left\|\boldsymbol{y} \boldsymbol{Q}^{\tau(\boldsymbol{P})+T-1}-\boldsymbol{\sigma}\right\|_{1} \\
& =\frac{1}{2} \sum_{\left(v_{1}, \cdots, v_{T}\right) \in \mathcal{S}}\left|\left(\boldsymbol{y} \boldsymbol{Q}^{\tau(\boldsymbol{P})+T-1}-\boldsymbol{\sigma}\right)_{v_{1}, \cdots, v_{T}}\right| \\
& =\frac{1}{2} \sum_{\left(v_{1}, \cdots, v_{T}\right) \in \mathcal{S}}\left|\left(\boldsymbol{x} \boldsymbol{P}^{\tau(\boldsymbol{P})}\right)_{v_{1}} \boldsymbol{P}_{v_{1}, v_{2}} \cdots \boldsymbol{P}_{v_{T-1}, v_{T}}-\boldsymbol{\pi}_{v_{1}} \boldsymbol{P}_{v_{1}, v_{2}} \cdots \boldsymbol{P}_{v_{T-1}, v_{T}}\right| \\
& =\frac{1}{2} \sum_{\left(v_{1}, \cdots, v_{T}\right) \in \mathcal{S}}\left|\left(\boldsymbol{x} \boldsymbol{P}^{\tau(\boldsymbol{P})}\right)_{v_{1}}-\pi_{v_{1}}\right| \boldsymbol{P}_{v_{1}, v_{2}} \cdots \boldsymbol{P}_{v_{T-1}, v_{T}} \\
& =\frac{1}{2} \sum_{v_{1}}\left|\left(\boldsymbol{x} \boldsymbol{P}^{\tau(\boldsymbol{P})}\right)_{v_{1}}-\pi_{v_{1}}\right| \sum_{\left(v_{1}, \cdots, v_{T}\right) \in \mathcal{S}} \boldsymbol{P}_{v_{1}, v_{2}} \cdots \boldsymbol{P}_{v_{T-1}, v_{T}} \\
& =\frac{1}{2} \sum_{v_{1}}\left|\left(\boldsymbol{x} \boldsymbol{P}^{\tau(\boldsymbol{P})}\right)_{v_{1}}-\pi_{v_{1}}\right|=\frac{1}{2}\left\|\boldsymbol{x} \boldsymbol{P}^{\tau(\boldsymbol{P})}-\boldsymbol{\pi}\right\|_{1}=\left\|\boldsymbol{x} \boldsymbol{P}^{\tau(\boldsymbol{P})}-\boldsymbol{\pi}\right\|_{T V} \leq \delta .
\end{aligned}
$$

which indicates $\tau(\boldsymbol{Q}) \leq \tau(\boldsymbol{P})+T-1<\tau(\boldsymbol{P})+T$.
Part 4 This is an example showing that $\lambda(\boldsymbol{Q})$ cannot be bounded by $\lambda(\boldsymbol{P})$ - even though \boldsymbol{P} has $\lambda(\boldsymbol{P})<1$, the induced \boldsymbol{Q} may have $\lambda(\boldsymbol{Q})=1$. We consider random walk on the unweighted undirected graph \AA

$$
\boldsymbol{P}=\left[\begin{array}{rrrr}
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
1 / 2 & 0 & 1 / 2 & 0 \\
1 / 3 & 1 / 3 & 0 & 1 / 3 \\
1 / 2 & 0 & 1 / 2 & 0
\end{array}\right]
$$

with stationary distribution $\boldsymbol{\pi}=\left[\begin{array}{llll}0.3 & 0.2 & 0.3 & 0.2\end{array}\right]^{\top}$ and $\lambda(\boldsymbol{P})=\frac{2}{3}$. When $T=1$, the induced Markov chain \boldsymbol{Q} has stationary distribution $\sigma_{u, v}=\pi_{u} \boldsymbol{P}_{u, v}=\frac{d_{u}}{2 m} \frac{1}{d_{u}}=\frac{1}{2 m}$ where $m=5$ is the number of edges in the graph. Construct $\boldsymbol{y} \in \mathbb{R}^{|\mathcal{S}|}$ such that

$$
y_{(u, v)}= \begin{cases}1 & (u, v)=(0,1) \\ -1 & (u, v)=(0,3) \\ 0 & \text { otherwise }\end{cases}
$$

The constructed vector \boldsymbol{y} has norm

$$
\|\boldsymbol{y}\|_{\boldsymbol{\sigma}}=\sqrt{\langle\boldsymbol{y}, \boldsymbol{y}\rangle_{\boldsymbol{\sigma}}}=\sqrt{\sum_{(u, v) \in \mathcal{S}} \frac{y_{(u, v)} y_{(u, v)}}{\sigma_{(u, v)}}}=\sqrt{\frac{y_{(0,1)} y_{(0,1)}}{\sigma_{(0,1)}}+\frac{y_{(0,3)} y_{(0,3)}}{\sigma_{(0,3)}}}=2 \sqrt{m}
$$

And it is easy to check $\boldsymbol{y} \perp \boldsymbol{\sigma}$, since $\langle\boldsymbol{y}, \boldsymbol{\sigma}\rangle_{\boldsymbol{\sigma}}=\sum_{(u, v) \in \mathcal{S}} \frac{\sigma_{(u, v)} y_{(u, v)}}{\sigma_{(u, v)}}=y_{(0,1)}+y_{(0,3)}=0$. Let $\boldsymbol{x}=\left(\boldsymbol{y}^{*} \boldsymbol{Q}\right)^{*}$, we have for $(u, v) \in \mathcal{S}$:

$$
\boldsymbol{x}_{(u, v)}= \begin{cases}1 & (u, v)=(1,2) \\ -1 & (u, v)=(3,2) \\ 0 & \text { otherwise }\end{cases}
$$

This vector has norm:

$$
\|\boldsymbol{x}\|_{\boldsymbol{\sigma}}=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{\boldsymbol{\sigma}}}=\sqrt{\sum_{(u, v) \in \mathcal{S}} \frac{x_{(u, v)} x_{(u, v)}}{\sigma_{(u, v)}}}=\sqrt{\frac{y_{(1,2)} y_{(1,2)}}{\sigma_{(1,2)}}+\frac{y_{(3,2)} y_{(3,2)}}{\sigma_{(3,2)}}}=2 \sqrt{m}
$$

Thus we have $\frac{\left\|\left(\boldsymbol{y}^{*} \boldsymbol{Q}\right)^{*}\right\|_{\boldsymbol{\sigma}}}{\|\boldsymbol{y}\|_{\boldsymbol{\sigma}}}=1$. Taking maximum over all possible \boldsymbol{y} gives $\lambda(\boldsymbol{Q}) \geq 1$. Also note that fact that $\lambda(\boldsymbol{Q}) \leq 1$, so $\lambda(\boldsymbol{Q})=1$.

A. 2 Proof of Claim 2

Claim 2 (Properties of f). The function f in Equation 2 satisfies (1) $\sum_{X \in \mathcal{S}} \sigma_{X} f(X)=0$; (2) $f(X)$ is symmetric and $\|f(X)\|_{2} \leq 1, \forall X \in \mathcal{S}$.

Proof. Note that Equation 2 is indeed a random value minus its expectation, so naturally Equation 2 has zero mean, i.e., $\sum_{X \in \mathcal{S}} \sigma_{X} f(X)=0$. Moreover, $\|f(X)\|_{2} \leq 1$ because

$$
\begin{aligned}
\|f(X)\|_{2} & \leq \frac{1}{2}\left(\sum_{r=1}^{T} \frac{\left|\alpha_{r}\right|}{2}\left(\left\|\boldsymbol{e}_{v_{0}} \boldsymbol{e}_{v_{r}}^{\top}\right\|_{2}+\left\|\boldsymbol{e}_{v_{r}} \boldsymbol{e}_{v_{0}}^{\top}\right\|_{2}\right)+\sum_{r=1}^{T} \frac{\left|\alpha_{r}\right|}{2}\left(\|\boldsymbol{\Pi}\|_{2}\|\boldsymbol{P}\|_{2}^{r}+\left\|\boldsymbol{P}^{\top}\right\|_{2}^{r}\|\boldsymbol{\Pi}\|_{2}\right)\right) \\
& \leq \frac{1}{2}\left(\sum_{r=1}^{T}\left|\alpha_{r}\right|+\sum_{r=1}^{T}\left|\alpha_{r}\right|\right)=1 .
\end{aligned}
$$

where the first step follows triangle inequaity and submultiplicativity of 2-norm, and the third step follows by (1) $\left\|\boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top}\right\|_{2}=1$; (2) $\|\boldsymbol{\Pi}\|_{2}=\|\operatorname{diag}(\boldsymbol{\pi})\|_{2} \leq 1$ for distribution $\boldsymbol{\pi}$; (3) $\|\boldsymbol{P}\|_{2}=$ $\left\|\boldsymbol{P}^{\top}\right\|_{2}=1$.

A. 3 Proof of Corollary 1

Corollary 1 (Co-occurrence Matrices of HMMs). For a HMM with observable states $y_{t} \in \mathcal{Y}$ and hidden states $x_{t} \in \mathcal{X}$, let $P\left(y_{t} \mid x_{t}\right)$ be the emission probability and $P\left(x_{t+1} \mid x_{t}\right)$ be the hidden state transition probability. Given an L-step trajectory observations from the HMM, $\left(y_{1}, \cdots, y_{L}\right)$, one needs a trajectory of length $L=O\left(\tau(\log |\mathcal{Y}|+\log \tau) / \epsilon^{2}\right)$ to achieve a co-occurrence matrix within error bound ϵ with high probability, where τ is the mixing time of the Markov chain on hidden states.

Proof. A HMM can be model by a Markov chain \boldsymbol{P} on $\mathcal{Y} \times \mathcal{X}$ such that $P\left(y_{t+1}, x_{t+1} \mid y_{t}, x_{t}\right)=$ $P\left(y_{t+1} \mid x_{t+1}\right) P\left(x_{t+1} \mid x_{t}\right)$. For the co-occurrence matrix of observable states, applying a similar proof like our Theorem 2 shows that one needs a trajectory of length $O\left(\tau(\boldsymbol{P})(\log |\mathcal{Y}|+\log \tau(\boldsymbol{P})) / \epsilon^{2}\right)$ to achieve error bound ϵ with high probability. Moreover, the mixing time $\tau(\boldsymbol{P})$ is bounded by the mixing time of the Markov chain on the hidden state space (i.e., $P\left(x_{t+1} \mid x_{t}\right)$).

B Matrix Chernoff Bounds for Markov Chains

B. 1 Preliminaries

Kronecker Products If \boldsymbol{A} is an $M_{1} \times N_{1}$ matrix and \boldsymbol{B} is a $M_{2} \times N_{2}$ matrix, then the Kronecker product $\boldsymbol{A} \otimes \boldsymbol{B}$ is the $M_{2} M_{1} \times N_{1} N_{2}$ block matrix such that

$$
\boldsymbol{A} \otimes \boldsymbol{B}=\left[\begin{array}{ccc}
\boldsymbol{A}_{1,1} \boldsymbol{B} & \cdots & \boldsymbol{A}_{1, N_{1}} B \\
\vdots & \ddots & \vdots \\
\boldsymbol{A}_{M_{1}, 1} \boldsymbol{B} & \cdots & \boldsymbol{A}_{M_{1}, N_{1}} B
\end{array}\right]
$$

Kronecker product has the mixed-product property. If $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$ are matrices of such size that one can from the matrix products $\boldsymbol{A C}$ and $\boldsymbol{B} \boldsymbol{D}$, then $(\boldsymbol{A} \otimes \boldsymbol{B})(\boldsymbol{C} \otimes \boldsymbol{D})=(\boldsymbol{A C}) \otimes(\boldsymbol{B} \boldsymbol{D})$.

Vectorization For a matrix $\boldsymbol{X} \in \mathbb{C}^{d \times d}, \operatorname{vec}(\boldsymbol{X}) \in \mathbb{C}^{d^{2}}$ denote the vertorization of the matrix \boldsymbol{X}, s.t. $\operatorname{vec}(\boldsymbol{X})=\sum_{i \in[d]} \sum_{j \in[d]} \boldsymbol{X}_{i, j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}$, which is the stack of rows of \boldsymbol{X}. And there is a relationship between matrix multiplication and Kronecker product s.t. $\operatorname{vec}(\boldsymbol{A} \boldsymbol{X} \boldsymbol{B})=\left(\boldsymbol{A} \otimes \boldsymbol{B}^{\top}\right) \operatorname{vec}(\boldsymbol{X})$.

Matrices and Norms For a matrix $\boldsymbol{A} \in \mathbb{C}^{N \times N}$, we use \boldsymbol{A}^{\top} to denote matrix transpose, use $\overline{\boldsymbol{A}}$ to denote entry-wise matrix conjugation, use \boldsymbol{A}^{*} to denote matrix conjugate transpose ($\boldsymbol{A}^{*}=\overline{\boldsymbol{A}^{\top}}=$ $\overline{\boldsymbol{A}}^{\top}$). The vector 2-norm is defined to be $\|\boldsymbol{x}\|_{2}=\sqrt{\boldsymbol{x}^{*} \boldsymbol{x}}$, and the matrix 2-norm is defined to be $\|\boldsymbol{A}\|_{2}=\max _{\boldsymbol{x} \in \mathbb{C}^{N}, \boldsymbol{x} \neq 0} \frac{\|\boldsymbol{A} \boldsymbol{x}\|_{2}}{\|\boldsymbol{x}\|_{2}}$.
We then recall the definition of inner-product under π-kernel in Section 2 The inner-product under $\boldsymbol{\pi}$-kernel for \mathbb{C}^{N} is $\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{\boldsymbol{\pi}}=\boldsymbol{y}^{*} \boldsymbol{\Pi}^{-1} \boldsymbol{x}$ where $\boldsymbol{\Pi}=\operatorname{diag}(\boldsymbol{\pi})$, and its induced $\boldsymbol{\pi}$-norm $\|\boldsymbol{x}\|_{\boldsymbol{\pi}}=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{\boldsymbol{\pi}}}$. The above definition allow us to define a inner product under $\boldsymbol{\pi}$-kernel on $\mathbb{C}^{N d^{2}}$:

Definition 1. Define inner product on $\mathbb{C}^{N d^{2}}$ under $\boldsymbol{\pi}$-kernel to be $\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{\boldsymbol{\pi}}=\boldsymbol{y}^{*}\left(\boldsymbol{\Pi}^{-1} \otimes \boldsymbol{I}_{d^{2}}\right) \boldsymbol{x}$.
Remark 1. For $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{C}^{N}$ and $\boldsymbol{p}, \boldsymbol{q} \in \mathbb{C}^{d^{2}}$, then inner product (under $\boldsymbol{\pi}$-kernel) between $\boldsymbol{x} \otimes \boldsymbol{p}$ and $\boldsymbol{y} \otimes \boldsymbol{q}$ can be simplified as
$\langle\boldsymbol{x} \otimes \boldsymbol{p}, \boldsymbol{y} \otimes \boldsymbol{q}\rangle_{\boldsymbol{\pi}}=(\boldsymbol{y} \otimes \boldsymbol{q})^{*}\left(\boldsymbol{\Pi}^{-1} \otimes \boldsymbol{I}_{d^{2}}\right)(\boldsymbol{x} \otimes \boldsymbol{p})=\left(\boldsymbol{y}^{*} \boldsymbol{\Pi}^{-1} \boldsymbol{x}\right) \otimes\left(\boldsymbol{q}^{*} \boldsymbol{p}\right)=\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{\boldsymbol{\pi}}\langle\boldsymbol{p}, \boldsymbol{q}\rangle$.

Remark 2. The induced $\boldsymbol{\pi}$-norm is $\|\boldsymbol{x}\|_{\boldsymbol{\pi}}=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{\boldsymbol{\pi}}}$. When $\boldsymbol{x}=\boldsymbol{y} \otimes \boldsymbol{w}$, the $\boldsymbol{\pi}$-norm can be simplified to be: $\|\boldsymbol{x}\|_{\boldsymbol{\pi}}=\sqrt{\langle\boldsymbol{y} \otimes \boldsymbol{w}, \boldsymbol{y} \otimes \boldsymbol{w}\rangle_{\boldsymbol{\pi}}}=\sqrt{\langle\boldsymbol{y}, \boldsymbol{y}\rangle_{\boldsymbol{\pi}}\langle\boldsymbol{w}, \boldsymbol{w}\rangle}=\|\boldsymbol{y}\|_{\boldsymbol{\pi}}\|\boldsymbol{w}\|_{2}$.

Matrix Exponential The matrix exponential of a matrix $\boldsymbol{A} \in \mathbb{C}^{d \times d}$ is defined by Taylor expansion $\exp (\boldsymbol{A})=\sum_{j=0}^{+\infty} \frac{\boldsymbol{A}^{j}}{j!}$. And we will use the fact that $\exp (\boldsymbol{A}) \otimes \exp (\boldsymbol{B})=\exp (\boldsymbol{A} \otimes \boldsymbol{I}+\boldsymbol{I} \otimes \boldsymbol{B})$.

Golden-Thompson Inequality We need the following multi-matrix Golden-Thompson inequality from from Garg et al. [10].
Theorem 4 (Multi-matrix Golden-Thompson Inequality, Theorem 1.5 in [10]). Let $\boldsymbol{H}_{1}, \cdots \boldsymbol{H}_{k}$ be k Hermitian matrices, then for some probability distribution μ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$
\log \left(\operatorname{Tr}\left[\exp \left(\sum_{j=1}^{k} \boldsymbol{H}_{j}\right)\right]\right) \leq \frac{4}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left(\operatorname{Tr}\left[\prod_{j=1}^{k} \exp \left(\frac{e^{\mathrm{i} \phi}}{2} \boldsymbol{H}_{j}\right) \prod_{j=k}^{1} \exp \left(\frac{e^{-\mathrm{i} \phi}}{2} \boldsymbol{H}_{j}\right)\right]\right) d \mu(\phi)
$$

B. 2 Proof of Theorem 3

Theorem 3 (A Real-Valued Version of Theorem1). Let \boldsymbol{P} be a regular Markov chain with state space $[N]$, stationary distribution π and spectral expansion λ. Let $f:[N] \rightarrow \mathbb{R}^{d \times d}$ be a function such that (1) $\forall v \in[N], f(v)$ is symmetric and $\|f(v)\|_{2} \leq 1$; (2) $\sum_{v \in[N]} \pi_{v} f(v)=0$. Let $\left(v_{1}, \cdots, v_{k}\right)$ denote a k-step random walk on \boldsymbol{P} starting from a distribution ϕ on $[N]$. Then given $\epsilon \in(0,1)$,

$$
\begin{aligned}
\mathbb{P}\left[\lambda_{\max }\left(\frac{1}{k} \sum_{j=1}^{k} f\left(v_{j}\right)\right) \geq \epsilon\right] & \leq\|\phi\|_{\boldsymbol{\pi}} d^{2} \exp \left(-\left(\epsilon^{2}(1-\lambda) k / 72\right)\right) \\
\mathbb{P}\left[\lambda_{\min }\left(\frac{1}{k} \sum_{j=1}^{k} f\left(v_{j}\right)\right) \leq-\epsilon\right] & \leq\|\phi\|_{\boldsymbol{\pi}} d^{2} \exp \left(-\left(\epsilon^{2}(1-\lambda) k / 72\right)\right) .
\end{aligned}
$$

Proof. Due to symmetry, it suffices to prove one of the statements. Let $t>0$ be a parameter to be chosen later. Then

$$
\begin{align*}
\mathbb{P}\left[\lambda_{\max }\left(\frac{1}{k} \sum_{j=1}^{k} f\left(v_{j}\right)\right) \geq \epsilon\right] & =\mathbb{P}\left[\lambda_{\max }\left(\sum_{j=1}^{k} f\left(v_{j}\right)\right) \geq k \epsilon\right] \\
& \leq \mathbb{P}\left[\operatorname{Tr}\left[\exp \left(t \sum_{j=1}^{k} f\left(v_{j}\right)\right)\right] \geq \exp (t k \epsilon)\right] \tag{3}\\
& \leq \frac{\mathbb{E}_{v_{1} \cdots, v_{k}}\left[\operatorname{Tr}\left[\exp \left(t \sum_{j=1}^{k} f\left(v_{j}\right)\right)\right]\right]}{\exp (t k \epsilon)}
\end{align*}
$$

The second inequality follows Markov inequality.
Next to bound $\mathbb{E}_{v_{1} \cdots, v_{k}}\left[\operatorname{Tr}\left[\exp \left(t \sum_{j=1}^{k} f\left(v_{j}\right)\right)\right]\right]$. Using Theorem 4 . we have:

$$
\begin{aligned}
\log \left(\operatorname{Tr}\left[\exp \left(t \sum_{j=1}^{k} f\left(v_{j}\right)\right)\right]\right) & \leq \frac{4}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \left(\operatorname{Tr}\left[\prod_{j=1}^{k} \exp \left(\frac{e^{\mathrm{i} \phi}}{2} t f\left(v_{j}\right)\right) \prod_{j=k}^{1} \exp \left(\frac{e^{-\mathrm{i} \phi}}{2} t f\left(v_{j}\right)\right)\right]\right) d \mu(\phi) \\
& \leq \frac{4}{\pi} \log \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \operatorname{Tr}\left[\prod_{j=1}^{k} \exp \left(\frac{e^{\mathrm{i} \phi}}{2} t f\left(v_{j}\right)\right) \prod_{j=k}^{1} \exp \left(\frac{e^{-\mathrm{i} \phi}}{2} t f\left(v_{j}\right)\right)\right] d \mu(\phi),
\end{aligned}
$$

where the second step follows by concavity of \log function and the fact that $\mu(\phi)$ is a probability distribution on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. This implies

$$
\operatorname{Tr}\left[\exp \left(t \sum_{j=1}^{k} f\left(v_{j}\right)\right)\right] \leq\left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \operatorname{Tr}\left[\prod_{j=1}^{k} \exp \left(\frac{e^{\mathrm{i} \phi}}{2} t f\left(v_{j}\right)\right) \prod_{j=k}^{1} \exp \left(\frac{e^{-\mathrm{i} \phi}}{2} t f\left(v_{j}\right)\right)\right] d \mu(\phi)\right)^{\frac{4}{\pi}}
$$

Note that $\|\boldsymbol{x}\|_{p} \leq d^{1 / p-1}\|\boldsymbol{x}\|_{1}$ for $p \in(0,1)$, choosing $p=\pi / 4$ we have

$$
\left(\operatorname{Tr}\left[\exp \left(\frac{\pi}{4} t \sum_{j=1}^{k} f\left(v_{j}\right)\right)\right]\right)^{\frac{4}{\pi}} \leq d^{\frac{4}{\pi}-1} \operatorname{Tr}\left[\exp \left(t \sum_{j=1}^{k} f\left(v_{j}\right)\right)\right]
$$

Combining the above two equations together, we have

$$
\begin{equation*}
\operatorname{Tr}\left[\exp \left(\frac{\pi}{4} t \sum_{j=1}^{k} f\left(v_{j}\right)\right)\right] \leq d^{1-\frac{\pi}{4}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \operatorname{Tr}\left[\prod_{j=1}^{k} \exp \left(\frac{e^{\mathrm{i} \phi}}{2} t f\left(v_{j}\right)\right) \prod_{j=k}^{1} \exp \left(\frac{e^{-\mathrm{i} \phi}}{2} t f\left(v_{j}\right)\right)\right] d \mu(\phi) \tag{4}
\end{equation*}
$$

Write $e^{\mathrm{i} \phi}=\gamma+\mathrm{i} b$ with $\gamma^{2}+b^{2}=|\gamma+\mathrm{i} b|^{2}=\left|e^{\mathrm{i} \phi}\right|^{2}=1$:
Lemma 1 (Analogous to Lemma 4.3 in [10]). Let \boldsymbol{P} be a regular Markov chain with state space $[N]$ with spectral expansion λ. Let f be a function $f:[N] \rightarrow \mathbb{R}^{d \times d}$ such that (l) $\sum_{v \in[N]} \pi_{v} f(v)=0$; (2) $\|f(v)\|_{2} \leq 1$ and $f(v)$ is symmetric, $v \in[N]$. Let $\left(v_{1}, \cdots, v_{k}\right)$ denote a k-step random walk on \boldsymbol{P} starting from a distribution ϕ on $[N]$. Then for any $t>0, \gamma \geq 0, b>0$ such that $t^{2}\left(\gamma^{2}+b^{2}\right) \leq 1$ and $t \sqrt{\gamma^{2}+b^{2}} \leq \frac{1-\lambda}{4 \lambda}$, we have

$$
\mathbb{E}\left[\operatorname{Tr}\left[\prod_{j=1}^{k} \exp \left(\frac{t f\left(v_{j}\right)(\gamma+\mathrm{i} b)}{2}\right) \prod_{j=k}^{1} \exp \left(\frac{t f\left(v_{j}\right)(\gamma-\mathrm{i} b)}{2}\right)\right]\right] \leq\|\boldsymbol{\phi}\|_{\boldsymbol{\pi}} d \exp \left(k t^{2}\left(\gamma^{2}+b^{2}\right)\left(1+\frac{8}{1-\lambda}\right)\right) .
$$

Assuming the above lemma, we can complete the proof of the theorem as:

$$
\begin{align*}
& \mathbb{E}_{v_{1} \cdots, v_{k}}\left[\operatorname{Tr}\left[\exp \left(\frac{\pi}{4} t \sum_{j=1}^{k} f\left(v_{j}\right)\right)\right]\right] \\
\leq & d^{1-\frac{\pi}{4}} \mathbb{E}_{v_{1} \cdots, v_{k}}\left[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\operatorname{Tr}\left[\prod_{j=1}^{k} \exp \left(\frac{e^{\mathrm{i} \phi}}{2} t f\left(v_{j}\right)\right) \prod_{j=k}^{1} \exp \left(\frac{e^{-\mathrm{i} \phi}}{2} t f\left(v_{j}\right)\right)\right]\right) d \mu(\phi)\right] \\
= & \left.d^{1-\frac{\pi}{4}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathbb{E}_{v_{1} \cdots, v_{k}}\left[\operatorname{Tr}\left[\prod_{j=1}^{k} \exp \left(\frac{e^{\mathrm{i} \phi}}{2} t f\left(v_{j}\right)\right) \prod_{j=k}^{1} \exp \left(\frac{e^{-\mathrm{i} \phi}}{2} t f\left(v_{j}\right)\right)\right]\right] d \mu(\phi)\right] \tag{5}\\
\leq & d^{1-\frac{\pi}{4}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\|\phi\|_{\boldsymbol{\pi}} d \exp \left(k t^{2}\left|e^{\mathrm{i} \phi}\right|^{2}\left(1+\frac{8}{1-\lambda}\right)\right) d \mu(\phi) \\
= & \|\boldsymbol{\phi}\|_{\boldsymbol{\pi}} d^{2-\frac{\pi}{4}} \exp \left(k t^{2}\left(1+\frac{8}{1-\lambda}\right)\right) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d \mu(\phi) \\
= & \|\phi\|_{\boldsymbol{\pi}} d^{2-\frac{\pi}{4}} \exp \left(k t^{2}\left(1+\frac{8}{1-\lambda}\right)\right)
\end{align*}
$$

where the first step follows Equation 4 , the second step follows by swapping \mathbb{E} and \int, the third step follows by Lemma 1 , the forth step follows by $\left|e^{\mathrm{i} \phi}\right|=1$, and the last step follows by μ is a probability distribution on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ so $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d \mu(\phi)=1$
Finally, putting it all together:

$$
\begin{aligned}
\mathbb{P}\left[\lambda_{\max }\left(\frac{1}{k} \sum_{j=1}^{k} f\left(v_{j}\right)\right) \geq \epsilon\right] & \leq \frac{\mathbb{E}\left[\operatorname{Tr}\left[\exp \left(t \sum_{j=1}^{k} f\left(v_{j}\right)\right)\right]\right]}{\exp (t k \epsilon)} \\
& =\frac{\mathbb{E}\left[\operatorname{Tr}\left[\exp \left(\frac{\pi}{4}\left(\frac{4}{\pi} t\right) \sum_{j=1}^{k} f\left(v_{j}\right)\right)\right]\right]}{\exp (t k \epsilon)} \\
& \leq \frac{\|\boldsymbol{\phi}\|_{\boldsymbol{\pi}} d^{2-\frac{\pi}{4}} \exp \left(k\left(\frac{4}{\pi} t\right)^{2}\left(1+\frac{8}{1-\lambda}\right)\right)}{\exp (t k \epsilon)} \\
& =\|\boldsymbol{\phi}\|_{\boldsymbol{\pi}} d^{2-\frac{\pi}{4}} \exp \left(\left(\frac{4}{\pi}\right)^{2} k \epsilon^{2}(1-\lambda)^{2} \frac{1}{36^{2}} \frac{9}{1-\lambda}-k \frac{(1-\lambda) \epsilon}{36} \epsilon\right) \\
& \leq\|\boldsymbol{\phi}\|_{\boldsymbol{\pi}} d^{2} \exp \left(-k \epsilon^{2}(1-\lambda) / 72\right) .
\end{aligned}
$$

where the first step follows by Equation 3, the second step follows by Equation 5, the third step follows by choosing $t=(1-\lambda) \epsilon / 36$. The only thing to be check is that $t=(1-\lambda) \epsilon / 36$ satisfies $t \sqrt{\gamma^{2}+b^{2}}=t \leq \frac{1-\lambda}{4 \lambda}$. Recall that $\epsilon<1$ and $\lambda \leq 1$, we have $t=\frac{(1-\lambda) \epsilon}{36} \leq \frac{1-\lambda}{4} \leq \frac{1-\lambda}{4 \lambda}$.

B. 3 Proof of Lemma 1

Lemma 1 (Analogous to Lemma 4.3 in [10]). Let \boldsymbol{P} be a regular Markov chain with state space $[N]$ with spectral expansion λ. Let f be a function $f:[N] \rightarrow \mathbb{R}^{d \times d}$ such that (1) $\sum_{v \in[N]} \pi_{v} f(v)=0$; (2) $\|f(v)\|_{2} \leq 1$ and $f(v)$ is symmetric, $v \in[N]$. Let $\left(v_{1}, \cdots, v_{k}\right)$ denote a k-step random walk on \boldsymbol{P} starting from a distribution ϕ on $[N]$. Then for any $t>0, \gamma \geq 0, b>0$ such that $t^{2}\left(\gamma^{2}+b^{2}\right) \leq 1$ and $t \sqrt{\gamma^{2}+b^{2}} \leq \frac{1-\lambda}{4 \lambda}$, we have

$$
\mathbb{E}\left[\operatorname{Tr}\left[\prod_{j=1}^{k} \exp \left(\frac{t f\left(v_{j}\right)(\gamma+\mathrm{i} b)}{2}\right) \prod_{j=k}^{1} \exp \left(\frac{t f\left(v_{j}\right)(\gamma-\mathrm{i} b)}{2}\right)\right]\right] \leq\|\boldsymbol{\phi}\|_{\boldsymbol{\pi}} d \exp \left(k t^{2}\left(\gamma^{2}+b^{2}\right)\left(1+\frac{8}{1-\lambda}\right)\right) .
$$

Proof. Note that for $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{C}^{d \times d},\left\langle(\boldsymbol{A} \otimes \boldsymbol{B}) \operatorname{vec}\left(\boldsymbol{I}_{d}\right), \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right\rangle=\operatorname{Tr}\left[\boldsymbol{A} \boldsymbol{B}^{\top}\right]$. By letting $\boldsymbol{A}=$ $\prod_{j=1}^{k} \exp \left(\frac{t f\left(v_{j}\right)(\gamma+\mathrm{i} b)}{2}\right)$ and $\boldsymbol{B}=\left(\prod_{j=k}^{1} \exp \left(\frac{t f\left(v_{j}\right)(\gamma-\mathrm{i} b)}{2}\right)\right)^{\top}=\prod_{j=1}^{k} \exp \left(\frac{t f\left(v_{j}\right)(\gamma-\mathrm{i} b)}{2}\right)$. The trace term in LHS of Lemma 1 becomes

$$
\begin{align*}
& \operatorname{Tr}\left[\prod_{j=1}^{k} \exp \left(\frac{t f\left(v_{j}\right)(\gamma+\mathrm{i} b)}{2}\right) \prod_{j=k}^{1} \exp \left(\frac{t f\left(v_{j}\right)(\gamma-\mathrm{i} b)}{2}\right)\right] \tag{6}\\
= & \left\langle\left(\prod_{j=1}^{k} \exp \left(\frac{t f\left(v_{j}\right)(\gamma+\mathrm{i} b)}{2}\right) \otimes \prod_{j=1}^{k} \exp \left(\frac{t f\left(v_{j}\right)(\gamma-\mathrm{i} b)}{2}\right)\right) \operatorname{vec}\left(\boldsymbol{I}_{d}\right), \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right\rangle
\end{align*}
$$

By iteratively applying $(\boldsymbol{A} \otimes \boldsymbol{B})(\boldsymbol{C} \otimes \boldsymbol{D})=(\boldsymbol{A} \boldsymbol{C}) \otimes(\boldsymbol{B D})$, we have

$$
\begin{aligned}
& \prod_{j=1}^{k} \exp \left(\frac{t f\left(v_{j}\right)(\gamma+\mathrm{i} b)}{2}\right) \otimes \prod_{j=1}^{k} \exp \left(\frac{t f\left(v_{j}\right)(\gamma-\mathrm{i} b)}{2}\right) \\
= & \prod_{j=1}^{k}\left(\exp \left(\frac{t f\left(v_{j}\right)(\gamma+\mathrm{i} b)}{2}\right) \otimes \exp \left(\frac{t f\left(v_{j}\right)(\gamma-\mathrm{i} b)}{2}\right)\right) \triangleq \prod_{j=1}^{k} \boldsymbol{M}_{v_{j}}
\end{aligned}
$$

where we define

$$
\begin{equation*}
\boldsymbol{M}_{v_{j}} \triangleq \exp \left(\frac{t f\left(v_{j}\right)(\gamma+i b)}{2}\right) \otimes \exp \left(\frac{t f\left(v_{j}\right)(\gamma-i b)}{2}\right) \tag{7}
\end{equation*}
$$

Plug it to the trace term, we have

$$
\operatorname{Tr}\left[\prod_{j=1}^{k} \exp \left(\frac{t f\left(v_{j}\right)(\gamma+\mathrm{i} b)}{2}\right) \prod_{j=k}^{1} \exp \left(\frac{t f\left(v_{j}\right)(\gamma-\mathrm{i} b)}{2}\right)\right]=\left\langle\left(\prod_{j=1}^{k} \boldsymbol{M}_{v_{j}}\right) \operatorname{vec}\left(\boldsymbol{I}_{d}\right), \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right\rangle .
$$

Next, taking expectation on Equation 6 gives

$$
\begin{align*}
& \mathbb{E}_{v_{1}, \cdots, v_{k}}\left[\operatorname{Tr}\left[\prod_{j=1}^{k} \exp \left(\frac{t f\left(v_{j}\right)(\gamma+i b)}{2}\right) \prod_{j=k}^{1} \exp \left(\frac{t f\left(v_{j}\right)(\gamma-i b)}{2}\right)\right]\right] \\
= & \mathbb{E}_{v_{1}, \cdots, v_{k}}\left[\left\langle\left(\prod_{j=1}^{k} \boldsymbol{M}_{v_{j}}\right) \operatorname{vec}\left(\boldsymbol{I}_{d}\right), \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right\rangle\right] \tag{8}\\
= & \left\langle\mathbb{E}_{v_{1}, \cdots, v_{k}}\left[\prod_{j=1}^{k} \boldsymbol{M}_{v_{j}}\right] \operatorname{vec}\left(\boldsymbol{I}_{d}\right), \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right\rangle .
\end{align*}
$$

We turn to study $\mathbb{E}_{v_{1}, \cdots, v_{k}}\left[\prod_{j=1}^{k} \boldsymbol{M}_{v_{j}}\right]$, which is characterized by the following lemma:
Lemma 2. Let $\boldsymbol{E} \triangleq \operatorname{diag}\left(\boldsymbol{M}_{1}, \boldsymbol{M}_{2}, \cdots, \boldsymbol{M}_{N}\right) \in \mathbb{C}^{N d^{2} \times N d^{2}}$ and $\widetilde{\boldsymbol{P}} \triangleq \boldsymbol{P} \otimes \boldsymbol{I}_{d^{2}} \in \mathbb{R}^{N d^{2} \times N d^{2}}$. For a random walk $\left(v_{1}, \cdots, v_{k}\right)$ such that v_{1} is sampled from an arbitrary probability distribution ϕ on $[N], \mathbb{E}_{v_{1}, \cdots, v_{k}}\left[\prod_{j=1}^{k} \boldsymbol{M}_{v_{j}}\right]=\left(\boldsymbol{\phi} \otimes \boldsymbol{I}_{d^{2}}\right)^{\top}\left((\boldsymbol{E} \widetilde{\boldsymbol{P}})^{k-1} \boldsymbol{E}\right)\left(\mathbf{1} \otimes \boldsymbol{I}_{d^{2}}\right)$, where $\mathbf{1}$ is the all-ones vector.

Proof. (of Lemma 2) We always treat $\boldsymbol{E} \widetilde{\boldsymbol{P}}$ as a block matrix, s.t.,

$$
\boldsymbol{E} \widetilde{\boldsymbol{P}}=\left[\begin{array}{ccc}
\boldsymbol{M}_{1} & & \\
& \ddots & \\
& & \boldsymbol{M}_{N}
\end{array}\right]\left[\begin{array}{ccc}
\boldsymbol{P}_{1,1} \boldsymbol{I}_{d^{2}} & \cdots & \boldsymbol{P}_{1, N} \boldsymbol{I}_{d^{2}} \\
\vdots & \ddots & \vdots \\
\boldsymbol{P}_{N, 1} \boldsymbol{I}_{d^{2}} & \cdots & \boldsymbol{P}_{N, N} \boldsymbol{I}_{d^{2}}
\end{array}\right]=\left[\begin{array}{ccc}
\boldsymbol{P}_{1,1} \boldsymbol{M}_{1} & \cdots & \boldsymbol{P}_{1, N} \boldsymbol{M}_{1} \\
\vdots & \ddots & \vdots \\
\boldsymbol{P}_{N, 1} \boldsymbol{M}_{N} & \cdots & \boldsymbol{P}_{N, N} \boldsymbol{M}_{N}
\end{array}\right] .
$$

I.e., the (u, v)-th block of $\boldsymbol{E} \widetilde{\boldsymbol{P}}$, denoted by $(\boldsymbol{E} \widetilde{\boldsymbol{P}})_{u, v}$, is $\boldsymbol{P}_{u, v} \boldsymbol{M}_{u}$.

$$
\begin{aligned}
\mathbb{E}_{v_{1}, \cdots, v_{k}}\left[\prod_{j=1}^{k} \boldsymbol{M}_{v_{j}}\right] & =\sum_{v_{1}, \cdots, v_{k}} \boldsymbol{\phi}_{v_{1}} \boldsymbol{P}_{v_{1}, v_{2}} \cdots \boldsymbol{P}_{v_{k-1}, v_{k}} \prod_{j=1}^{k} \boldsymbol{M}_{v_{j}} \\
& =\sum_{v_{1}} \boldsymbol{\phi}_{v_{1}} \sum_{v_{2}}\left(\boldsymbol{P}_{v_{1}, v_{2}} \boldsymbol{M}_{v_{1}}\right) \cdots \sum_{v_{k}}\left(\boldsymbol{P}_{v_{k-1}, v_{k}} \boldsymbol{M}_{v_{k-1}}\right) \boldsymbol{M}_{v_{k}} \\
& =\sum_{v_{1}} \boldsymbol{\phi}_{v_{1}} \sum_{v_{2}}(\boldsymbol{E} \widetilde{\boldsymbol{P}})_{v_{1}, v_{2}} \sum_{v_{3}}(\boldsymbol{E} \widetilde{\boldsymbol{P}})_{v_{2}, v_{3}} \cdots \sum_{v_{k}}(\boldsymbol{E} \widetilde{\boldsymbol{P} \boldsymbol{E}})_{v_{k-1}, v_{k}} \\
& =\sum_{v_{1}} \boldsymbol{\phi}_{v_{1}} \sum_{v_{k}}\left((\boldsymbol{E} \widetilde{\boldsymbol{P}})^{k-1} \boldsymbol{E}\right)_{v_{1}, v_{k}}=\left(\boldsymbol{\phi} \otimes \boldsymbol{I}_{d^{2}}\right)^{\top}\left((\boldsymbol{E} \widetilde{\boldsymbol{P}})^{k-1} \boldsymbol{E}\right)\left(\mathbf{1} \otimes \boldsymbol{I}_{d^{2}}\right)
\end{aligned}
$$

Given Lemma 2 Equation 8 becomes:

$$
\begin{aligned}
& \mathbb{E}_{v_{1}, \cdots, v_{k}}\left[\operatorname{Tr}\left[\prod_{j=1}^{k} \exp \left(\frac{t f\left(v_{j}\right)(\gamma+\mathrm{i} b)}{2}\right) \prod_{j=k}^{1} \exp \left(\frac{t f\left(v_{j}\right)(\gamma-\mathrm{i} b)}{2}\right)\right]\right] \\
= & \left\langle\mathbb{E}_{v_{1}, \cdots, v_{k}}\left[\prod_{j=1}^{k} M_{v_{j}}\right] \operatorname{vec}\left(\boldsymbol{I}_{d}\right), \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right\rangle \\
= & \left\langle\left(\boldsymbol{\phi} \otimes \boldsymbol{I}_{d^{2}}\right)^{\top}\left((\boldsymbol{E} \widetilde{\boldsymbol{P}})^{k-1} \boldsymbol{E}\right)\left(\mathbf{1} \otimes \boldsymbol{I}_{d^{2}}\right), \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right\rangle \\
= & \left\langle\left((\boldsymbol{E} \widetilde{\boldsymbol{P}})^{k-1} \boldsymbol{E}\right)\left(\mathbf{1} \otimes \boldsymbol{I}_{d^{2}}\right) \operatorname{vec}\left(\boldsymbol{I}_{d}\right),\left(\boldsymbol{\phi} \otimes \boldsymbol{I}_{d^{2}}\right) \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right\rangle \\
= & \left\langle\left((\boldsymbol{E} \widetilde{\boldsymbol{P}})^{k-1} \boldsymbol{E}\right)\left(\mathbf{1} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right), \boldsymbol{\pi} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right\rangle
\end{aligned}
$$

The third equality is due to $\langle x, \boldsymbol{A} y\rangle=\left\langle\boldsymbol{A}^{*} x, y\right\rangle$. The forth equality is by setting $\boldsymbol{C}=1$ (scalar) in $(\boldsymbol{A} \otimes \boldsymbol{B})(\boldsymbol{C} \otimes \boldsymbol{D})=(\boldsymbol{A C}) \otimes(\boldsymbol{B D})$. Then

$$
\begin{aligned}
& \mathbb{E}_{v_{1}, \cdots, v_{k}}\left[\operatorname{Tr}\left[\prod_{j=1}^{k} \exp \left(\frac{t f\left(v_{j}\right)(\gamma+\mathrm{i} b)}{2}\right) \prod_{j=k}^{1} \exp \left(\frac{t f\left(v_{j}\right)(\gamma-\mathrm{i} b)}{2}\right)\right]\right] \\
= & \left\langle\left((\boldsymbol{E} \widetilde{\boldsymbol{P}})^{k-1} \boldsymbol{E}\right)\left(\mathbf{1} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right), \boldsymbol{\phi} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right\rangle \\
= & \left(\boldsymbol{\phi} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right)^{*}\left((\boldsymbol{E} \widetilde{\boldsymbol{P}})^{k-1} \boldsymbol{E}\right)\left(\mathbf{1} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right) \\
= & \left(\boldsymbol{\phi} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right)^{*}\left((\boldsymbol{E} \widetilde{\boldsymbol{P}})^{k-1} \boldsymbol{E}\right)\left(\left(\boldsymbol{P} \boldsymbol{\Pi}^{-1} \boldsymbol{\pi}\right) \otimes\left(\boldsymbol{I}_{d^{2}} \boldsymbol{I}_{d^{2}} \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right)\right) \\
= & \left(\boldsymbol{\phi} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right)^{*}(\boldsymbol{E} \widetilde{\boldsymbol{P}})^{k}\left(\boldsymbol{\Pi}^{-1} \otimes \boldsymbol{I}_{d^{2}}\right)\left(\boldsymbol{\pi} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right) \triangleq\left\langle\boldsymbol{\pi} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right), \boldsymbol{z}_{k}\right\rangle_{\boldsymbol{\pi}},
\end{aligned}
$$

where we define $\boldsymbol{z}_{0}=\boldsymbol{\phi} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right)$ and $\boldsymbol{z}_{k}=\left(\boldsymbol{z}_{0}^{*}(\boldsymbol{E} \widetilde{\boldsymbol{P}})^{k}\right)^{*}=\left(\boldsymbol{z}_{k-1}^{*} \boldsymbol{E} \widetilde{\boldsymbol{P}}\right)^{*}$. Moreover, by Remark 2 , we have $\left\|\boldsymbol{\pi} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right\|_{\boldsymbol{\pi}}=\|\boldsymbol{\pi}\|_{\boldsymbol{\pi}}\left\|\operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right\|_{2}=\sqrt{d}$ and $\left\|\boldsymbol{z}_{0}\right\|_{\boldsymbol{\pi}}=\left\|\boldsymbol{\phi} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right\|_{\boldsymbol{\pi}}=$ $\|\boldsymbol{\phi}\|_{\boldsymbol{\pi}}\left\|\operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right\|_{2}=\|\boldsymbol{\phi}\|_{\boldsymbol{\pi}} \sqrt{d}$
Definition 2. Define linear subspace $\mathcal{U}=\left\{\boldsymbol{\pi} \otimes \boldsymbol{w}, \boldsymbol{w} \in \mathbb{C}^{d^{2}}\right\}$.
Remark 3. $\left\{\boldsymbol{\pi} \otimes \boldsymbol{e}_{i}, i \in\left[d^{2}\right]\right\}$ is an orthonormal basis of \mathcal{U}. This is because $\left\langle\boldsymbol{\pi} \otimes \boldsymbol{e}_{i}, \boldsymbol{\pi} \otimes \boldsymbol{e}_{j}\right\rangle_{\boldsymbol{\pi}}=$ $\langle\boldsymbol{\pi}, \boldsymbol{\pi}\rangle_{\boldsymbol{\pi}}\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle=\delta_{i j}$ by Remark 1$]$ where $\delta_{i j}$ is the Kronecker delta.

Remark 4. Given $\boldsymbol{x}=\boldsymbol{y} \otimes \boldsymbol{w}$. The projection of \boldsymbol{x} on to \mathcal{U} is $\boldsymbol{x}^{\|}=\left(\mathbf{1}^{*} \boldsymbol{y}\right)(\boldsymbol{\pi} \otimes \boldsymbol{w})$. This is because

$$
\boldsymbol{x}^{\|}=\sum_{i=1}^{d^{2}}\left\langle\boldsymbol{y} \otimes \boldsymbol{w}, \boldsymbol{\pi} \otimes \boldsymbol{e}_{i}\right\rangle_{\boldsymbol{\pi}}\left(\boldsymbol{\pi} \otimes \boldsymbol{e}_{i}\right)=\sum_{i=1}^{d^{2}}\langle\boldsymbol{y}, \boldsymbol{\pi}\rangle_{\boldsymbol{\pi}}\left\langle\boldsymbol{w}, \boldsymbol{e}_{i}\right\rangle\left(\boldsymbol{\pi} \otimes \boldsymbol{e}_{i}\right)=\left(\mathbf{1}^{*} \boldsymbol{y}\right)(\boldsymbol{\pi} \otimes \boldsymbol{w}) .
$$

We want to bound

$$
\begin{aligned}
\left\langle\boldsymbol{\pi} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right), \boldsymbol{z}_{k}\right\rangle_{\boldsymbol{\pi}} & =\left\langle\boldsymbol{\pi} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right), \boldsymbol{z}_{k}^{\perp}+\boldsymbol{z}_{k}^{\|}\right\rangle_{\boldsymbol{\pi}}=\left\langle\boldsymbol{\pi} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right), \boldsymbol{z}_{k}^{\|}\right\rangle_{\boldsymbol{\pi}} \\
& \leq\left\|\boldsymbol{\pi} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right)\right\|_{\boldsymbol{\pi}}\left\|\boldsymbol{z}_{k}^{\|}\right\|_{\boldsymbol{\pi}}=\sqrt{d}\left\|\boldsymbol{z}_{k}^{\|}\right\|_{\boldsymbol{\pi}} .
\end{aligned}
$$

As \boldsymbol{z}_{k} can be expressed as recursively applying operator \boldsymbol{E} and $\widetilde{\boldsymbol{P}}$ on \boldsymbol{z}_{0}, we turn to analyze the effects of \boldsymbol{E} and $\widetilde{\boldsymbol{P}}$ operators.
Definition 3. The spectral expansion of $\widetilde{\boldsymbol{P}}$ is defined as $\lambda(\widetilde{\boldsymbol{P}}) \triangleq \max _{\boldsymbol{x} \perp \mathcal{U}, \boldsymbol{x} \neq 0} \frac{\left\|\left(\boldsymbol{x}^{*} \widetilde{\boldsymbol{P}}\right)^{*}\right\|_{\pi}}{\|\boldsymbol{x}\|_{\boldsymbol{\pi}}}$
Lemma 3. $\lambda(\boldsymbol{P})=\lambda(\widetilde{\boldsymbol{P}})$.
Proof. First show $\lambda(\widetilde{\boldsymbol{P}}) \geq \lambda(\boldsymbol{P})$. Suppose the maximizer of $\lambda(\boldsymbol{P}) \triangleq \max _{\boldsymbol{y} \perp \boldsymbol{\pi}, \boldsymbol{y} \neq 0} \frac{\left\|\left(\boldsymbol{y}^{*} \boldsymbol{P}\right)^{*}\right\|_{\boldsymbol{\pi}}}{\|\boldsymbol{y}\|_{\boldsymbol{\pi}}}$ is $\boldsymbol{y} \in \mathbb{C}^{n}$, i.e., $\left\|\left(\boldsymbol{y}^{*} \boldsymbol{P}\right)^{*}\right\|_{\boldsymbol{\pi}}=\lambda(\boldsymbol{P})\|\boldsymbol{y}\|_{\boldsymbol{\pi}}$. Construct $\boldsymbol{x}=\boldsymbol{y} \otimes \boldsymbol{o}$ for arbitrary non-zero $\boldsymbol{o} \in \mathbb{C}^{d^{2}}$. Easy to check that $\boldsymbol{x} \perp \mathcal{U}$, because $\langle\boldsymbol{x}, \boldsymbol{\pi} \otimes \boldsymbol{w}\rangle_{\boldsymbol{\pi}}=\langle\boldsymbol{y}, \boldsymbol{\pi}\rangle_{\boldsymbol{\pi}}\langle\boldsymbol{o}, \boldsymbol{w}\rangle=0$, where the last equality is due to $\boldsymbol{y} \perp \boldsymbol{\pi}$. Then we can bound $\left\|\left(\boldsymbol{x}^{*} \widetilde{\boldsymbol{P}}\right)^{*}\right\|_{\boldsymbol{\pi}}$ such that

$$
\begin{aligned}
\left\|\left(\boldsymbol{x}^{*} \widetilde{\boldsymbol{P}}\right)^{*}\right\|_{\boldsymbol{\pi}} & =\left\|\widetilde{\boldsymbol{P}}^{*} \boldsymbol{x}\right\|_{\boldsymbol{\pi}}=\left\|\left(\boldsymbol{P}^{*} \otimes \boldsymbol{I}_{d^{2}}\right)(\boldsymbol{y} \otimes \boldsymbol{o})\right\|_{\boldsymbol{\pi}}=\left\|\left(\boldsymbol{P}^{*} \boldsymbol{y}\right) \otimes \boldsymbol{o}\right\|_{\boldsymbol{\pi}} \\
& =\left\|\left(\boldsymbol{y}^{*} \boldsymbol{P}\right)^{*}\right\|_{\boldsymbol{\pi}}\|\boldsymbol{o}\|_{2}=\lambda(\boldsymbol{P})\|\boldsymbol{y}\|_{\boldsymbol{\pi}}\|\boldsymbol{o}\|_{2}=\lambda(\boldsymbol{P})\|\boldsymbol{x}\|_{\boldsymbol{\pi}},
\end{aligned}
$$

which indicate for $\boldsymbol{x}=\boldsymbol{y} \otimes \boldsymbol{o}, \frac{\left\|\left(\boldsymbol{x}^{*} \widetilde{\boldsymbol{P}}\right)^{*}\right\|_{\boldsymbol{\pi}}}{\|\boldsymbol{x}\|_{\boldsymbol{\pi}}}=\lambda(\boldsymbol{P})$. Taking maximum over all \boldsymbol{x} gives $\lambda(\widetilde{\boldsymbol{P}}) \geq \lambda(\boldsymbol{P})$.
Next to show $\lambda(\boldsymbol{P}) \geq \lambda(\widetilde{\boldsymbol{P}})$. For $\forall \boldsymbol{x} \in \mathbb{C}^{N d^{2}}$ such that $\boldsymbol{x} \perp \mathcal{U}$ and $\boldsymbol{x} \neq 0$, we can decompose it to be

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N d^{2}}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{d^{2}+1} \\
\vdots \\
x_{(N-1) d^{2}+1}
\end{array}\right] \otimes \boldsymbol{e}_{1}+\left[\begin{array}{c}
x_{2} \\
x_{d^{2}+2} \\
\vdots \\
x_{(N-1) d^{2}+2}
\end{array}\right] \otimes \boldsymbol{e}_{2}+\cdots+\left[\begin{array}{c}
x_{d^{2}} \\
x_{2 d^{2}} \\
\vdots \\
x_{N d^{2}}
\end{array}\right] \otimes \boldsymbol{e}_{d^{2}} \triangleq \sum_{i=1}^{d^{2}} \boldsymbol{x}_{i} \otimes \boldsymbol{e}_{i}
$$

where we define $\boldsymbol{x}_{i} \triangleq\left[\begin{array}{lll}x_{i} & \cdots & x_{(N-1) d^{2}+i}\end{array}\right]^{\top}$ for $i \in\left[d^{2}\right]$. We can observe that $\boldsymbol{x}_{i} \perp \boldsymbol{\pi}, i \in\left[d^{2}\right]$, because for $\forall j \in\left[d^{2}\right]$, we have
$0=\left\langle\boldsymbol{x}, \boldsymbol{\pi} \otimes \boldsymbol{e}_{j}\right\rangle_{\boldsymbol{\pi}}=\left\langle\sum_{i=1}^{d^{2}} \boldsymbol{x}_{i} \otimes \boldsymbol{e}_{i}, \boldsymbol{\pi} \otimes \boldsymbol{e}_{j}\right\rangle_{\boldsymbol{\pi}}=\sum_{i=1}^{d^{2}}\left\langle\boldsymbol{x}_{i} \otimes \boldsymbol{e}_{i}, \boldsymbol{\pi} \otimes \boldsymbol{e}_{j}\right\rangle_{\boldsymbol{\pi}}=\sum_{i=1}^{d^{2}}\left\langle\boldsymbol{x}_{i}, \boldsymbol{\pi}\right\rangle_{\boldsymbol{\pi}}\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle=\left\langle\boldsymbol{x}_{j}, \boldsymbol{\pi}\right\rangle_{\boldsymbol{\pi}}$,
which indicates $\boldsymbol{x}_{j} \perp \boldsymbol{\pi}, j \in\left[d^{2}\right]$. Furthermore, we can also observe that $\boldsymbol{x}_{i} \otimes \boldsymbol{e}_{i}, i \in\left[d^{2}\right]$ is pairwise orthogonal. This is because for $\forall i, j \in\left[d^{2}\right],\left\langle\boldsymbol{x}_{i} \otimes \boldsymbol{e}_{i}, \boldsymbol{x}_{j} \otimes \boldsymbol{e}_{j}\right\rangle_{\boldsymbol{\pi}}=\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right\rangle_{\boldsymbol{\pi}}\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle=\delta_{i j}$, which suggests us to use Pythagorean theorem such that $\|\boldsymbol{x}\|_{\boldsymbol{\pi}}^{2}=\sum_{i=1}^{d^{2}}\left\|\boldsymbol{x}_{i} \otimes \boldsymbol{e}_{i}\right\|_{\boldsymbol{\pi}}^{2}=\sum_{i=1}^{d^{2}}\left\|\boldsymbol{x}_{i}\right\|_{\boldsymbol{\pi}}\left\|\boldsymbol{e}_{i}\right\|_{2}^{2}$.
We can use similar way to decompose and analyze $\left(\boldsymbol{x}^{*} \widetilde{\boldsymbol{P}}\right)^{*}$:

$$
\left(\boldsymbol{x}^{*} \widetilde{\boldsymbol{P}}\right)^{*}=\widetilde{\boldsymbol{P}}^{*} \boldsymbol{x}=\sum_{i=1}^{d^{2}}\left(\boldsymbol{P}^{*} \otimes \boldsymbol{I}_{d^{2}}\right)\left(\boldsymbol{x}_{i} \otimes \boldsymbol{e}_{i}\right)=\sum_{i=1}^{d^{2}}\left(\boldsymbol{P}^{*} \boldsymbol{x}_{i}\right) \otimes \boldsymbol{e}_{i}
$$

where we can observe that $\left(\boldsymbol{P}^{*} \boldsymbol{x}_{i}\right) \otimes \boldsymbol{e}_{i}, i \in\left[d^{2}\right]$ is pairwise orthogonal. This is because for $\forall i, j \in\left[d^{2}\right]$, we have $\left\langle\left(\boldsymbol{P}^{*} \boldsymbol{x}_{i}\right) \otimes \boldsymbol{e}_{i},\left(\boldsymbol{P}^{*} \boldsymbol{x}_{j}\right) \otimes \boldsymbol{e}_{j}\right\rangle_{\boldsymbol{\pi}}=\left\langle\boldsymbol{P}^{*} \boldsymbol{x}_{i}, \boldsymbol{P}^{*} \boldsymbol{x}_{j}\right\rangle_{\boldsymbol{\pi}}\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle=\delta_{i j}$. Again, applying Pythagorean theorem gives:

$$
\begin{aligned}
\left\|\left(\boldsymbol{x}^{*} \widetilde{\boldsymbol{P}}\right)^{*}\right\|_{\boldsymbol{\pi}}^{2} & =\sum_{i=1}^{d^{2}}\left\|\left(\boldsymbol{P}^{*} \boldsymbol{x}_{i}\right) \otimes \boldsymbol{e}_{i}\right\|_{\boldsymbol{\pi}}^{2}=\sum_{i=1}^{d^{2}}\left\|\left(\boldsymbol{x}_{i}^{*} \boldsymbol{P}\right)^{*}\right\|_{\boldsymbol{\pi}}^{2}\left\|\boldsymbol{e}_{i}\right\|_{2}^{2} \\
& \leq \sum_{i=1}^{d^{2}} \lambda(\boldsymbol{P})^{2}\left\|\boldsymbol{x}_{i}\right\|_{\boldsymbol{\pi}}^{2}\left\|\boldsymbol{e}_{i}\right\|_{2}^{2}=\lambda(\boldsymbol{P})^{2}\left(\sum_{i=1}^{d^{2}}\left\|\boldsymbol{x}_{i}\right\|_{\boldsymbol{\pi}}^{2}\left\|\boldsymbol{e}_{i}\right\|_{2}^{2}\right)=\lambda(\boldsymbol{P})^{2}\|\boldsymbol{x}\|_{\boldsymbol{\pi}}^{2},
\end{aligned}
$$

which indicate that for $\forall \boldsymbol{x}$ such that $\boldsymbol{x} \perp \mathcal{U}$ and $\boldsymbol{x} \neq 0$, we have $\frac{\left\|\left(\boldsymbol{x}^{*} \widetilde{\boldsymbol{P}}\right)^{*}\right\|_{\boldsymbol{\pi}}}{\|\boldsymbol{x}\|_{\boldsymbol{\pi}}} \leq \lambda(\boldsymbol{P})$, or equivalently $\lambda(\widetilde{\boldsymbol{P}}) \leq \lambda(\boldsymbol{P})$.
Overall, we have shown both $\lambda(\widetilde{\boldsymbol{P}}) \geq \lambda(\boldsymbol{P})$ and $\lambda(\widetilde{\boldsymbol{P}}) \leq \lambda(\boldsymbol{P})$. We conclude $\lambda(\widetilde{\boldsymbol{P}})=\lambda(\boldsymbol{P})$.

Lemma 4. (The effect of $\widetilde{\boldsymbol{P}}$ operator) This lemma is a generalization of lemma 3.3 in [6].

1. $\forall \boldsymbol{y} \in \mathcal{U}$, then $\left(\boldsymbol{y}^{*} \widetilde{\boldsymbol{P}}\right)^{*}=\boldsymbol{y}$.
2. $\forall \boldsymbol{y} \perp \mathcal{U}$, then $\left(\boldsymbol{y}^{*} \widetilde{\boldsymbol{P}}\right)^{*} \perp \mathcal{U}$, and $\left\|\left(\boldsymbol{y}^{*} \widetilde{\boldsymbol{P}}\right)^{*}\right\|_{\boldsymbol{\pi}} \leq \lambda\|\boldsymbol{y}\|_{\boldsymbol{\pi}}$.

Proof. First prove the Part 1 of lemma $4 \forall \boldsymbol{y}=\boldsymbol{\pi} \otimes \boldsymbol{w} \in \mathcal{U}$:

$$
\boldsymbol{y}^{*} \widetilde{\boldsymbol{P}}=\left(\boldsymbol{\pi}^{*} \otimes \boldsymbol{w}^{*}\right)\left(\boldsymbol{P} \otimes \boldsymbol{I}_{d^{2}}\right)=\left(\boldsymbol{\pi}^{*} \boldsymbol{P}\right) \otimes\left(\boldsymbol{w}^{*} \boldsymbol{I}_{d^{2}}\right)=\boldsymbol{\pi}^{*} \otimes \boldsymbol{w}^{*}=\boldsymbol{y}^{*}
$$

where third equality is becase $\boldsymbol{\pi}$ is the stationary distribution. Next to prove Part 2 of lemma 4 Given $\boldsymbol{y} \perp \mathcal{U}$, want to show $\left(\boldsymbol{y}^{*} \widetilde{\boldsymbol{P}}\right)^{*} \perp \boldsymbol{\pi} \otimes \boldsymbol{w}$, for every $\boldsymbol{w} \in \mathbb{C}^{d^{2}}$. It is true because

$$
\begin{aligned}
\left\langle\boldsymbol{\pi} \otimes \boldsymbol{w},\left(\boldsymbol{y}^{*} \widetilde{\boldsymbol{P}}\right)^{*}\right\rangle_{\boldsymbol{\pi}} & =\boldsymbol{y}^{*} \widetilde{\boldsymbol{P}}\left(\boldsymbol{\Pi}^{-1} \otimes \boldsymbol{I}_{d^{2}}\right)(\boldsymbol{\pi} \otimes \boldsymbol{w})=\boldsymbol{y}^{*}\left(\left(\boldsymbol{P} \boldsymbol{\Pi}^{-1} \boldsymbol{\pi}\right) \otimes \boldsymbol{w}\right)=\boldsymbol{y}^{*}\left(\left(\boldsymbol{\Pi}^{-1} \boldsymbol{\pi}\right) \otimes \boldsymbol{w}\right) \\
& =\boldsymbol{y}^{*}\left(\boldsymbol{\Pi}^{-1} \otimes \boldsymbol{I}_{d^{2}}\right)(\boldsymbol{\pi} \otimes \boldsymbol{w})=\langle\boldsymbol{\pi} \otimes \boldsymbol{w}, \boldsymbol{y}\rangle_{\boldsymbol{\pi}}=0
\end{aligned}
$$

The third equality is due to $\boldsymbol{P} \boldsymbol{\Pi}^{-1} \boldsymbol{\pi}=\boldsymbol{P} \mathbf{1}=\boldsymbol{1}=\boldsymbol{\Pi}^{-1} \boldsymbol{\pi}$. Moreover, $\left\|\left(\boldsymbol{y}^{*} \widetilde{\boldsymbol{P}}\right)^{*}\right\|_{\boldsymbol{\pi}} \leq \lambda\|\boldsymbol{y}\|_{\boldsymbol{\pi}}$ is simply a re-statement of definition 3

Remark 5. Lemma 4 implies that $\forall \boldsymbol{y} \in \mathbb{C}^{n d^{2}}$

$$
\begin{aligned}
& \text { 1. }\left(\left(\boldsymbol{y}^{*} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\|}=\left(\left(\boldsymbol{y}^{\| *} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\|}+\left(\left(\boldsymbol{y}^{\perp *} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\|}=\boldsymbol{y}^{\|}+\mathbf{0}=\boldsymbol{y}^{\|} \\
& \text {2. }\left(\left(\boldsymbol{y}^{*} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\perp}=\left(\left(\boldsymbol{y}^{\| *} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\perp}+\left(\left(\boldsymbol{y}^{\perp *} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\perp}=\mathbf{0}+\left(\boldsymbol{y}^{\perp *} \widetilde{\boldsymbol{P}}\right)^{*}=\left(\boldsymbol{y}^{\perp *} \widetilde{\boldsymbol{P}}\right)^{*} .
\end{aligned}
$$

Lemma 5. (The effect of \boldsymbol{E} operator) Given three parameters $\lambda \in[0,1], \ell \geq 0$ and $t>0$. Let \boldsymbol{P} be a regular Markov chain on state space $[N]$, with stationary distribution π and spectral expansion λ. Suppose each state $i \in[N]$ is assigned a matrix $\boldsymbol{H}_{i} \in \mathbb{C}^{d^{2} \times d^{2}}$ s.t. $\left\|\boldsymbol{H}_{i}\right\|_{2} \leq \ell$ and $\sum_{i \in[N]} \pi_{i} \boldsymbol{H}_{i}=0$. Let $\widetilde{\boldsymbol{P}}=\boldsymbol{P} \otimes \boldsymbol{I}_{d^{2}}$ and \boldsymbol{E} denotes the $N d^{2} \times N d^{2}$ block matrix where the i-th diagonal block is the matrix $\exp \left(t \boldsymbol{H}_{i}\right)$, i.e., $\boldsymbol{E}=\operatorname{diag}\left(\exp \left(t \boldsymbol{H}_{1}\right), \cdots, \exp \left(t \boldsymbol{H}_{N}\right)\right)$. Then for any $\forall \boldsymbol{z} \in \mathbb{C}^{N d^{2}}$, we have:

1. $\left\|\left(\left(\boldsymbol{z}^{\| *} \boldsymbol{E} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\|}\right\|_{\boldsymbol{\pi}} \leq \alpha_{1}\left\|\boldsymbol{z}^{\|}\right\|_{\boldsymbol{\pi}}$, where $\alpha_{1}=\exp (t \ell)-t \ell$.
2. $\left\|\left(\left(\boldsymbol{z}^{\| *} \boldsymbol{E} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\perp}\right\|_{\boldsymbol{\pi}} \leq \alpha_{2}\left\|\boldsymbol{z}^{\|}\right\|_{\boldsymbol{\pi}}$, where $\alpha_{2}=\lambda(\exp (t \ell)-1)$.
3. $\left\|\left(\left(\boldsymbol{z}^{\perp *} \boldsymbol{E} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\|}\right\|_{\boldsymbol{\pi}} \leq \alpha_{3}\left\|\boldsymbol{z}^{\perp}\right\|_{\boldsymbol{\pi}}$, where $\alpha_{3}=\exp (t \ell)-1$.
4. $\left\|\left(\left(\boldsymbol{z}^{\perp *} \boldsymbol{E} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\perp}\right\|_{\boldsymbol{\pi}} \leq \alpha_{4}\left\|\boldsymbol{z}^{\perp}\right\|_{\boldsymbol{\pi}}$, where $\alpha_{4}=\lambda \exp (t \ell)$.

Proof. (of Lemma5 We first show that, for $\boldsymbol{z}=\boldsymbol{y} \otimes \boldsymbol{w}$,

$$
\begin{aligned}
\left(\boldsymbol{z}^{*} \boldsymbol{E}\right)^{*}=\boldsymbol{E}^{*} \boldsymbol{z} & =\left[\begin{array}{ccc}
\exp \left(t \boldsymbol{H}_{1}^{*}\right) & & \\
& \ddots & \\
& & \exp \left(t \boldsymbol{H}_{N}^{*}\right)
\end{array}\right]\left[\begin{array}{c}
y_{1} \boldsymbol{w} \\
\vdots \\
y_{N} \boldsymbol{w}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \exp \left(t \boldsymbol{H}_{1}^{*}\right) \boldsymbol{w} \\
\vdots \\
y_{N} \exp \left(t \boldsymbol{H}_{N}^{*}\right) \boldsymbol{w}
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
y_{1} \exp \left(t \boldsymbol{H}_{1}^{*}\right) \boldsymbol{w} \\
\vdots \\
0
\end{array}\right]+\cdots+\left[\begin{array}{c}
\vdots \\
y_{N} \exp \left(t \boldsymbol{H}_{N}^{*}\right) \boldsymbol{w}
\end{array}\right]=\sum_{i=1}^{N} y_{i}\left(\boldsymbol{e}_{i} \otimes\left(\exp \left(t \boldsymbol{H}_{i}^{*}\right) \boldsymbol{w}\right)\right) .
\end{aligned}
$$

Due to the linearity of projection,

$$
\begin{equation*}
\left(\left(\boldsymbol{z}^{*} \boldsymbol{E}\right)^{*}\right)^{\|}=\sum_{i=1}^{N} y_{i}\left(\boldsymbol{e}_{i} \otimes\left(\exp \left(t \boldsymbol{H}_{i}^{*}\right) \boldsymbol{w}\right)\right)^{\|}=\sum_{i=1}^{N} y_{i}\left(\mathbf{1}^{*} \boldsymbol{e}_{i}\right)\left(\boldsymbol{\pi} \otimes\left(\exp \left(t \boldsymbol{H}_{i}^{*}\right) \boldsymbol{w}\right)\right)=\boldsymbol{\pi} \otimes\left(\sum_{i=1}^{N} y_{i} \exp \left(t \boldsymbol{H}_{i}^{*}\right) \boldsymbol{w}\right), \tag{9}
\end{equation*}
$$

where the second inequality follows by Remark 4 .
Proof of Lemma5, Part 1 Firstly We can bound $\left\|\sum_{i=1}^{N} \pi_{i} \exp \left(t \boldsymbol{H}_{i}^{*}\right)\right\|_{2}$ by

$$
\begin{aligned}
\left\|\sum_{i=1}^{N} \pi_{i} \exp \left(t \boldsymbol{H}_{i}^{*}\right)\right\|_{2} & =\left\|\sum_{i=1}^{N} \pi_{i} \exp \left(t \boldsymbol{H}_{i}\right)\right\|_{2}=\left\|\sum_{i=1}^{N} \pi_{i} \sum_{k=0}^{+\infty} \frac{t^{j} \boldsymbol{H}_{i}^{j}}{j!}\right\|_{2}=\left\|\boldsymbol{I}+\sum_{i=1}^{N} \pi_{i} \sum_{j=2}^{+\infty} \frac{t^{j} \boldsymbol{H}_{i}^{j}}{j!}\right\|_{2} \\
& \leq 1+\sum_{i=1}^{N} \pi_{i} \sum_{j=2}^{+\infty} \frac{t^{j}\left\|\boldsymbol{H}_{i}\right\|_{2}^{j}}{j!} \leq 1+\sum_{i=1}^{N} \pi_{i} \sum_{j=2}^{+\infty} \frac{(t \ell)^{j}}{j!}=\exp (t \ell)-t \ell,
\end{aligned}
$$

where the first step follows by $\|\boldsymbol{A}\|_{2}=\left\|\boldsymbol{A}^{*}\right\|_{2}$, the second step follows by matrix exponential, the third step follows by $\sum_{i \in[N]} \pi_{i} \boldsymbol{H}_{i}=0$, and the forth step follows by triangle inequality. Given the above bound, for any $\boldsymbol{z}^{\|}$which can be written as $\boldsymbol{z}^{\|}=\boldsymbol{\pi} \otimes \boldsymbol{w}$ for some $\boldsymbol{w} \in \mathbb{C}^{d^{2}}$, we have

$$
\begin{aligned}
\left\|\left(\left(\boldsymbol{z}^{\| *} \boldsymbol{E} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\|}\right\|_{\boldsymbol{\pi}} & =\left\|\left(\left(\boldsymbol{z}^{\| *} \boldsymbol{E}\right)^{*}\right)^{\|}\right\|_{\boldsymbol{\pi}}=\left\|\boldsymbol{\pi} \otimes\left(\sum_{i=1}^{N} \pi_{i} \exp \left(t \boldsymbol{H}_{i}^{*}\right) \boldsymbol{w}\right)\right\|_{\boldsymbol{\pi}}=\|\boldsymbol{\pi}\|_{\boldsymbol{\pi}}\left\|\sum_{i=1}^{N} \pi_{i} \exp \left(t \boldsymbol{H}_{i}^{*}\right) \boldsymbol{w}\right\|_{2} \\
& \leq\|\boldsymbol{\pi}\|_{\boldsymbol{\pi}}\left\|\sum_{i=1}^{N} \pi_{i} \exp \left(t \boldsymbol{H}_{i}^{*}\right)\right\|_{2}\|\boldsymbol{w}\|_{2}=\left\|\sum_{i=1}^{N} \pi_{i} \exp \left(t \boldsymbol{H}_{i}^{*}\right)\right\|_{2}\left\|\boldsymbol{z}^{\|}\right\|_{\boldsymbol{\pi}} \\
& \leq(\exp (t \ell)-t \ell)\left\|\boldsymbol{z}^{\|}\right\|_{\boldsymbol{\pi}}
\end{aligned}
$$

where step one follows by Part 1 of Remark 5 and step two follows by Equation 9 .
Proof of Lemma5, Part 2 For $\forall \boldsymbol{z} \in \mathbb{C}^{N d^{2}}$, we can write it as block matrix such that:

$$
\boldsymbol{z}=\left[\begin{array}{c}
\boldsymbol{z}_{1} \\
\vdots \\
z_{N}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{z}_{1} \\
\vdots \\
0
\end{array}\right]+\cdots+\left[\begin{array}{c}
0 \\
\vdots \\
z_{N}
\end{array}\right]=\sum_{i=1}^{N} \boldsymbol{e}_{i} \otimes \boldsymbol{z}_{i},
$$

where each $\boldsymbol{z}_{i} \in \mathbb{C}^{d^{2}}$. Please note that above decomposition is pairwise orthogonal. Applying Pythagorean theorem gives $\|\boldsymbol{z}\|_{\boldsymbol{\pi}}^{2}=\sum_{i=1}^{N}\left\|\boldsymbol{e}_{i} \otimes \boldsymbol{z}_{i}\right\|_{\boldsymbol{\pi}}^{2}=\sum_{i=1}^{N}\left\|\boldsymbol{e}_{i}\right\|_{\boldsymbol{\pi}}^{2}\left\|\boldsymbol{z}_{i}\right\|_{2}^{2}$. Similarly, we can decompose $\left(\boldsymbol{E}^{*}-\boldsymbol{I}_{N d^{2}}\right) \boldsymbol{z}$ such that

$$
\begin{align*}
\left(\boldsymbol{E}^{*}-\boldsymbol{I}_{N d^{2}}\right) \boldsymbol{z} & =\left[\begin{array}{ccc}
\exp \left(t \boldsymbol{H}_{1}^{*}\right)-\boldsymbol{I}_{d^{2}} & & \\
& \ddots & \\
& & \exp \left(t \boldsymbol{H}_{N}^{*}\right)-\boldsymbol{I}_{d^{2}}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{z}_{1} \\
\vdots \\
\boldsymbol{z}_{N}
\end{array}\right]=\left[\begin{array}{c}
\left(\exp \left(t \boldsymbol{H}_{1}^{*}\right)-\boldsymbol{I}_{d^{2}}\right) \boldsymbol{z}_{1} \\
\vdots \\
\left(\exp \left(t \boldsymbol{H}_{N}^{*}\right)-\boldsymbol{I}_{d^{2}}\right) \boldsymbol{z}_{N}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\exp \left(t \boldsymbol{H}_{1}^{*}\right)-\boldsymbol{I}_{d^{2}}\right) \boldsymbol{z}_{1} \\
\vdots \\
0
\end{array}\right]+\cdots+\left[\begin{array}{c}
\vdots \\
\left(\exp \left(t \boldsymbol{H}_{N}^{*}\right)-\boldsymbol{I}_{d^{2}}\right) \boldsymbol{z}_{N}
\end{array}\right] \tag{10}\\
& =\sum_{i=1}^{N} \boldsymbol{e}_{i} \otimes\left(\left(\exp \left(t \boldsymbol{H}_{i}^{*}\right)-\boldsymbol{I}_{d^{2}}\right) \boldsymbol{z}_{i}\right) .
\end{align*}
$$

Note that above decomposition is pairwise orthogonal, too. Applying Pythagorean theorem gives

$$
\begin{aligned}
\left\|\left(\boldsymbol{E}^{*}-\boldsymbol{I}_{N d^{2}}\right) \boldsymbol{z}\right\|_{\boldsymbol{\pi}}^{2} & =\sum_{i=1}^{N}\left\|\boldsymbol{e}_{i} \otimes\left(\left(\exp \left(t \boldsymbol{H}_{i}^{*}\right)-\boldsymbol{I}_{d^{2}}\right) \boldsymbol{z}_{i}\right)\right\|_{\boldsymbol{\pi}}^{2}=\sum_{i=1}^{N}\left\|\boldsymbol{e}_{i}\right\|_{\boldsymbol{\pi}}^{2}\left\|\left(\exp \left(t \boldsymbol{H}_{i}^{*}\right)-\boldsymbol{I}_{d^{2}}\right) \boldsymbol{z}_{i}\right\|_{2}^{2} \\
& \leq \sum_{i=1}^{N}\left\|\boldsymbol{e}_{i}\right\|_{\boldsymbol{\pi}}^{2}\left\|\exp \left(t \boldsymbol{H}_{i}^{*}\right)-\boldsymbol{I}_{d^{2}}\right\|_{2}^{2}\left\|\boldsymbol{z}_{i}\right\|_{2}^{2} \leq \max _{i \in[N]}\left\|\exp \left(t \boldsymbol{H}_{i}^{*}\right)-\boldsymbol{I}_{d^{2}}\right\|_{2}^{2} \sum_{i=1}^{N}\left\|\boldsymbol{e}_{i}\right\|_{\boldsymbol{\pi}}^{2}\left\|\boldsymbol{z}_{i}\right\|_{2}^{2} \\
& =\max _{i \in[N]}\left\|\exp \left(t \boldsymbol{H}_{i}^{*}\right)-\boldsymbol{I}_{d^{2}}\right\|_{2}^{2}\|\boldsymbol{z}\|_{\boldsymbol{\pi}}^{2}=\max _{i \in[N]}\left\|\exp \left(t \boldsymbol{H}_{i}\right)-\boldsymbol{I}_{d^{2}}\right\|_{2}^{2}\|\boldsymbol{z}\|_{\boldsymbol{\pi}}^{2}
\end{aligned}
$$

which indicates

$$
\begin{aligned}
\left\|\left(\boldsymbol{E}^{*}-\boldsymbol{I}_{N d^{2}}\right) \boldsymbol{z}\right\|_{\boldsymbol{\pi}} & =\max _{i \in[N]}\left\|\exp \left(t \boldsymbol{H}_{i}\right)-\boldsymbol{I}_{d^{2}}\right\|_{2}\|\boldsymbol{z}\|_{\boldsymbol{\pi}}=\max _{i \in[N]}\left\|\sum_{j=1}^{+\infty} \frac{t^{j} \boldsymbol{H}_{i}^{j}}{j!}\right\|_{2}\|\boldsymbol{z}\|_{\boldsymbol{\pi}} \\
& \leq\left(\sum_{j=1}^{+\infty} \frac{t^{j} \ell^{j}}{j!}\right)\|\boldsymbol{z}\|_{\boldsymbol{\pi}}=(\exp (t \ell)-1)\|\boldsymbol{z}\|_{\boldsymbol{\pi}}
\end{aligned}
$$

Now we can formally prove Part 2 of Lemma 5 by:

$$
\begin{aligned}
\left\|\left(\left(\boldsymbol{z}^{\| *} \boldsymbol{E} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\perp}\right\|_{\boldsymbol{\pi}} & =\left\|\left(\left(\boldsymbol{E}^{*} \boldsymbol{z}^{\|}\right)^{\perp *} \widetilde{\boldsymbol{P}}\right)^{*}\right\|_{\boldsymbol{\pi}} \leq \lambda\left\|\left(\boldsymbol{E}^{*} \boldsymbol{z}^{\|}\right)^{\perp}\right\|_{\boldsymbol{\pi}}=\lambda\left\|\left(\boldsymbol{E}^{*} \boldsymbol{z}^{\|}-\boldsymbol{z}^{\|}+\boldsymbol{z}^{\|}\right)^{\perp}\right\|_{\boldsymbol{\pi}} \\
& =\lambda\left\|\left(\left(\boldsymbol{E}^{*}-\boldsymbol{I}_{N d^{2}}\right) \boldsymbol{z}^{\|}\right)^{\perp}\right\|_{\boldsymbol{\pi}} \leq \lambda\left\|\left(\boldsymbol{E}^{*}-\boldsymbol{I}_{N d^{2}}\right) \boldsymbol{z}^{\|}\right\|_{\boldsymbol{\pi}} \leq \lambda(\exp (t \ell)-1)\left\|\boldsymbol{z}^{\|}\right\|_{\boldsymbol{\pi}} .
\end{aligned}
$$

The first step follows by Part 2 of Remark [5, the second step follows by Part 1 on Lemma 4 and the forth step is due to $\left(z^{\|}\right)^{\perp}=\mathbf{0}$.

Proof of Lemma 5, Part 3 Note that

$$
\begin{aligned}
\left\|\left(\left(\boldsymbol{z}^{\perp *} \boldsymbol{E} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\|}\right\|_{\boldsymbol{\pi}} & =\left\|\left(\boldsymbol{E}^{*} \boldsymbol{z}^{\perp}\right)^{\|}\right\|_{\boldsymbol{\pi}}=\left\|\left(\boldsymbol{E}^{*} \boldsymbol{z}^{\perp}-\boldsymbol{z}^{\perp}+\boldsymbol{z}^{\perp}\right)\right\|_{\boldsymbol{\pi}}=\left\|\left(\left(\boldsymbol{E}^{*}-\boldsymbol{I}_{N d^{2}}\right) \boldsymbol{z}^{\perp}\right)^{\|}\right\|_{\boldsymbol{\pi}} \\
& \leq\left\|\left(\boldsymbol{E}^{*}-\boldsymbol{I}_{N d^{2}}\right) \boldsymbol{z}^{\perp}\right\|_{\boldsymbol{\pi}} \leq(\exp (t \ell)-1)\left\|\boldsymbol{z}^{\perp}\right\|_{\boldsymbol{\pi}}
\end{aligned}
$$

where the first step follows by Part 1 of Remark5 the third step follows by $\left(\boldsymbol{z}^{\perp}\right)^{\|}=\mathbf{0}$, and the last step follows by Part 2 of Lemma 4 .

Proof of Lemma 5 , Part 4 Simiar to Equation 10 , for $\forall \boldsymbol{z} \in \mathbb{C}^{N d^{2}}$, we can decompose $\boldsymbol{E}^{*} \boldsymbol{z}$ as $\boldsymbol{E}^{*} \boldsymbol{z}=\sum_{i=1}^{N} \boldsymbol{e}_{i} \otimes\left(\exp \left(t \boldsymbol{H}_{i}^{*}\right) \boldsymbol{z}_{i}\right)$. This decomposition is pairwise orthogonal, too. Applying Pythagorean theorem gives

$$
\begin{aligned}
\left\|\boldsymbol{E}^{*} \boldsymbol{z}\right\|_{\boldsymbol{\pi}}^{2} & =\sum_{i=1}^{N}\left\|\boldsymbol{e}_{i} \otimes\left(\exp \left(t \boldsymbol{H}_{i}^{*}\right) \boldsymbol{z}_{i}\right)\right\|_{\boldsymbol{\pi}}^{2}=\sum_{i=1}^{N}\left\|\boldsymbol{e}_{i}\right\|_{\boldsymbol{\pi}}^{2}\left\|\exp \left(t \boldsymbol{H}_{i}^{*}\right) \boldsymbol{z}_{i}\right\|_{2}^{2} \leq \sum_{i=1}^{N}\left\|\boldsymbol{e}_{i}\right\|_{\boldsymbol{\pi}}^{2}\left\|\exp \left(t \boldsymbol{H}_{i}^{*}\right)\right\|_{2}^{2}\left\|\boldsymbol{z}_{i}\right\|_{2}^{2} \\
& \leq \max _{i \in[N]}\left\|\exp \left(t \boldsymbol{H}_{i}^{*}\right)\right\|_{2}^{2} \sum_{i=1}^{N}\left\|\boldsymbol{e}_{i}\right\|_{\boldsymbol{\pi}}^{2}\left\|\boldsymbol{z}_{i}\right\|_{2}^{2} \leq \max _{i \in[N]} \exp \left(\left\|t \boldsymbol{H}_{i}^{*}\right\|_{2}\right)^{2}\|\boldsymbol{z}\|_{\boldsymbol{\pi}}^{2} \leq \exp (t \ell)^{2}\|\boldsymbol{z}\|_{\boldsymbol{\pi}}^{2}
\end{aligned}
$$

which indicates $\left\|\boldsymbol{E}^{*} \boldsymbol{z}\right\|_{\boldsymbol{\pi}} \leq \exp (t \ell)\|\boldsymbol{z}\|_{\boldsymbol{\pi}}$. Now we can prove Part 4 of Lemma5. Note that

$$
\left\|\left(\left(\boldsymbol{z}^{\perp *} \boldsymbol{E} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\perp}\right\|_{\boldsymbol{\pi}}=\left\|\left(\left(\boldsymbol{E}^{*} \boldsymbol{z}^{\perp}\right)^{\perp *} \widetilde{\boldsymbol{P}}\right)^{*}\right\|_{\boldsymbol{\pi}} \leq \lambda\left\|\left(\boldsymbol{E}^{*} \boldsymbol{z}^{\perp}\right)^{\perp}\right\|_{\boldsymbol{\pi}} \leq \lambda\left\|\boldsymbol{E}^{*} \boldsymbol{z}^{\perp}\right\|_{\boldsymbol{\pi}} \leq \lambda \exp (t \ell)\left\|_{\boldsymbol{z}^{\perp}}\right\|_{\boldsymbol{\pi}}
$$

Recursive Analysis We now use Lemma 5 to analyze the evolution of $\boldsymbol{z}_{i}^{\|}$and $\boldsymbol{z}_{i}^{\perp}$. Let $\boldsymbol{H}_{v} \triangleq$ $\frac{f(v)(\gamma+\mathrm{i} b)}{2} \otimes \boldsymbol{I}_{d^{2}}+\boldsymbol{I}_{d^{2}} \otimes \frac{f(v)(\gamma-\mathrm{i} b)}{2}$ in Lemma 5 . We can see verify the following three facts: (1) $\exp \left(t \boldsymbol{H}_{v}\right)=\boldsymbol{M}_{v} ;(2)\left\|\boldsymbol{H}_{v}\right\|_{2}$ is bounded (3) $\sum_{v \in[N]} \pi_{v} \boldsymbol{H}_{v}=0$.
Firstly, easy to see that

$$
\begin{aligned}
\exp \left(t \boldsymbol{H}_{v}\right) & =\exp \left(\frac{t f(v)(\gamma+\mathrm{i} b)}{2} \otimes \boldsymbol{I}_{d^{2}}+\boldsymbol{I}_{d^{2}} \otimes \frac{t f(v)(\gamma-\mathrm{i} b)}{2}\right) \\
& =\exp \left(\frac{t f(v)(\gamma+\mathrm{i} b)}{2}\right) \otimes \exp \left(\frac{t f(v)(\gamma-\mathrm{i} b)}{2}\right)=\boldsymbol{M}_{v}
\end{aligned}
$$

where the first step follows by definition of \boldsymbol{H}_{i} and the second step follows by the fact that $\exp (\boldsymbol{A} \otimes$ $\left.\boldsymbol{I}_{d}+\boldsymbol{I}_{d} \otimes \boldsymbol{B}\right)=\exp (\boldsymbol{A}) \otimes \exp (\boldsymbol{B})$, and the last step follows by Equation 7
Secondly, we can bound $\left\|\boldsymbol{H}_{v}\right\|_{2}$ by:

$$
\begin{aligned}
\left\|\boldsymbol{H}_{v}\right\|_{2} & \leq\left\|\frac{f(v)(\gamma+\mathrm{i} b)}{2} \otimes \boldsymbol{I}_{d^{2}}\right\|_{2}+\left\|\boldsymbol{I}_{d^{2}} \otimes \frac{f(v)(\gamma-\mathrm{i} b)}{2}\right\|_{2} \\
& =\left\|\frac{f(v)(\gamma+\mathrm{i} b)}{2}\right\|_{2}\left\|\boldsymbol{I}_{d^{2}}\right\|_{2}+\left\|\boldsymbol{I}_{d^{2}}\right\|_{2}\left\|\frac{f(v)(\gamma-\mathrm{i} b)}{2}\right\|_{2} \leq \sqrt{\gamma^{2}+b^{2}}
\end{aligned}
$$

where the first step follows by triangle inequality, the second step follows by the fact that $\|\boldsymbol{A} \otimes \boldsymbol{B}\|_{2}=$ $\|\boldsymbol{A}\|_{2}\|\boldsymbol{B}\|_{2}$, the third step follows by $\left\|\boldsymbol{I}_{d}\right\|_{2}=1$ and $\|f(v)\|_{2} \leq 1$. We set $\ell=\sqrt{\gamma^{2}+b^{2}}$ to satisfy the assumption in Lemma 5 that $\left\|\boldsymbol{H}_{v}\right\|_{2} \leq \ell$. According to the conditions in Lemma 1 , we know that $t \ell \leq 1$ and $t \ell \leq \frac{1-\lambda}{4 \lambda}$.
Finally, we show that $\sum_{v \in[N]} \pi_{v} \boldsymbol{H}_{v}=0$, because

$$
\begin{aligned}
\sum_{v \in[N]} \pi_{v} \boldsymbol{H}_{v} & =\sum_{v \in[N]}\left(\frac{f(v)(\gamma+\mathrm{i} b)}{2} \otimes \boldsymbol{I}_{d^{2}}+\boldsymbol{I}_{d^{2}} \otimes \frac{f(v)(\gamma-\mathrm{i} b)}{2}\right) \\
& =\frac{\gamma+\mathrm{i} b}{2}\left(\sum_{v \in[N]} \pi_{v} f(v)\right) \otimes \boldsymbol{I}_{d}+\frac{\gamma-\mathrm{i} b}{2} \boldsymbol{I}_{d} \otimes\left(\sum_{v \in[N]} \pi_{v} f(v)\right)=0,
\end{aligned}
$$

where the last step follows by $\sum_{v \in[N]} \pi_{v} f(v)=0$.
Claim 4. $\left\|\boldsymbol{z}_{i}^{\perp}\right\|_{\boldsymbol{\pi}} \leq \frac{\alpha_{2}}{1-\alpha_{4}} \max _{0 \leq j<i}\left\|\boldsymbol{z}_{j}^{\|}\right\|_{\boldsymbol{\pi}}$.
Proof. Using Part 2 and Part 4 of Lemma [5] we have

$$
\begin{aligned}
\left\|z_{i}^{\perp}\right\|_{\boldsymbol{\pi}} & =\left\|\left(\left(\boldsymbol{z}_{i-1}^{*} \boldsymbol{E} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\perp}\right\|_{\boldsymbol{\pi}} \\
& \leq\left\|\left(\left(\boldsymbol{z}_{i-1}^{\| *} \boldsymbol{E} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\perp}\right\|_{\boldsymbol{\pi}}+\left\|\left(\left(\boldsymbol{z}_{i-1}^{\perp *} \boldsymbol{E} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\perp}\right\|_{\boldsymbol{\pi}} \\
& \leq \alpha_{2}\left\|\boldsymbol{z}_{i-1}^{\|}\right\|_{\boldsymbol{\pi}}+\alpha_{4}\left\|\boldsymbol{z}_{i-1}^{\perp}\right\|_{\boldsymbol{\pi}} \\
& \leq\left(\alpha_{2}+\alpha_{2} \alpha_{4}+\alpha_{2} \alpha_{4}^{2}+\cdots\right) \max _{0 \leq j<i}\left\|\boldsymbol{z}_{j}^{\|}\right\|_{\boldsymbol{\pi}} \\
& \leq \frac{\alpha_{2}}{1-\alpha_{4}} \max _{0 \leq j<i}\left\|\boldsymbol{z}_{j}^{\|}\right\|_{\boldsymbol{\pi}}
\end{aligned}
$$

Claim 5. $\left\|\boldsymbol{z}_{i}^{\|}\right\|_{\boldsymbol{\pi}} \leq\left(\alpha_{1}+\frac{\alpha_{2} \alpha_{3}}{1-\alpha_{4}}\right) \max _{0 \leq j<i}\left\|\boldsymbol{z}_{j}^{\|}\right\|_{\boldsymbol{\pi}}$.
Proof. Using Part 1 and Part 3 of Lemma 5 as well as Claim4, we have

$$
\begin{aligned}
\left\|z_{i}^{\|}\right\|_{\boldsymbol{\pi}} & =\left\|\left(\left(\boldsymbol{z}_{i-1}^{*} \boldsymbol{E} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\|}\right\|_{\boldsymbol{\pi}} \\
& \leq\left\|\left(\left(\boldsymbol{z}_{i-1}^{\| *} \boldsymbol{E} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\|}\right\|_{\boldsymbol{\pi}}+\left\|\left(\left(\boldsymbol{z}_{i-1}^{\perp *} \boldsymbol{E} \widetilde{\boldsymbol{P}}\right)^{*}\right)^{\|}\right\|_{\boldsymbol{\pi}} \\
& \leq \alpha_{1}\left\|\boldsymbol{z}_{i-1}^{\|}\right\|_{\boldsymbol{\pi}}+\alpha_{3}\left\|\boldsymbol{z}_{i-1}^{\perp}\right\|_{\boldsymbol{\pi}} \\
& \leq \alpha_{1}\left\|\boldsymbol{z}_{i-1}^{\|}\right\|_{\boldsymbol{\pi}}+\alpha_{3} \frac{\alpha_{2}}{1-\alpha_{4}} \max _{0 \leq j<i-1}\left\|\boldsymbol{z}_{j}^{\|}\right\|_{\boldsymbol{\pi}} \\
& \leq\left(\alpha_{1}+\frac{\alpha_{2} \alpha_{3}}{1-\alpha_{4}}\right) \max _{0 \leq j<i}\left\|\boldsymbol{z}_{j}^{\|}\right\|_{\boldsymbol{\pi}} .
\end{aligned}
$$

Combining Claim 4 and Claim 5 gives

$$
\begin{aligned}
& \qquad \begin{aligned}
\left\|z_{k}^{\|}\right\|_{\boldsymbol{\pi}} & \leq\left(\alpha_{1}+\frac{\alpha_{2} \alpha_{3}}{1-\alpha_{4}}\right) \max _{0 \leq j<k}\left\|z_{j}^{\|}\right\|_{\boldsymbol{\pi}} \\
\text { (because } \left.\alpha_{1}+\alpha_{2} \alpha_{3} /\left(1-\alpha_{4}\right) \geq \alpha_{1} \geq 1\right) & \leq\left(\alpha_{1}+\frac{\alpha_{2} \alpha_{3}}{1-\alpha_{4}}\right)^{k}\left\|z_{0}^{\|}\right\|_{\boldsymbol{\pi}} \\
& =\|\phi\|_{\boldsymbol{\pi}} \sqrt{d}\left(\alpha_{1}+\frac{\alpha_{2} \alpha_{3}}{1-\alpha_{4}}\right)^{k}
\end{aligned} \text {, }
\end{aligned}
$$

which implies

$$
\left\langle\boldsymbol{\pi} \otimes \operatorname{vec}\left(\boldsymbol{I}_{d}\right), \boldsymbol{z}_{k}\right\rangle_{\boldsymbol{\pi}} \leq\|\boldsymbol{\phi}\|_{\boldsymbol{\pi}} d\left(\alpha_{1}+\frac{\alpha_{2} \alpha_{3}}{1-\alpha_{4}}\right)^{k}
$$

Finally, we bound $\left(\alpha_{1}+\frac{\alpha_{2} \alpha_{3}}{1-\alpha_{4}}\right)^{k}$. The same as [10], we can bound $\alpha_{1}, \alpha_{2} \alpha_{3}, \alpha_{4}$ by:

$$
\alpha_{1}=\exp (t \ell)-t \ell \leq 1+t^{2} \ell^{2}=1+t^{2}\left(\gamma^{2}+b^{2}\right)
$$

and

$$
\alpha_{2} \alpha_{3}=\lambda(\exp (t \ell)-1)^{2} \leq \lambda(2 t \ell)^{2}=4 \lambda t^{2}\left(\gamma^{2}+b^{2}\right)
$$

where the second step is because $\exp (x) \leq 1+2 x, \forall x \in[0,1]$ and $t \ell<1$,

$$
\alpha_{4}=\lambda \exp (t \ell) \leq \lambda(1+2 t \ell) \leq \frac{1}{2}+\frac{1}{2} \lambda
$$

where the second step is because $t \ell<1$, and the third step follows by $t \ell \leq \frac{1-\lambda}{4 \lambda}$.
Overall, we have

$$
\begin{aligned}
\left(\alpha_{1}+\frac{\alpha_{2} \alpha_{3}}{1-\alpha_{4}}\right)^{k} \leq & \left(1+t^{2}\left(\gamma^{2}+b^{2}\right)+\frac{4 \lambda t^{2}\left(\gamma^{2}+b^{2}\right)}{\frac{1}{2}-\frac{1}{2} \lambda}\right)^{k} \\
& \leq \exp \left(k t^{2}\left(\gamma^{2}+b^{2}\right)\left(1+\frac{8}{1-\lambda}\right)\right)
\end{aligned}
$$

This completes our proof of Lemma 1

B. 4 Proof of Theorem 1

Theorem 1 (Markov Chain Matrix Chernoff Bound). Let \boldsymbol{P} be a regular Markov chain with state space $[N]$, stationary distribution π and spectral expansion λ. Let $f:[N] \rightarrow \mathbb{C}^{d \times d}$ be a function such that (1) $\forall v \in[N], f(v)$ is Hermitian and $\|f(v)\|_{2} \leq 1$; (2) $\sum_{v \in[N]} \pi_{v} f(v)=0$. Let $\left(v_{1}, \cdots, v_{k}\right)$ denote a k-step random walk on \boldsymbol{P} starting from a distribution ϕ. Given $\epsilon \in(0,1)$,

$$
\begin{aligned}
& \mathbb{P}\left[\lambda_{\max }\left(\frac{1}{k} \sum_{j=1}^{k} f\left(v_{j}\right)\right) \geq \epsilon\right] \leq 4\|\boldsymbol{\phi}\|_{\boldsymbol{\pi}} d^{2} \exp \left(-\left(\epsilon^{2}(1-\lambda) k / 72\right)\right) \\
& \mathbb{P}\left[\lambda_{\min }\left(\frac{1}{k} \sum_{j=1}^{k} f\left(v_{j}\right)\right) \leq-\epsilon\right] \leq 4\|\boldsymbol{\phi}\|_{\boldsymbol{\pi}} d^{2} \exp \left(-\left(\epsilon^{2}(1-\lambda) k / 72\right)\right)
\end{aligned}
$$

Proof. (of Theorem[1]) Our strategy is to adopt complexification technique [8]. For any $d \times d$ complex Hermitian matrix \boldsymbol{X}, we may write $\boldsymbol{X}=\boldsymbol{Y}+\mathrm{i} \boldsymbol{Z}$, where \boldsymbol{Y} and $\mathrm{i} \boldsymbol{Z}$ are the real and imaginary parts of \boldsymbol{X}, respectively. Moreover, the Hermitian property of \boldsymbol{X} (i.e., $\boldsymbol{X}^{*}=\boldsymbol{X}$) implies that (1) \boldsymbol{Y} is real and symmetric (i.e., $\boldsymbol{Y}^{\top}=\boldsymbol{Y}$); (2) \boldsymbol{Z} is real and skew symmetric (i.e., $\boldsymbol{Z}=-\boldsymbol{Z}^{\top}$). The eigenvalues of \boldsymbol{X} can be found via a $2 d \times 2 d$ real symmetric matrix $\boldsymbol{H} \triangleq\left[\begin{array}{cc}\boldsymbol{Y} & \boldsymbol{Z} \\ -\boldsymbol{Z} & \boldsymbol{Y}\end{array}\right]$, where the symmetry of \boldsymbol{H} follows by the symmetry of \boldsymbol{Y} and skew-symmetry of \boldsymbol{Z}. Note the fact that, if the eigenvalues (real) of \boldsymbol{X} are $\lambda_{1}, \lambda_{2}, \cdots \lambda_{d}$, then those of \boldsymbol{H} are $\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}, \cdots, \lambda_{d}, \lambda_{d}$. I.e., \boldsymbol{X} and \boldsymbol{H} have the same eigenvalues, but with different multiplicity.
Using the above technique, we can formally prove Theorem1. For any complex matrix function $f:[N] \rightarrow \mathbb{C}^{d \times d}$ in Theorem 1 , we can separate its real and imaginary parts by $f=f_{1}+\mathrm{i} f_{2}$. Then we construct a real-valued matrix function $g:[N] \rightarrow \mathbb{R}^{2 d \times 2 d}$ s.t. $\forall v \in[N], g(v)=\left[\begin{array}{cc}f_{1}(v) & f_{2}(v) \\ -f_{2}(v) & f_{1}(v)\end{array}\right]$. According to the complexification technique, we know that (1) $\forall v \in[N], g(v)$ is real symmetric and $\|g(v)\|_{2}=\|f(v)\|_{2} \leq 1$; (2) $\sum_{v \in[N]} \pi_{v} g(v)=0$. Then

$$
\mathbb{P}\left[\lambda_{\max }\left(\frac{1}{k} \sum_{j=1}^{k} f\left(v_{j}\right)\right) \geq \epsilon\right]=\mathbb{P}\left[\lambda_{\max }\left(\frac{1}{k} \sum_{j=1}^{k} g\left(v_{j}\right)\right) \geq \epsilon\right] \leq 4\|\boldsymbol{\phi}\|_{\boldsymbol{\pi}} d^{2} \exp \left(-\left(\epsilon^{2}(1-\lambda) k / 72\right)\right),
$$

where the first step follows by the fact that $\frac{1}{k} \sum_{j=1}^{k} f\left(v_{j}\right)$ and $\frac{1}{k} \sum_{j=1}^{k} g\left(v_{j}\right)$ have the same eigenvalues (with different multiplicity), and the second step follows by Theorem $3{ }^{5}$ The bound on $\lambda_{\min }$ also follows similarly.

[^0]
[^0]: ${ }^{5}$ The additional factor 4 is because the constructed $g(v)$ has shape $2 d \times 2 d$.

