
Supplementary Information for “Regularizing
Towards Permutation Invariance in Recurrent

Models”

Edo Cohen-Karlik
Tel Aviv University, Israel

edocohen@mail.tau.ac.il

Avichai Ben David
Tel Aviv University, Israel

avichaib@mail.tau.ac.il

Amir Globerson
Tel Aviv University, Israel

and Google Research
gamir@post.tau.ac.il

Here we provide proofs for the results in the paper, as well as additional information about experi-
ments, and further evaluations.

Appendix A

Missing Proofs

Proof of Lemma 6. Denote
ŝ

def
“ fps0,x1, . . . ,xi´1q (.1)

Substituting Equation .1 into fps0,x1, . . . ,xtq, we have:
f p̂s,xi,xi`1,xi`2, . . . ,xtq (.2)

Equation .2 can be written as (see Section 2)
fpf p̂s,xi,xi`1q,xi`2, . . . ,xtq (.3)

Using Assumption 4.2, we can write Equation .3 as:
fpf p̂s,xi`1,xiq,xi`2, . . . ,xtq (.4)

Plugging back the simplified notation of nested applications of f and using the definition of Equation
.1, the above yields:

fps0,x1, . . . ,xi´1,xi`1,xi,xi`2, . . . ,xtq (.5)
which concludes the proof.

Proof of Corollary 7. Assume WLOG i ă j. We need to show that under the conditions of Lemma
6, the following holds

fps0,x1, . . . ,xi´1,xi,xi`1, . . .,xj´1,xj,xj`1, . . . ,xtq “ (.6)
fps0,x1, . . . ,xi´1,xj,xi`1, . . . ,xj´1,xi,xj`1, . . . ,xtq

From Lemma 6 we can replace xi and xi`1, which yields:
fps0,x1, . . . ,xi´1,xi`1,xi,xi`2, . . . ,xj´1,xj,xj`1, . . . ,xtq (.7)

This process can be repeated for j ´ i´ 1 times, resulting in:
fps0,x1, . . . ,xi´1,xi`1, , . . . ,xj´1,xi,xj,xj`1, . . . ,xtq (.8)

Similarly, swapping xj with the elements preceding it for j ´ i times will result in the RHS of
Equation .6, concluding the proof.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Appendix B

Parity Experiment Details

Both networks were trained with 1000 randomly generated binary sequences with lengths between
2 and 10. For the RNN, 20 neurons were sufficient for convergence to zero training error. We use
a DeepSet with one hidden layer for the preprocessing network ϕ, and one hidden layer for the
aggregating network ρ. Both the ϕ and ρ have a width of 100 which was the minimal width required
for convergence for the architecture used. The test set consists of 3000 examples and was generated
in a similar fashion to the train set.

Arithmetic Tasks on Sequences of Integers

The range of integers used is t0, . . . , 99u for all experiments. The sum experiment was repeated
twenty times, and the others three times. We report average accuracy.

Since the tasks defined are regression tasks in nature, we follow Zaheer et al. [2017], Murphy et al.
[2018] and use an L1 loss for training. At test time, we round the output of the network to the closest
integer and report accuracy using the zero-one loss. For the variance task we report mean squared
error (MSE).

Point Cloud Experiment

Implementation of point-cloud experiments was based on the official repository of Set Transform-
ers.1 We omit Set Tranformer [Lee et al., 2019] from the comparison as it did not reproduce the
reported results. For DeepSets and our method we use the same architectures used in the DeepSets
experiments [Zaheer et al., 2017]. The preprocessing network ϕ is a feed forward neural net with
three hidden layers of width 256 and TanH activations. For the output network, ρ, we use a similar
network with one hidden layer and add dropout with a rate of 0.5.

In order to train SIRE we use a GRU with a single layer with width 256 for n “ 100 and n “ 1000,
for n “ 5000 we use a width of 512. We use Adam optimizer with a learning rate of 1e´3. We
apply a dropout rate of 0.75 in the GRU layer and a batch size of n “ 200. We use a regularization
coefficient of 0.1 for all sizes. All hyperparameters were selected using cross validation. For n “
5000 we use Truncated Back Propagation Through Time with a window of size 1000.

Locally Perturbed MNIST

In order to generate Locally Perturbed MNIST we flatten each digit to a 784 dimensional vector. We
then perform a “convolution” like operation with full stride. At each window we apply a random
permutation. This process limits the distance of a pixel from its original position by at most the
window size. We perform the above process twice with window sizes 4 and 7 (Figure ??).2

Appendix C

Comparison of RSUB and RSIRE

In the main text, we considered two possible regularizers: SUB and SIRE. Both had a value of zero
for permutation invariant models but are otherwise different. As we argue in the main text, SIRE is
expected to perform better under a given budget of samples, since it enumerates over the state space
more efficiently. In order to empirically evaluate this effect, we perform the sum experiment using
200 training examples with sequence length 10 over t0, . . . , 19u. We evaluate three regularization
coefficient values, λ “ 0.001, 0.01, 0.1 for each scheme. The best values on holdout are λSIRE “

0.1 and λSUB “ 0.001. Each experiment was repeated 5 times, and Figure 1 shows the results
averaged over these runs.

1 https://github.com/juho-lee/set transformer
2Resulting in an offset of at most 11 from the pixels original location.

2

https://github.com/juho-lee/set_transformer


Figure 1: Loss curve of training for 1000 epochs with each regularizer.

It can clearly be seen that usingRSIRE results in faster convergence. Furthermore, the test accuracy
obtained by RSIRE is 0.792 (0.09) compared to an accuracy of 0.759 (0.11) achieved by RSUB .
Thus, we conclude that in this case SIRE outperforms SUB both in convergence speed and test
accuracy of the resulting model.

References
J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W. Teh. Set transformer: A framework for

attention-based permutation-invariant neural networks. In International Conference on Machine
Learning, pages 3744–3753, 2019.

R. L. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro. Janossy pooling: Learning deep permutation-
invariant functions for variable-size inputs. arXiv preprint arXiv:1811.01900, 2018.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. Deep Sets.
In Advances in neural information processing systems, pages 3391–3401, 2017.

3


