
Optimal and Practical Algorithms for Smooth and
Strongly Convex Decentralized Optimization

Dmitry Kovalev Adil Salim Peter Richtárik

King Abdullah University of Science and Technology
Thuwal, Saudi Arabia

Abstract

We consider the task of decentralized minimization of the sum of smooth strongly
convex functions stored across the nodes of a network. For this problem, lower
bounds on the number of gradient computations and the number of communication
rounds required to achieve ε accuracy have recently been proven. We propose two
new algorithms for this decentralized optimization problem and equip them with
complexity guarantees. We show that our first method is optimal both in terms
of the number of communication rounds and in terms of the number of gradient
computations. Unlike existing optimal algorithms, our algorithm does not rely on
the expensive evaluation of dual gradients. Our second algorithm is optimal in
terms of the number of communication rounds, without a logarithmic factor. Our
approach relies on viewing the two proposed algorithms as accelerated variants of
the Forward Backward algorithm to solve monotone inclusions associated with the
decentralized optimization problem. We also verify the efficacy of our methods
against state-of-the-art algorithms through numerical experiments.

1 Introduction

In this paper we are concerned with the design and analysis of new efficient algorithms for solving
optimization problems in a decentralized storage and computation regime. In this regime, a network of
agents/devices/workers, such as mobile devices, hospitals, wireless sensors, or smart home appliances,
collaborates to solve a single optimization problem whose description is stored across the nodes of
the network. Each node can perform computations using its local state and data, and is only allowed
to communicate with its neighbors.

Problems of this form have been traditionally studied in the signal processing community (Xu et al.,
2020), but are attracting increasing interest from the machine learning and optimization community as
well (Scaman et al., 2017). Indeed, the training of supervised machine learning models via empirical
risk minimization from training data stored across a network is most naturally cast as a decentralized
optimization problem. Finally, while current federated learning (Konečný et al., 2016; McMahan
et al., 2017) systems rely on a star network topology, with a trusted server performing aggregation
and coordination placed at the center of the network, advances in decentralized optimization could
be useful in new generation federated learning formulations that would rely on fully decentralized
computation (Li et al., 2019). In summary, decentralized optimization is of direct relevance to
machine learning, present and future.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

1.1 Formalism

Formally, given an undirected connected network G = (V, E) with nodes/vertices V = {1, . . . , n}
and edges E ⊂ V × V , we consider optimization problems of the form

min
x∈Rd

∑
i∈V

fi(x), (1)

where the data describing functions fi : Rd → R is stored on node i and not directly available to any
other node. Decentralized algorithms for solving this problem need to respect the network structure
of the problem, which is to say that computation can only be made on the nodes i ∈ V from data
and information available on the nodes, and communication is constrained to only happen along the
edges e ∈ E .

1.2 Computation and communication

Several decentralized gradient-type algorithms have been proposed to solve (1) in the smooth and
strongly convex regime. Two key efficiency measures used to compare such methods are: i) the
number of gradient evaluations (where one gradient evaluation refers to computing∇fi(xi) for all
i ∈ V for some input vectors xi), and ii) the number of communication rounds, where one round
allows each node to send O(1) vectors of size d to their neighbors. If computation is costly, the first
comparison metric is more important, and if communication is costly, the second is more important.

Note that problem (1) poses certain intrinsic difficulties each method designed for it needs to address.
Clearly, more information can be communicated in each communication round if the network G is
“more highly” connected. By χ we denote the condition number associated with (the connectivity
of) the graph G; a formal definition is given later. Likewise, more computation will be needed if
the functions fi are “more complicated”. We will entirely focus on problems where all functions fi
are L-smooth and µ-strongly convex, which naturally leads to the quantity κ := L/µ as a condition
number associated with computation.

Much of decentralized optimization research is focused on designing decentralized algorithms with
computation and communication guarantees which have as good as possible dependence on the
intrinsic properties of the problem, i.e., on the condition numbers κ and χ.

2 Related Work and Contributions

In this section we first briefly review some of the key results on decentralized optimization, and
subsequently provide a brief summary of our key contributions.

2.1 Related work

Existing gradient-type decentralized methods for solving problem (1) can be informally classified
into three classes: non-accelerated algorithms, accelerated algorithm and optimal algorithms.

Non-accelerated methods. Loosely speaking, a method is non-accelerated if it has at least a linear
dependence on the condition numbers κ and χ, i.e., O(κ) and O(χ). Please refer to (Xu et al., 2020,
Table 1) for a summary of many such methods, see also (Alghunaim et al., 2019; Li and Lin, 2020).
Xu et al. (2020) provide a tight unified analysis of many of these nonaccelerated algorithms, and relies
on similar tools as those used in this paper, such as operator splitting and Chebyshev acceleration.

Accelerated methods. Accelerated methods have an improved (sublinear) dependence on the
condition numbers, typically O(

√
κ) and O(

√
χ). Accelerated algorithms include accelerated

DNGD of Qu and Li (2020) and accelerated EXTRA of Li and Lin (2020); the latter using the
Catalyst (Lin et al., 2017) framework to accelerate EXTRA (Shi et al., 2015). Additional accelerated
methods include, the Accelerated Penalty Method of Li et al. (2018); Dvinskikh et al. (2019), SSDA
and MSDA of Scaman et al. (2017) and Accelerated Dual Ascent of Uribe et al. (2020).

Optimal algorithms. Scaman et al. (2017) provide lower bounds for the gradient computation and
communication complexities of finding an ε-accurate solution; see Section 3.2 below. There have

2

been several attempts to match these lower bounds, which include algorithms summarized in Table 1.
Note, that gradient computation complexity is left as N/A for SSDA and MSDA. This is because they
rely on the computation of the gradient of the Fenchel conjugate of fi, called dual gradients in the
sequel, which can be intractable. Indeed, computing a dual gradient can be as hard as minimizing fi.
Finally, we remark that Scaman et al. (2018) provide lower bounds in the nonsmooth regime as well,
and an algorithm matching this lower bound is called MSPD. MSPD is primal dual Chambolle and
Pock (2011), similarly to the algorithms developed in this paper.

Table 1: Comparison of existing state of the art decentralized algorithms with our results in terms of
gradient computation and communication complexity of finding x such that ‖x− x∗‖2 ≤ ε, where
x∗ is a solution to Problem (1)

Algorithm Gradient computation
complexity

Communication
complexity

Existing State of the art Decentralized Algorithms

Accelerated Dual Ascent
Uribe et al. (2020) O

(
κ
√
χ log2 1

ε

)
O
(√
κχ log 1

ε

)
Single/Multi Step Dual Ascent

Scaman et al. (2017) N/A O
(√
κχ log 1

ε

)
Accelerated Penalty Method

Li et al. (2018); Dvinskikh et al. (2019) O
(√
κ log 1

ε

)
O
(√
κχ log2 1

ε

)
Accelerated EXTRA

Li and Lin (2020) O
(√
κχ log(κχ) log 1

ε

)
O
(√
κχ log(κχ) log 1

ε

)
Our Results

Algorithm 1
this paper, Theorem 2 O

((√
κχ+ χ

)
log 1

ε

)
O
((√

κχ+ χ
)

log 1
ε

)
Algorithm 2

this paper, Corollary 1 O
(√
κ log 1

ε

)
O
(√
κχ log 1

ε

)
Algorithm 3

this paper, Appendix O
(√
κχ log 1

ε

)
O
(√
κχ log 1

ε

)
Lower bounds Scaman et al. (2017) O

(√
κ log 1

ε

)
O
(√
κχ log 1

ε

)
2.2 Summary of contributions

The starting point of this paper is the realization that, to the best of our knowledge, in the class of
algorithms not relying on the computation of the dual gradients, there is no algorithm optimal in
communication complexity, and as a result, no algorithm optimal in both gradient computation and
communication complexity. To remedy this situation, we do the following:

• We propose a new accelerated decentralized algorithm not relying on dual gradients: Ac-
celerated Proximal Alternating Predictor-Corrector (APAPC) method (Algorithm 1). We
show that in order to obtain x for which ‖x− x∗‖2 ≤ ε, where x∗ is the solution of (1), this
method only needs

O((
√
κχ+ χ) log(1/ε))

gradient computations and communication rounds (Theorem 2). When combined with
Chebyshev acceleration, similarly to the trick used in (Scaman et al., 2017, Section 4.2), we
show that our method, which we then call Optimal Proximal Alternating Predictor-Corrector
(OPAPC) method (Algorithm 2), leads to an optimal decentralized method both in terms of
gradient computation and communication complexity (Corollary 1). In particular, OPAPC
finds an ε-solution in at most

O
(√
κ log(1/ε)

)
gradient computations and at most

O (
√
κχ log(1/ε))

3

communication rounds. Algorithm 2 reaches the lower bounds (Theorem 1), and hence it is
indeed optimal.

• We also propose another accelerated algorithm (Algorithm 3) not relying on dual gradients,
one that is optimal in communication complexity (this algorithm is presented in the appendix
only). Compared to the above development, this algorithm has the added advantage that
it requires the computation of a single gradient per communication step. This can have
practical benefits when communication is expensive.

3 Background

3.1 Basic formulation of the decentralized problem

Problem (1) can be reformulated as a lifted (from Rd to Rdn) optimization problem via consensus
constraints:

min
x1,...,xn∈Rd
x1=...=xn

∑
i∈V

fi(xi). (2)

Consider the function F : (Rd)V → R defined by F (x1, . . . , xn) =
∑
i∈V fi(xi), where

x1, . . . , xn ∈ Rd. Then, F is µ-strongly convex and L-smooth since the individual functions
fi are. Consider also any linear operator (equivalently, any matrix) W : (Rd)V → (Rd)V such
that W(x1, . . . , xn) = 0 if and only if x1 = . . . = xn. Denoting x = (x1, . . . , xn) ∈ (Rd)V ,
Problem (2) is equivalent to

min
x∈ker(W)

F (x). (3)

Many optimization algorithms converge exponentially fast (i.e., linearly) to a minimizer of Prob-
lem (3), e.g. the projected gradient algorithm. However, only few of them are decentralized. A
decentralized algorithm typically relies on multiplication by W, in cases where W is a gossip
matrix. Consider a n × n matrix Ŵ satisfying the following properties: 1) Ŵ is symmetric and
positive semi definite, 2) Ŵi,j 6= 0 if and only if i = j or (i, j) ∈ E , and 3) kerŴ = span(1),
where 1 = (1, . . . , 1)>. Such a matrix is called a gossip matrix. A typical example is the Lapla-
cian of the graph G. Denoting I the d × d identity matrix and ⊗ the Kronecker product, consider
W : (Rd)V → (Rd)V the nd×ndmatrix defined by W := Ŵ⊗I. This matrix can be represented as
a block matrix W = (Wi,j)(i,j)∈V2 , where each block Wi,j = Ŵi,jI is a d× d matrix proportional
to I. In particular, if d = 1, then W = Ŵ. Moreover, W satisfy similar properties to Ŵ:

1. W is symmetric and positive semi definite,

2. Wi,j 6= 0 if and only if i = j or (i, j) ∈ E ,

3. kerW is the consensus space, ker(W) = {(x1, . . . , xn) ∈ (Rd)V , x1 = · · · = xn},

4. λmax(W) = λmax(Ŵ) and λ+min(W) = λ+min(Ŵ), where λmax (resp. λ+min) denotes the
largest (resp. the smallest positive) eigenvalue.

Throughout the paper, we denote W† : range(W) → range(W) the inverse of the map W :
range(W) → range(W). The operator W† is positive definite over range(W) and we denote
‖y‖2W† =

〈
W†y, y

〉
for every y ∈ range(W). With a slight abuse of language, we shall say that W

is a gossip matrix. Note that decentralized communication can be represented as a multiplication of
W by a vector x ∈ (Rd)V . Indeed, the ith component of Wx is a linear combination of xj , where j
is a neighbor of i (we shall write j ∼ i). In other words, one matrix vector multiplication involving
W is equivalent to one communication round.

In the rest of the paper, our goal is to solve the equivalent problem (3) with W being a gossip matrix
via an optimization algorithm which uses only evaluations of∇F and multiplications by W.

3.2 Lower bounds

Linearly converging decentralized algorithms using a gossip matrix W often have a linear rate
depending on the condition number of the fi, κ := L

µ and the condition number (or spectral gap) of

4

W, χ(W) := λmax(W)

λ+
min(W)

. Indeed, the spectral gap of the Laplacian matrix is known to be a measure
of the connectivity of the graph.

In this paper, we define the class of (first order) decentralized algorithms as the subset of black box
optimization procedure (Scaman et al., 2017, Section 3.1) not using dual gradients, i.e. a decentralized
algorithm is not allowed to compute∇f∗i (a formal definition is given in the Supplementary material).
Complexity lower bounds for solving Problem (1) by a black-box optimization procedure are given
by Scaman et al. (2017). These lower bounds relate the number of gradient computations (resp.
number of communication rounds) to achieve ε accuracy to the condition numbers κ and χ(W).
Since a decentralized algorithm is a black-box optimization procedure, these lower bounds apply
to decentralized algorithms. Therefore, we obtain our first result as a direct application of (Scaman
et al., 2017, Corollary 2).
Theorem 1 (Scaman et al. (2017)). Let χ ≥ 1. There exist a gossip matrix W with condition
number χ, and a family of smooth strongly convex functions (fi)i∈V with condition number κ >
0 such that the following holds: for any ε > 0, any decentralized algorithm requires at least
Ω
(√
κχ log(1/ε)

)
communication rounds, and at least Ω (

√
κ log(1/ε)) gradient computations to

output x = (x1, . . . , xn) such that ‖x− x∗‖2 < ε, where x∗ = arg minF.

Although the lower bounds of Theorem 1 are obvious consequences of (Scaman et al., 2017, Corol-
lary 2), their tightness is not. Indeed, the lower bounds of Theorem 1 are tight on the class of
black-box optimization procedures since they are achieved by MSDA Scaman et al. (2017). However,
MSDA uses dual gradients and whether these lower bounds are tight on the class of decentralized
algorithms is not known. In this paper, we propose decentralized algorithms achieving these lower
bounds, showing in particular that they are tight.

3.3 Operator splitting

Recall that in this paper, any optimization algorithm solving Problem (3) by using evaluations of∇F
and multiplications by the gossip matrix W only is a decentralized algorithm. Such algorithms can be
obtained in several ways, e.g., by applying operator splitting methods to primal dual reformulations
of Problem (3), see Condat et al. (2019). This is the approach we chose in this work.

We now provide some minimal background knowledge on the Forward Backward algorithm involving
monotone operators. We restrict ourselves to single valued, continuous monotone operators. For the
general case of set valued monotone operators, the reader is referred to Bauschke and Combettes
(2011).

Let E be an Euclidean space and denote 〈·, ·〉E , ‖ · ‖E its inner product and the associated norm. Given
ν ∈ R, a map A : E→ E is ν-monotone if for every x, y ∈ E,

〈A(x)−A(y), x− y〉E ≥ ν‖x− y‖
2
E.

If ν < 0, A is weakly monotone, if ν > 0, A is strongly monotone and if ν = 0 then A is
monotone. In this paper, a monotone operator is defined as a monotone continuous map. For every
monotone operator and every γ > 0, the map I + γA : E → E is one-to-one and its inverse
JγA = (I + γA)−1 : E→ E, called resolvent, is well defined. Let F be a smooth convex function,
i.e., F is differentiable and its gradient is Lipschitz continuous. Then ∇F is a monotone operator,
and the resolvent Jγ∇F is the proximity operator of γF . However, there exist monotone operators
which are not gradients of convex functions. For instance, a skew symmetric operator S on E defines
the linear map x 7→ Sx which is not a gradient. This map is a monotone operator since 〈Sx, x〉E = 0.
The set of zeros of A, defined as Z(A) := {x ∈ E, A(x) = 0}, is often of interest in optimization.
For instance, Z(∇F) = arg minF .

Forward Backward. In order to find an element in Z(A + B), where B is another monotone
operator, the Forward Backward algorithm iterates

xk+1 = JB(xk −A(xk)). (4)

Note that if A = ∇F and B = ∇G, where G is another differentiable convex function, the Forward
Backward algorithm boils down to the proximal gradient algorithm. In this particular case, Nesterov
acceleration can be applied to (4) and leads to faster convergence rates compared to the proximal
gradient algorithm (Nesterov, 1983; Beck and Teboulle, 2009).

5

Generalized Forward Backward. For every positive definite operator P on E, the algorithm

xk+1 = JP−1B(xk −P−1A(xk)), (5)

called the Generalized Forward Backward method, can be seen as an instance of (4) because
Z(P−1A+P−1B) = Z(A+B) and P−1A, P−1B are monotone operators under the inner product
induced by P on E. For example, the gradient of F under this inner product is P−1∇F . A primal
dual optimization algorithm is an algorithm solving a primal dual formulation of a minimization
problem, see below. Many primal dual algorithms can be seen as instances of (5), with general
monotone operators A,B, for a well chosen parameter P, see (Condat et al., 2019).

4 New Decentralized Algorithms

4.1 An accelerated primal dual algorithm

Before presenting our algorithm, we introduce an accelerated decentralized algorithm which we then
use to motivate the development of our method.

In this section, E is the Euclidean space E = (Rd)V×range(W) endowed with the norm ‖(x, y)‖2E :=
‖x‖2 + ‖y‖2W† .

Using the first order optimality conditions, a point x∗ is a solution to Problem (3) if and only
if ∇F (x∗) ∈ range(W) and x∗ ∈ ker(W). Solving Problem (3) is thus equivalent to finding
(x∗, y∗) ∈ E such that

0 = ∇F (x∗) + y∗,

0 = Wx∗.

(6)

Indeed, the first line of (6) is equivalent to ∇F (x∗) = −y∗ ∈ rangeW, because (x∗, y∗) ∈ E =
(Rd)V × range(W). The second line of (6) is just a definition of x∗ ∈ kerW. Consider the maps
M,A,B : E→ E defined by

M(x, y) :=

∇F (x) + y

−Wx

 , A(x, y) :=

∇F (x)

0

 , B(x, y) :=

 y

−Wx

 .
Then M,A and B are monotone operators. Indeed, A is the gradient of the convex function
(x, y) 7→ F (x), B satisfies

〈B(x, y), (x, y)〉E =
〈
x−W†Wx, y

〉
= 0

for every (x, y) ∈ E (since y ∈ range(W)), and M = A + B. Moreover, M(x∗, y∗) = 0, i.e.,
(x∗, y∗) is a zero of M .

One idea to solve (6) is therefore to apply Algorithm (4) to the sum A+B. However, computing the
resolvent JB in a decentralized way across the network G is notably challenging. Another idea is to
apply (5) using the symmetric positive definite operator P : E→ E defined by

P =

 1
η I 0

0 1
θ I− ηW

 .
Indeed, for every (x, y) ∈ E, (x′, y′) = JP−1B(x, y) implies x′ = x−ηy′ and 1

θ (y′−y)−ηW(y′−
y) = Wx′ = W(x− ηy′). Therefore, y′ = y + θW(x− ηy), and the computation of JP−1B only
requires one multiplication by W, i.e., one local communication round. The resulting algorithm is

yk+1 = yk + θW(xk − η∇F (xk)− ηyk),

xk+1 = xk − η∇F (xk)− ηyk+1.

(7)

6

Remark 1. The Proximal Alternating Predictor–Corrector (PAPC) algorithm, a.k.a.
Loris–Verhoven (Loris and Verhoeven, 2011; Drori et al., 2015; Chen et al., 2013; Condat
et al., 2019) is a primal dual algorithm that can tackle Problem (3). Up to a change of variable,
Algorithm (7) can be shown to be equivalent to PAPC applied to (3). Moreover, it was already noticed
that the PAPC can be represented as a Forward Backward algorithm (5) (Condat et al., 2019).

Invoking a complexity result on the PAPC from Salim et al. (2020), the complexity of Algorithm (7)
isO ((κ+ χ(W)) log(1/ε)) , both in communication and gradient computations. This complexity is
equivalent to that of the best performing non accelerated algorithm proposed recently, such as Exact
diffusion, NIDS and EXTRA (see Li and Lin (2020); Xu et al. (2020)). In spite of this, we are able to
accelerate the convergence of Algorithm (7).

In particular, we propose a new algorithm that can be seen as an accelerated version of Algorithm (7).
The proposed algorithm (APAPC) is defined in Algorithm 1) , and its complexity is given in Theorem 2.
We prove that the complexity of APAPC isO((

√
κχ(W)+χ(W)) log(1/ε)), both in communication

rounds and gradient computations. The proposed algorithm is accelerated because its dependence on
the condition number κ is O(

√
κ) instead of O(κ).

Algorithm 1 Accelerated PAPC (APAPC)

1: Parameters: x0 ∈ Rnd, y0 ∈ rangeW, η, θ, α > 0, τ ∈ (0, 1)
2: Set x0f = x0

3: for k = 0, 1, 2, . . . do
4: xkg = τxk + (1− τ)xkf
5: xk+1/2 = (1 + ηα)−1(xk − η(∇F (xkg)− αxkg + yk))

6: yk+1 = yk + θWxk+1/2

7: xk+1 = (1 + ηα)−1(xk − η(∇F (xkg)− αxkg + yk+1))

8: xk+1
f = xkg + 2τ

2−τ (xk+1 − xk)
9: end for

Theorem 2 (Accelerated PAPC). Set the parameters η, θ, α, τ to η = 1
4τL , θ = 1

ηλmax(W) , α = µ,

and τ = min

{
1, 12

√
χ(W)
κ

}
. Then,

1

η

∥∥xk − x∗∥∥2 +
2(1− τ)

τ
DF (xkf , x

∗) ≤

(
1 +

1

4
min

{
1√

κχ(W)
,

1

χ(W)

})−k
C,

where DF is the Bregman divergence of F and C := 1
η

∥∥x0 − x∗∥∥2 + 1
θ‖y

0 − y∗‖2W† +
2(1−τ)
τ DF (x0f , x

∗). Moreover, for every ε > 0, APAPC finds xk for which ‖xk − x∗‖2 ≤ ε in

at most O
((√

κχ(W) + χ(W)
)

log(1/ε)
)

computations (resp. communication rounds).

The proposed algorithm 1 provably accelerates Algorithm (7). The proof intuitively relies on viewing
Algorithm 1 as an accelerated version of (5), although Nesterov’s acceleration does not apply to
general monotone operators a priori.

4.2 A decentralized algorithm optimal both in communication and computation complexity

As mentioned before, while APAPC is accelerated, it is not optimal. We now derive a variant which
is optimal both in gradient computations and communication rounds. Following Scaman et al. (2017,
Section 4.2), our main tool to derive the new decentralized optimal algorithm is the Chebyshev
acceleration (Scaman et al., 2017; Arioli and Scott, 2014).

In particular, there exists a polynomial P such that

(i) P (W) is a Gossip matrix,

7

(ii) multiplication by P (W) requires
⌊√

χ(W)
⌋

multiplications by W (i.e., communication
rounds) and is described by the subroutine ACCELERATEDGOSSIP proposed in (Scaman
et al., 2017, Algorithm 2) and recalled in Algorithm 2 for the ease of reading,

(iii) χ(P (W)) ≤ 4.

Therefore, one can replace W by P (W) in Problem (3) to obtain an equivalent problem. Applying
APAPC to the equivalent problem leads to a linearly converging decentralized algorithm. This new
algorithm, called Optimal PAPC (OPAPC), is formalized as Algorithm 2.

Algorithm 2 Optimal PAPC (OPAPC)

1: Parameters: x0 ∈ Rnd, y0 ∈ rangeP (W), T ∈ N∗, c1, c2, c3, η, θ, α > 0, τ ∈ (0, 1)
2: Set x0f = x0

3: for k = 0, 1, 2, . . . do
4: xkg = τxk + (1− τ)xkf
5: xk+1/2 = (1 + ηα)−1(xk − η(∇F (xkg)− αxkg + yk))

6: yk+1 = yk + θACCELERATEDGOSSIP(W, xk+1/2, T)
7: xk+1 = (1 + ηα)−1(xk − η(∇F (xkg)− αxkg + yk+1))

8: xk+1
f = xkg + 2τ

2−τ (xk+1 − xk)
9: end for

10: procedure ACCELERATEDGOSSIP(W, x, T)
11: Set a0 = 1, a1 = c2, x0 = x, x1 = c2(I − c3W)x
12: for i = 1, . . . , T − 1 do
13: ai+1 = 2c2ai − ai−1
14: xi+1 = 2c2(I − c3W)xi − xi−1
15: end for

return x− xT
aT

16: end procedure

Using the properties of P (W) mentioned above, we obtain the following corollary of Theorem 2.
Corollary 1 (Optimal PAPC). Set the parameters T, c1, c2, c3, η, θ, α, τ to

T =
⌊√

χ(W)
⌋
, c1 =

√
χ(W)− 1√
χ(W) + 1

, c2 =
χ(W) + 1

χ(W)− 1
, c3 =

2χ(W)

(1 + χ(W))λmax(W)
,

η =
1

4τL
, θ =

1 + c2T1
η(1 + cT1)2

, α = µ, τ = min

{
1,

1 + cT1
2
√
κ(1− cT1)

}
.

Then, there exists C ≥ 0 such that

1

η

∥∥xk − x∗∥∥2 +
2− τ
τ

DF (xkf , x
∗) ≤

(
1 +

1

16
min

{
2√
κ
, 1

})−k
C.

Moreover, for every ε > 0, OPAPC finds xk for which ‖xk − x∗‖2 ≤ ε in at most O (
√
κ log(1/ε))

gradient computations and at most O
(√

κχ(W) log(1/ε)
)

communication rounds.

The Algorithm 2 achieves both the lower bounds of Theorem 1. In particular, the lower bounds of
Theorem 1 are tight.

5 Numerical Experiments

In this section, we perform experiments with logistic regression for binary classification with `2
regularizer, where our loss function has the form

fi(x) =
1

m

m∑
j=1

log(1 + exp(−bija>ijx)) +
r

2
‖x‖2,

8

where aij ∈ Rd, bij ∈ {−1,+1} are data points, r is the regularization parameter, m is the number
of data points stored on each node.

In our experiments we used 10, 000 data samples randomly distributed to the nodes of network of
size n = 100, m = 100 samples per each node. We used 2 networks: 10× 10 grid and Erdös-Rényi
random graph of average degree 6. Same setup was tested by Scaman et al. (2017).

We use three LIBSVM1 datasets: a6a, w6a, ijcnn1. The regularization parameter was chosen so that
κ ≈ 103. Additional experiments with synthetic data are given in the Supplementary material.

0 2000 4000 6000 8000
of communication rounds

102

100

10 2

10 4

10 6

10 8

10 10

10 12

a6a, Erdos Renyi
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 2000 4000 6000 8000 10000 12000
of communication rounds

102

100

10 2

10 4

10 6

10 8

10 10

10 12

a6a, Grid
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 2000 4000 6000 8000
of communication rounds

102

100

10 2

10 4

10 6

10 8

10 10

10 12

w6a, Erdos Renyi
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 2000 4000 6000 8000 10000 12000
of communication rounds

102

100

10 2

10 4

10 6

10 8

10 10

10 12

w6a, Grid
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 2000 4000 6000 8000
of communication rounds

102

100

10 2

10 4

10 6

10 8

10 10

10 12

ijcnn1, Erdos Renyi
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 2000 4000 6000 8000 10000 12000
of communication rounds

102

100

10 2

10 4

10 6

10 8

10 10

10 12

ijcnn1, Grid
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

(a) Communication complexity.

0 500 1000 1500 2000 2500 3000
of gradient calls

102

100

10 2

10 4

10 6

10 8

10 10

10 12

a6a, Erdos Renyi
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 500 1000 1500 2000 2500 3000 3500 4000
of gradient calls

102

100

10 2

10 4

10 6

10 8

10 10

10 12

a6a, Grid
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 500 1000 1500 2000 2500 3000
of gradient calls

102

100

10 2

10 4

10 6

10 8

10 10

10 12

w6a, Erdos Renyi
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 500 1000 1500 2000 2500 3000 3500 4000
of gradient calls

102

100

10 2

10 4

10 6

10 8

10 10

10 12

w6a, Grid
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 500 1000 1500 2000 2500 3000
of gradient calls

102

100

10 2

10 4

10 6

10 8

10 10

10 12

ijcnn1, Erdos Renyi
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 500 1000 1500 2000 2500 3000 3500 4000
of gradient calls

102

100

10 2

10 4

10 6

10 8

10 10

10 12

ijcnn1, Grid
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

(b) Gradient computation complexity.

Figure 1: Linear convergence of decentralized algorithms in number of communication rounds and
gradient computations.

Figure 1 compares Algorithm 1 (Accelerated PAPC) and Algorithm 2 (Optimal PAPC) with three
state-of-the-art accelerated benchmarks: Accelerated Penalty (Li et al., 2018; Dvinskikh et al., 2019),
Accelerated Extra (Li and Lin, 2020) and MSDA Scaman et al. (2017), where we used the subroutine
of Uribe et al. (2020) to compute the dual gradients. This subroutine uses primal gradients ∇fi, and
the resulting algorithm can be shown to have an optimal communication complexity. We represent the
squared distance to the solution as a function of the number of communication rounds and (primal)
gradient computations.

The theory developed in this paper concerns the value of the linear rates of the proposed algorithms,
i.e., the slope of the curves in Figure 1. In communication complexity, one can see that our Algo-
rithms 1 and 2 have similar rate and perform better than the other benchmarks except MSDA. MSDA
performs slightly better in communication complexity. However, MSDA uses dual gradients and has
much higher iteration complexity. In gradient computation complexity, one can see that our main
Algorithm 2 is, alongside Accelerated Penalty, the best performing method. Accelerated Penalty
performs slightly better in gradient computation complexity. However, the theory of Accelerated
Penalty does not predict linear convergence in the number of communication rounds and we see that
this algorithm converges sublinearly. Overall, Optimal PAPC is the only universal method which
performs well both in communication rounds and gradient computations.

1The LIBSVM dataset collection is available at https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/

9

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

6 Broader Impact

Our paper is of a fundamental theoretical nature. We designed new decentralized optimization
algorithms, and proved that they are optimal in a certain rigorous mathematical sense. We trust that
our methods will have impact wherever decentralized optimization is needed and used, at present
(e.g., sensor networks) and in the future (e.g., fully decentralized federated learning). Having said
that, our methods are generic as we did not investigate any particular application. Hence, we do
not expect any immediate societal impact beyond impact on the research community developing
the foundational tools for AI. We hope, however, that AI practitioners will be inspired by this work
and will use the fruits of our labor to benefit humanity through concrete applications and machine
learning models.

References
Alghunaim, S. A., Ryu, E. K., Yuan, K., and Sayed, A. H. (2019). Decentralized proximal gradient

algorithms with linear convergence rates. arXiv preprint arXiv:1909.06479.

Arioli, M. and Scott, J. (2014). Chebyshev acceleration of iterative refinement. Numerical Algorithms,
66(3):591–608.

Bauschke, H. H. and Combettes, P. L. (2011). Convex analysis and monotone operator theory in
Hilbert spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer,
New York.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202.

Chambolle, A. and Pock, T. (2011). A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145.

Chen, P., Huang, J., and Zhang, X. (2013). A primal–dual fixed point algorithm for convex separable
minimization with applications to image restoration. Inverse Problems, 29(2):025011.

Condat, L., Kitahara, D., Contreras, A., and Hirabayashi, A. (2019). Proximal splitting algorithms:
Relax them all! arXiv preprint arXiv:1912.00137.

Drori, Y., Sabach, S., and Teboulle, M. (2015). A simple algorithm for a class of nonsmooth
convex–concave saddle-point problems. Operations Research Letters, 43(2):209–214.

Dvinskikh, D. and Gasnikov, A. (2019) Decentralized and parallelized primal and dual accelerated
methods for stochastic convex programming problems. arXiv preprint arXiv:1904.09015.

Konečný, J., McMahan, H. B., Yu, F., Richtárik, P., Suresh, A. T., and Bacon, D. (2016). Federated
learning: strategies for improving communication efficiency. In NIPS Private Multi-Party Machine
Learning Workshop.

Li, H., Fang, C., Yin, W., and Lin, Z. (2018). A sharp convergence rate analysis for distributed
accelerated gradient methods. arXiv preprint arXiv:1810.01053.

Li, H. and Lin, Z. (2020). Revisiting extra for smooth distributed optimization. arXiv preprint
arXiv:2002.10110.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2019). Federated learning: challenges, methods,
and future directions. arXiv preprint arXiv:1908.07873.

Lin, H., Mairal, J., and Harchaoui, Z. (2017). Catalyst acceleration for first-order convex optimization:
from theory to practice. The Journal of Machine Learning Research, 18(1):7854–7907.

Loris, I. and Verhoeven, C. (2011). On a generalization of the iterative soft-thresholding algorithm
for the case of non-separable penalty. Inverse Problems, 27(12):125007.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and Agüera y Arcas, B. (2017).
Communication-efficient learning of deep networks from decentralized data. In Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS).

10

Nesterov, Y. E. (1983). A method for solving the convex programming problem with convergence
rate 1/k2. In Dokl. Akad. Nauk SSSR, volume 269, pages 543–547.

Qu, G. and Li, N. (2020). Accelerated distributed nesterov gradient descent. IEEE Transactions on
Automatic Control, 65(6):2566–2581.

Salim, A., Condat, L., Mishchenko, K., and Richtárik, P. (2020). Dualize, split, randomize: Fast
nonsmooth optimization algorithms. arXiv preprint arXiv:2004.02635.

Scaman, K., Bach, F., Bubeck, S., Lee, Y. T., and Massoulié, L. (2017). Optimal algorithms for
smooth and strongly convex distributed optimization in networks. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 3027–3036.

Scaman, K., Bach, F., Bubeck, S., Massoulié, L., and Lee, Y. T. (2018). Optimal algorithms for
non-smooth distributed optimization in networks. In Advances in Neural Information Processing
Systems, pages 2740–2749.

Shi, W., Ling, Q., Wu, G., and Yin, W. (2015). Extra: An exact first-order algorithm for decentralized
consensus optimization. SIAM Journal on Optimization, 25(2):944–966.

Uribe, C. A., Lee, S., Gasnikov, A., and Nedić, A. (2020). A dual approach for optimal algorithms in
distributed optimization over networks. Optimization Methods and Software, pages 1–40.

Xu, J., Tian, Y., Sun, Y., and Scutari, G. (2020). Distributed algorithms for composite optimization:
Unified and tight convergence analysis. arXiv preprint arXiv:2002.11534.

11

Appendix
Contents

1 Introduction 1

1.1 Formalism . 2

1.2 Computation and communication . 2

2 Related Work and Contributions 2

2.1 Related work . 2

2.2 Summary of contributions . 3

3 Background 4

3.1 Basic formulation of the decentralized problem 4

3.2 Lower bounds . 4

3.3 Operator splitting . 5

4 New Decentralized Algorithms 6

4.1 An accelerated primal dual algorithm . 6

4.2 A decentralized algorithm optimal both in communication and computation complexity 7

5 Numerical Experiments 8

6 Broader Impact 10

A Experiments with synthetic data 13

B Formal Definition of Decentralized Algorithms 14

C Proof of Theorem 2 (APAPC) 15

D Proof of Corollary 1 (OPAPC) 22

E A Loopless Algorithm Optimal in Communication Complexity 23

F Proof of Theorem 3 (Algorithm 3) 25

12

A Experiments with synthetic data

In this section, we present additional experiments. The experimental setup is the same as before, with
only one difference: we use randomly generated dataset with the following choice of the number of
features d: 40, 60, 80, 100. The results, which are shown in Figure 2, are similar to the previous
results, and the same conclusions can be made.

0 2000 4000 6000 8000
of communication rounds

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=40, Erdos Renyi
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 2000 4000 6000 8000 10000 12000
of communication rounds

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=40, Grid
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 2000 4000 6000 8000
of communication rounds

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=60, Erdos Renyi
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 2000 4000 6000 8000 10000 12000
of communication rounds

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=60, Grid
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 2000 4000 6000 8000
of communication rounds

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=80, Erdos Renyi
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 2000 4000 6000 8000 10000 12000
of communication rounds

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=80, Grid
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 2000 4000 6000 8000
of communication rounds

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=100, Erdos Renyi
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 2000 4000 6000 8000 10000 12000
of communication rounds

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=100, Grid
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

(a) Communication complexity.

0 500 1000 1500 2000 2500 3000
of gradient calls

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=40, Erdos Renyi
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 500 1000 1500 2000 2500 3000 3500 4000
of gradient calls

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=40, Grid
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 500 1000 1500 2000 2500 3000
of gradient calls

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=60, Erdos Renyi
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 500 1000 1500 2000 2500 3000 3500 4000
of gradient calls

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=60, Grid
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 500 1000 1500 2000 2500 3000
of gradient calls

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=80, Erdos Renyi
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 500 1000 1500 2000 2500 3000 3500 4000
of gradient calls

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=80, Grid
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 500 1000 1500 2000 2500 3000
of gradient calls

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=100, Erdos Renyi
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

0 500 1000 1500 2000 2500 3000 3500 4000
of gradient calls

102

100

10 2

10 4

10 6

10 8

10 10

10 12

d=100, Grid
Optimal PAPC
Accelerated PAPC
Accelerated Penalty
Accelerated EXTRA
MSDA

(b) Gradient computation complexity.

Figure 2: Linear convergence of decentralized algorithms in number of communication rounds and
gradient computations.

13

B Formal Definition of Decentralized Algorithms

In this paper, we considered the resolution of (1) distributively across the nodes of the network G.
Each node i ∈ V is associated with a computing agent that only have access to the local function
fi. The goal of the network of computing agent is to minimize the function (1) by performing local
computations involving fi at each node i and by communicating vectors along the edges, i.e., with
neighbors j ∼ i.
More precisely, we considered the class of decentralized algorithms, similarly to (Scaman et al., 2017,
Section 3.1). In this paper, a decentralized algorithm is formally defined as an algorithm satisfying
the following constraints. At time k, each node i possesses a local internal memory Mk

i ⊂ Rd and
outputs an estimation xki ∈Mk

i of the solution to Problem (1). This internal memory is updated via
gradient computations and communication rounds i.e.,

Mk+1
i ⊂ Span(Commk+1

i

⋃
Compk+1

i),

where Commk+1
i is the communication component and Compk+1

i the computation component.
The communication component is updated by combining the elements of the local memories of
nodes j ∼ i at time k: Commk+1

i = Span(
⋃
j∼iM

k
j). The computation component is updated by

combining the elements of the local memory of i at time k along with the gradients of the local
functions fi at these elements: Compk+1

i = Span({x,∇fi(x), x ∈ Mk
i }). Compared to the class

of black-box optimization procedures of (Scaman et al., 2017), the class of decentralized algorithm
is smaller (i.e., included). Indeed, black-box optimization procedures use dual gradients. In other
words, they use the following definition of the computation component:

C̃omp
k+1

i = {x,∇fi(x),∇f∗i (x), x ∈Mk
i }

(where f∗i is the Fenchel transform of fi), which is a set containing Compk+1
i . Recall that computing

the dual gradient∇f∗i (0) is equivalent to minimizing fi.

Finally, as in Scaman et al. (2017), we say that a decentralized algorithm uses the gossip matrix W if
the local communication is achieved by multiplication of a vector by W.

14

C Proof of Theorem 2 (APAPC)

For every p ≥ 0, we denote by ‖ · ‖P the (semi)-norm induced by any positive (semi)-definite matrix
P : Rp → Rp.

Lemma 1. Let P ∈ R2nd×2nd be the following matrix:

P =

 1
η I 0

0 1
θW

† − (1 + ηα)−1ηI

 . (8)

If parameters η and θ satisfy
ηθλmax(W) ≤ 1, (9)

then for all x ∈ Rnd, y ∈ rangeW the following inequality holds:

1

η
‖x‖2 ≤

∥∥∥∥∥∥∥
x
y

∥∥∥∥∥∥∥
2

P

≤ 1

η
‖x‖2 +

1

θ
‖y‖2W† . (10)

Proof. Note that under our assumptions, the matrix 1
θW

† − (1 + ηα)−1ηI is positive semi-definite
on rangeW.

Lemma 2. Let α satisfy 0 ≤ α ≤ µ. Then the following inequality holds:

− 1

2η
‖xk+1 − xk‖2 ≤ −η

4
‖yk+1 − y∗‖2 + ηα2‖xk+1 − x∗‖2 + 2ηLDf (xkg , x

∗). (11)

Proof. From line (7) of Algorithm 1 and optimality condition (6) it follows that

‖xk+1 − xk‖2 = ‖η(yk+1 − y∗) + η(∇F (xkg)−∇F (x∗)− α(xkg − x∗)) + ηα(xk+1 − x∗)‖2

≥ η2

2
‖yk+1 − y∗‖2 − 2η2α2‖xk+1 − x∗‖2

− 2η2‖∇F (xkg)−∇F (x∗)− α(xkg − x∗)‖2.

Since f(x)− α
2 ‖x‖

2 is a convex and (L− α)-smooth function, we can lower bound the last term
and get

‖xk+1 − xk‖2 = ‖η(yk+1 − y∗) + η(∇F (xkg)−∇F (x∗)− α(xkg − x∗)) + ηα(xk+1 − x∗)‖2

≥ η2

2
‖yk+1 − y∗‖2 − 2η2α2‖xk+1 − x∗‖2 − 4η2(L− α)Df−α2 ‖·‖2(xkg , x

∗)

≥ η2

2
‖yk+1 − y∗‖2 − 2η2α2‖xk+1 − x∗‖2 − 4η2LDf (xkg , x

∗).

Rearranging and dividing by 2η concludes the proof.

Lemma 3. Let P be the matrix defined by (8):

P =

 1
η I 0

0 1
θW

† − (1 + ηα)−1ηI

 . (8)

Then the following equality holds:

P ·

xk+1 − xk

yk+1 − yk

 =

α(xkg − xk+1)− (∇F (xkg) + yk+1)

WW†xk+1

 . (12)

15

Proof. From the definition of P it follows that

P ·

xk+1 − xk

yk+1 − yk

 =

 1
η (xk+1 − xk)

1
θW

†(yk+1 − yk)− (1 + ηα)−1η(yk+1 − yk)

 .
From line (7) of Algorithm 1 it follows that

1

η
(xk+1 − xk) = α(xkg − xk+1)− (∇F (xkg) + yk+1),

and hence,

P ·

xk+1 − xk

yk+1 − yk

 =

 α(xkg − xk+1)− (∇F (xkg) + yk+1)

1
θW

†(yk+1 − yk)− (1 + ηα)−1η(yk+1 − yk)

 .
From line (6) of Algorithm 1 it follows that

yk+1 − yk = θWxk+1/2,

and hence,

P ·

xk+1 − xk

yk+1 − yk

 =

 α(xkg − xk+1)− (∇F (xkg) + yk+1)

WW†xk+1/2 − (1 + ηα)−1η(yk+1 − yk)

 .
Since yk ∈ rangeW for all k = 0, 1, 2, . . ., we have

WW†(yk+1 − yk) = yk+1 − yk,
and hence we obtain

P ·

xk+1 − xk

yk+1 − yk

 =

 α(xkg − xk+1)− (∇F (xkg) + yk+1)

WW† [xk+1/2 − (1 + ηα)−1η(yk+1 − yk)
]
 .

Finally, from lines 5 and 7 of Algorithm 1 it follows that

xk+1 = xk+1/2 + (1 + ηα)−1η(yk − yk+1),

and hence,

P ·

xk+1 − xk

yk+1 − yk

 =

α(xkg − xk+1)− (∇F (xkg) + yk+1)

WW†xk+1

 .

Lemma 4. Let parameter η be defined by

η =
1

4τL
. (13)

Let parameter θ be defined by

θ =
1

ηλmax(W)
. (14)

Let parameter α be defined by
α = µ. (15)

Let parameter τ be defined by

τ = min

{
1,

1

2

√
µ

L

λmax(W)

λ+min(W)

}
. (16)

16

Let Ψk be the following Lyapunov function:

Ψk =

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

+
2(1− τ)

τ
DF (xkf , x

∗), (17)

where P is defined by (8):

P =

 1
η I 0

0 1
θW

† − (1 + ηα)−1ηI

 . (8)

Then the following inequality holds:

Ψk+1 ≤

1 +
1

4
min

√
µ

L

λ+min(W)

λmax(W)
,
λ+min(W)

λmax(W)

−1 Ψk.

Proof.

∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

=

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

−

∥∥∥∥∥∥∥
xk+1 − xk

yk+1 − yk

∥∥∥∥∥∥∥
2

P

+ 2

〈
P ·

xk+1 − xk

yk+1 − yk

 ,
xk+1 − x∗

yk+1 − y∗

〉

Note, that stepsize η defined by (13) and stepsize θ defined by (14) satisfy (9), hence inequality (10)
holds. Using (10) and (12) we get

∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− 1

η
‖xk+1 − xk‖2

+ 2

〈α(xkg − xk+1)− (∇F (xkg) + yk+1)

WW†xk+1

 ,
xk+1 − x∗

yk+1 − y∗

〉

=

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− 1

η
‖xk+1 − xk‖2 + 2α〈xkg − xk+1, xk+1 − x∗〉

− 2〈∇F (xkg) + yk+1, xk+1 − x∗〉+ 2〈WW†xk+1, yk+1 − y∗〉.

Since WW†x∗ = 0 and WW†(yk+1 − y∗) = yk+1 − y∗, we get

∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− 1

η
‖xk+1 − xk‖2 + 2α〈xkg − xk+1, xk+1 − x∗〉

− 2〈∇F (xkg) + yk+1, xk+1 − x∗〉+ 2〈xk+1 − x∗, yk+1 − y∗〉.

17

Since∇F (x∗) + y∗ = 0 (optimality condition (6)), we get∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− 1

η
‖xk+1 − xk‖2 + 2α〈xkg − xk+1, xk+1 − x∗〉

− 2〈∇F (xkg)−∇F (x∗) + yk+1 − y∗, xk+1 − x∗〉+ 2〈xk+1 − x∗, yk+1 − y∗〉

=

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− 1

η
‖xk+1 − xk‖2 − 2α‖xk+1 − x∗‖2

− 2α〈xkg − x∗, xk+1 − x∗〉 − 2〈∇F (xkg)−∇F (x∗), xk+1 − x∗〉.

Using Young’s inequality 2〈a, b〉 ≤ ‖a‖2 + ‖b‖2 we get∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− 1

η
‖xk+1 − xk‖2 − 2α‖xk+1 − x∗‖2

+ α‖xkg − x∗‖2 + α‖xk+1 − x∗‖2 − 2〈∇F (xkg)−∇F (x∗), xk+1 − x∗〉

=

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− 1

η
‖xk+1 − xk‖2 − α‖xk+1 − x∗‖2 + α‖xkg − x∗‖2

− 2〈∇F (xkg)−∇F (x∗), xk+1 − x∗〉.

Now, we use lines 4 and 8 of Algorithm 1 and get∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− α‖xk+1 − x∗‖2 + α‖xkg − x∗‖2 −
1

2η
‖xk+1 − xk‖2

− 2− τ
τ

(
〈∇F (xkg)−∇F (x∗), xk+1

f − xkg〉+
1

2η

(2− τ)

4τ
‖xk+1

f − xkg‖2
)

− 2〈∇F (xkg)−∇F (x∗), xkg − x∗〉+
2(1− τ)

τ
〈∇F (xkg)−∇F (x∗), xkf − xkg〉.

Since parameter η defined by (13) satisfy η ≤ 2−τ
4τL , we get∥∥∥∥∥∥∥

xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− α‖xk+1 − x∗‖2 + α‖xkg − x∗‖2 −
1

2η
‖xk+1 − xk‖2

− 2− τ
τ

(
〈∇F (xkg)−∇F (x∗), xk+1

f − xkg〉+
L

2
‖xk+1

f − xkg‖2
)

− 2〈∇F (xkg)−∇F (x∗), xkg − x∗〉+
2(1− τ)

τ
〈∇F (xkg)−∇F (x∗), xkf − xkg〉.

Using µ-strong convexity and L-smoothness of f(x) we get∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− α‖xk+1 − x∗‖2 + α‖xkg − x∗‖2 −
1

2η
‖xk+1 − xk‖2

− 2− τ
τ

(
DF (xk+1

f , x∗)−DF (xkg , x
∗)
)

+
2(1− τ)

τ

(
DF (xkf , x

∗)−DF (xkg , x
∗)
)

18

− 2
(

DF (xkg , x
∗) +

µ

2
‖xkg − x∗‖2

)

=

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− α‖xk+1 − x∗‖2 +
2(1− τ)

τ
DF (xkf , x

∗)− 2− τ
τ

DF (xk+1
f , x∗)

+ (α− µ)‖xkg − x∗‖2 −
1

2η
‖xk+1 − xk‖2 −DF (xkg , x

∗).

Now, we define δ = min
{

1, 1
2ηL

}
. Since α defined by (15) satisfies conditions of Lemma 2, we can

use (11) and get∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− α‖xk+1 − x∗‖2 +
2(1− τ)

τ
DF (xkf , x

∗)− 2− τ
τ

DF (xk+1
f , x∗)

+ (α− µ)‖xkg − x∗‖2 −
δ

2η
‖xk+1 − xk‖2 −DF (xkg , x

∗)

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− α‖xk+1 − x∗‖2 +
2(1− τ)

τ
DF (xkf , x

∗)− 2− τ
τ

DF (xk+1
f , x∗)

− ηδ

4
‖yk+1 − y∗‖2 + ηα2δ‖xk+1 − x∗‖2 + 2ηLδDf (xkg , x

∗)

+ (α− µ)‖xkg − x∗‖2 −DF (xkg , x
∗)

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− α‖xk+1 − x∗‖2 +
2(1− τ)

τ
DF (xkf , x

∗)− 2− τ
τ

DF (xk+1
f , x∗)

− ηδ

4
‖yk+1 − y∗‖2 +

α2

2L
‖xk+1 − x∗‖2 + (α− µ)‖xkg − x∗‖2

=

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

−
(
α− α2

2L

)
‖xk+1 − x∗‖2 − ηδ

4
‖yk+1 − y∗‖2

+
2(1− τ)

τ
DF (xkf , x

∗)− 2− τ
τ

DF (xk+1
f , x∗) + (α− µ)‖xkg − x∗‖2.

Using parameter α defined by (15) we get∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− µ

2
‖xk+1 − x∗‖2 − ηδ

4
‖yk+1 − y∗‖2

+
2(1− τ)

τ
DF (xkf , x

∗)− 2− τ
τ

DF (xk+1
f , x∗).

Since yk, y∗ ∈ rangeW, we get∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

− µ

2
‖xk+1 − x∗‖2 − ηδλ+min(W)

4
‖yk+1 − y∗‖2W†

+
2(1− τ)

τ
DF (xkf , x

∗)− 2− τ
τ

DF (xk+1
f , x∗).

19

Using (10) we get∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

−min

{
ηµ

2
,
ηθδλ+min(W)

4

}∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

+
2(1− τ)

τ
DF (xkf , x

∗)− 2− τ
τ

DF (xk+1
f , x∗).

Using parameter θ defined by (14) and definition of δ we get∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

−min

{
ηµ

2
,
λ+min(W)

4λmax(W)
,

λ+min(W)

8ηLλmax(W)

}∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

+
2(1− τ)

τ
DF (xkf , x

∗)− 2− τ
τ

DF (xk+1
f , x∗).

Plugging parameter η defined by (13) we get∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

−min

{
µ

8τL
,
λ+min(W)

4λmax(W)
,
τλ+min(W)

2λmax(W)

}∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

+
2(1− τ)

τ
DF (xkf , x

∗)− 2− τ
τ

DF (xk+1
f , x∗)

≤

∥∥∥∥∥∥∥
xk − x∗
yk − y∗

∥∥∥∥∥∥∥
2

P

−min

{
µ

8τL
,
λ+min(W)

4λmax(W)
,
τλ+min(W)

2λmax(W)

}∥∥∥∥∥∥∥
xk+1 − x∗

yk+1 − y∗

∥∥∥∥∥∥∥
2

P

+
2(1− τ)

τ
DF (xkf , x

∗)−
(

1 +
τ

2

) 2(1− τ)

τ
DF (xk+1

f , x∗).

After rearranging and using definition of Ψk (17) we get

Ψk ≥
(

1 + min

{
τ

2
,
µ

8τL
,
λ+min(W)

4λmax(W)
,
τλ+min(W)

2λmax(W)

})
Ψk+1.

Plugging parameter τ defined by (16) we get

Ψk ≥

1 +
1

4
min

√
µ

L

λ+min(W)

λmax(W)
,
λ+min(W)

λmax(W)

Ψk+1.

Proof of Theorem 2 (APAPC). Conditions of Lemma 4 are satisfied, hence the following inequality
holds for all k:

Ψk+1 ≤

1 +
1

4
min

√
µ

L

λ+min(W)

λmax(W)
,
λ+min(W)

λmax(W)

−1 Ψk.

After doing telescoping we get

Ψk ≤

1 +
1

4
min

√
µ

L

λ+min(W)

λmax(W)
,
λ+min(W)

λmax(W)

−k Ψ0.

Inequality (10) implies Ψ0 ≤ C, where C := 1
η

∥∥x0 − x∗∥∥2 + 1
θ‖y

0− y∗‖2W† + 2(1−τ)
τ DF (x0f , x

∗).

Hence, we obtain.

Ψk ≤

1 +
1

4
min

√
µ

L

λ+min(W)

λmax(W)
,
λ+min(W)

λmax(W)

−k C.

20

It remains to lower bound Ψk using (10) one more time:

1

η

∥∥xk − x∗∥∥2+
2(1− τ)

τ
DF (xkf , x

∗) ≤ Ψk ≤

1 +
1

4
min

√
µ

L

λ+min(W)

λmax(W)
,
λ+min(W)

λmax(W)

−k C.

Finally, choosing number of iterations

k ≥

(
1 + 4 max

{√
Lλmax(W)

µλ+min(W)
,
λmax(W)

λ+min(W)

})
log

(
ηC

ε

)
.

implies ‖xk − x∗‖2 ≤ ε.

21

D Proof of Corollary 1 (OPAPC)

First, Theorem 2 still holds true by replacing λmax(W) by an upper bound λ1, λ+min(W) by a lower
bound λ2 > 0 and χ(W) by the upper bound χ = λ1/λ2.2

The proof of Corollary 1 is similar to the proof of Theorem 4 of Scaman et al. (2017).

Denote W̃ = 2χ(W)
(1+χ(W))λmax(W)W. Let I be the interval I = [1 − 1

c2
, 1 + 1

c2
] ⊂ (0, 2). Then,

Sp(W̃) \ {0} ⊂ I , where Sp denotes the spectrum. Moreover, using Scaman et al. (2017), the
polynomial P satisfies P (0) = 0 and maxt∈I |1− P (t)| = 2cT1

1+c2T1
< 1. Therefore,

Sp(I − P (W̃)) \ {1} ⊂
[
− 2cT1

1 + c2T1
,

2cT1
1 + c2T1

]
⊂ (−1, 1).

Consequently,

λmax(P (W̃)) ≤ λ1 := 1 +
2cT1

1 + c2T1
< 2, λ+min(P (W̃)) ≥ λ2 := 1− 2cT1

1 + c2T1
> 0.

Moreover, by replacing c1 and T by their values, χ := λ1

λ2
≤ 4, see (Scaman et al., 2017, Equation

34).

Applying APAPC with the gossip matrix P (W̃) leads to OPAPC. Then, we apply Theorem 2 to
OPAPC. More precisely, we apply Theorem 2 by replacing W by P (W̃) and λmax(W) (resp.
λ+min(W)) by the upper bound (resp. the lower bound) λ1 (resp. λ2) of λmax(P (W̃)) (resp.
λ+min(P (W̃))). Denoting xk the iterates of OPAPC, we obtain

1

η

∥∥xk − x∗∥∥2 +
2− τ
τ

DF (xkf , x
∗) ≤

(
1 +

1

16
min

{
2√
κ
, 1

})−k
C.

Finally, the gradient computation complexity of OPAPC is O(
√
κ log(1/ε)). One multiplication by

P (W̃) is equivalent to one application of the procedure ACCELERATEDGOSSIP(W, ·, T), which
requires exactly T communication rounds. Therefore, the communication complexity of OPAPC is
TO(
√
κ log(1/ε)) = O(

√
κχ(W) log(1/ε)).

2The proof is the same by replacing λmax(W) by λ1 and λ+
min(W) by λ2.

22

E A Loopless Algorithm Optimal in Communication Complexity

We propose another accelerated Forward Backward algorithm to solve Problem (3). More precisely,
we first provide a reformulation of Problem (3), different from the reformulation (6). Then, we design
an accelerated Forward Backward algorithm associated with this reformulation. Remarkably, the
matrix W is only involved in the operator A of this new Forward Backward algorithm. This leads to
an acceleration compared to APAPC, and to an optimal communication complexity.

In this section, E is the Euclidean space E = (Rd)V × (Rd)V × range(W) endowed with the norm
‖(x, y, z)‖2E := ‖x‖2 + ‖y‖2 + ‖z‖2W† .

Using the first order optimality conditions, a point x∗ is a solution to Problem (3) if and only if
∇F (x∗) ∈ range(W) and x∗ ∈ ker(W). Solving Problem (3) is therefore equivalent to finding
(x∗, y∗, z∗) ∈ E such that

0 = ∇F (x∗)− µ

2
x∗ − y∗, (18)

0 = x∗ +
2

µ
(y∗ + z∗), (19)

0 =
2

µ
W(y∗ + z∗). (20)

Indeed, if (18)–(20) holds, then using (18), y∗ = ∇F (x∗)− µ
2x
∗ and using (19) z∗ = −∇F (x∗) ∈

range(W). Since z∗ ∈ range(W) and y∗ + z∗ = −µ2x
∗, we have ∇F (x∗) ∈ range(W) and

x∗ ∈ ker(W). On the other hand, if ∇F (x∗) ∈ range(W) and x∗ ∈ ker(W), then Wx∗ = 0 and
setting y∗ = ∇F (x∗)− µ

2x
∗ and z∗ = −∇F (x∗) ∈ range(W) leads to (18)–(20).

Consider the map M : E→ E

M(x, y, z) :=

∇F (x)− µ

2x −y

x + 2
µy + 2

µz

2
µWy + 2

µWz

 .
Similary to Section 4.1, one can show that M is a monotone operator. Moreover, M(x∗, y∗, z∗) = 0,
i.e., (x∗, y∗, z∗) is a zero of M .

Consider the maps A,B : E→ E defined by

A(x, y, z) =

∇F (x)− µ

2x

2
µ (y + z) + νy

2
µW(y + z)

 , B(x, y, z) =

−y

x− νy

0

 .
Then, M = A + B. Note that there is a term νy, where ν > 0 in A(x, y, z) and a term −νy in
B(x, y, z), which cancel out in the sum A(x, y, z) + B(x, y, z). This additional term makes the
operator A(x, y, z) strongly monotone. Indeed, A is the gradient of the strongly convex function (in
E) E 3 (x, y, z) 7→ r(x) + h(y, z) defined by

r(x) := F (x)− µ
4 ‖x‖

2, h(y, z) :=
1

µ
‖y + z‖2 +

ν

2
‖y‖2.

In other words, operator A(x, y, z) can be written as

A(x, y, z) =

∇r(x)

∇yh(y, z)

W∇zh(y, z)

 ,

23

and one can check that A is strongly monotone. However, the operator B(x, y, z) is not monotone in
general. Indeed, B is only weakly monotone since B satisfies

〈
B(x, y, z)−B(x∗, y∗, z∗),

x− x∗

y − y∗

z − z∗

〉

E

= −ν‖y − y∗‖2.

One idea to solve (18)–(20) is to apply Algorithm (4) to the sum A+B, although B is not monotone.
Note that B is linear and, although B is not monotone, the resolvent of B is still well defined while
1−γν+γ2 6= 0. Indeed, (x′, y′) = JγB(x, y) implies x′ = x+γy′, and (1−γν+γ2)y′ = y−γx.

In particular, we propose a new algorithm that can be seen as an accelerated version of the Forward
Backward Algorithm (4) to find a zero of A + B. The proposed algorithm is defined in Algo-
rithm 3 and its complexity is given in Theorem 3. We show that the complexity of Algorithm 3 is
O(
√
κχ(W) log(1/ε)), both in communication rounds and gradient computations. The proposed

algorithm is therefore optimal in communication complexity, see Section 3.2. Moreover, Algorithm 3
uses only one gradient computation by communication round.

Algorithm 3

1: Parameters: x0, y0 ∈ Rnd, z0 ∈ rangeW, η, θ, λ, α, β, γ, ν > 0, τ, σ ∈ (0, 1)
2: Set x0f = x0

3: Set y0f = y0

4: Set z0f = z0

5: for k = 0, 1, 2, . . . do
6: xkg = τxk + (1− τ)xkf
7: ykg = σyk + (1− σ)ykf
8: zkg = σzk + (1− σ)zkf
9: xk+1 = xk + ηα(xkg − xk+1)− η∇r(xkg) + ηyk+1

10: yk+1 = yk + θβ(ykg − yk+1)− θ∇yh(ykg , z
k
g) + θνyk+1 − θxk+1

11: zk+1 = zk + λγ(zkg − zk+1)− λW∇zh(ykg , z
k
g)

12: xk+1
f = xkg + 2τ

2−τ (xk+1 − xk)

13: yk+1
f = ykg + σ(yk+1 − yk)

14: zk+1
f = zkg + σ(zk+1 − zk)

15: end for

Theorem 3 (Algorithm 3). Set the parameters η, θ, λ, α, β, γ, ν > 0, τ, σ ∈ (0, 1) to

η =
[
2
√
Lµ+ µ

]−1
, α =

µ

3
, τ =

1

2

√
µ

L
,

θ =

1

4

√
λ+min(W)

λmax(W)µL
+

5

96L

−1 , β =
1

96L
, σ =

1

20

√
λ+min(W)

λmax(W)

µ

L
,

λ =

1

4

√
λ+min(W)λmax(W)

µL
+
λ+min(W)

96L

−1 , γ =
λ+min(W)

96L
, ν =

1

24L
.

Then, the sequence (xk) converges linearly to x∗. Moreover, for every ε > 0, Algorithm 3 finds

xk for which ‖xk − x∗‖2 ≤ ε in at most O
(√

κχ(W) log(1/ε)
)

gradient computations (resp.
communication rounds).

The Algorithm 3 achieves the communication lower bound of Theorem 1. The proof of Theorem 3
intuitively relies on viewing Algorithm 3 as an accelerated version of (4), although Nesterov’s
acceleration does not apply to general monotone operators and even less to non monotone operators.

24

F Proof of Theorem 3 (Algorithm 3)

Lemma 5. Let α satisfy
α ≤ µ

2
. (21)

Let δ be defined by

δ = min

{
1,

1

2ηL

}
. (22)

Then the following inequality holds:

− 1

2η
‖xk+1 − x∗‖2 ≤ −ηδ

4
‖yk+1 − y∗‖2 +

α

4
‖xk+1 − x∗‖2 + Dr(x

k
g , x
∗).

Proof. From line 9 of Algortihm 3 it follows that

xk+1 − xk = ηα(xkg − xk+1)− η∇r(xkg) + ηyk+1.

From optimality condition (18) it follows that∇r(x∗) = y∗ and hence

‖xk+1 − xk‖2 = η2‖yk+1 − y∗ − α(xk+1 − x∗)− (∇r(xkg)−∇r(x∗)− α(xkg − x∗))‖2

≥ η2

2
‖yk+1 − y∗‖2 − η2‖α(xk+1 − x∗) + (∇r(xkg)−∇r(x∗)− α(xkg − x∗))‖2

≥ η2

2
‖yk+1 − y∗‖2 − 2η2α2‖xk+1 − x∗‖2

− 2η2‖∇r(xkg)−∇r(x∗)− α(xkg − x∗)‖2.

From (21) it follows that function r(x) − α
2 ‖x‖

2 = F (x) − µ+2α
4 ‖x‖

2 is convex and L-smooth,
hence we can bound the last term:

‖xk+1 − xk‖2 ≥ η2

2
‖yk+1 − y∗‖2 − 2η2α2‖xk+1 − x∗‖2 − 4η2LDr(·)−α2 ‖·‖2(xkg , x

∗)

=
η2

2
‖yk+1 − y∗‖2 − 2η2α2‖xk+1 − x∗‖2 − 4η2LDr(x

k
g , x
∗) + 2η2Lα‖xkg − x∗‖2

≥ η2

2
‖yk+1 − y∗‖2 − 2η2α2‖xk+1 − x∗‖2 − 4η2LDr(x

k
g , x
∗).

Multiplying by 1
2η and rearranging gives

− 1

2η
‖xk+1 − x∗‖2 ≤ −η

4
‖yk+1 − y∗‖2 + ηα2‖xk+1 − x∗‖2 + 2ηLDr(x

k
g , x
∗).

Using δ defined by (22) we obtain

− 1

2η
‖xk+1 − x∗‖2 ≤ − δ

2η
‖xk+1 − x∗‖2

≤ −ηδ
4
‖yk+1 − y∗‖2 + δηα2‖xk+1 − x∗‖2 + 2δηLDr(x

k
g , x
∗)

≤ −ηδ
4
‖yk+1 − y∗‖2 +

ηα2

2ηL
‖xk+1 − x∗‖2 + Dr(x

k
g , x
∗)

≤ −ηδ
4
‖yk+1 − y∗‖2 +

αµ

4L
‖xk+1 − x∗‖2 + Dr(x

k
g , x
∗)

≤ −ηδ
4
‖yk+1 − y∗‖2 +

α

4
‖xk+1 − x∗‖2 + Dr(x

k
g , x
∗).

Lemma 6. Let α satisfy
α ≤ µ

2
. (21)

25

Let η satisfy

η ≤ 1

4τL
. (23)

Then the following inequality holds:

1

η
‖xk+1 − x∗‖2 ≤ 1

η
‖xk − x∗‖2 − 3α

4
‖xk+1 − x∗‖2 +

2(1− τ)

τ
Dr(x

k
f , x
∗)− 2− τ

τ
Dr(x

k+1
f , x∗)

(24)

− ηδ

4
‖yk+1 − y∗‖2 + 2〈yk+1 − y∗, xk+1 − x∗〉.

Proof. Using line 9 of Algorithm 3 we get

1

η
‖xk+1 − x∗‖2 =

1

η
‖xk − x∗‖2 +

2

η
〈xk+1 − xk, xk+1 − x∗〉 − 1

η
‖xk+1 − xk‖2

=
1

η
‖xk − x∗‖2 − 1

η
‖xk+1 − xk‖2 + 2α〈xkg − xk+1, xk+1 − x∗〉

− 2〈∇r(xkg)− yk+1, xk+1 − x∗〉

=
1

η
‖xk − x∗‖2 − 1

η
‖xk+1 − xk‖2 + 2α〈xkg − x∗, xk+1 − x∗〉 − 2α‖xk+1 − x∗‖2

− 2〈∇r(xkg)− yk+1, xk+1 − x∗〉

≤ 1

η
‖xk − x∗‖2 − 1

η
‖xk+1 − xk‖2 + α‖xkg − x∗‖2 − α‖xk+1 − x∗‖2

− 2〈∇r(xkg)− yk+1, xk+1 − x∗〉.

From optimality condition (18) it follows that∇r(x∗) = y∗ and hence

1

η
‖xk+1 − x∗‖2 ≤ 1

η
‖xk − x∗‖2 + α‖xkg − x∗‖2 − α‖xk+1 − x∗‖2 − 1

η
‖xk+1 − xk‖2

− 2〈∇r(xkg)−∇r(x∗), xk+1 − x∗〉+ 2〈yk+1 − y∗, xk+1 − x∗〉.
Using lemma 5 we get

1

η
‖xk+1 − x∗‖2 ≤ 1

η
‖xk − x∗‖2 + α‖xkg − x∗‖2 − α‖xk+1 − x∗‖2 − 1

2η
‖xk+1 − xk‖2

− ηδ

4
‖yk+1 − y∗‖2 +

α

4
‖xk+1 − x∗‖2 + Dr(x

k
g , x
∗)

− 2〈∇r(xkg)−∇r(x∗), xk+1 − x∗〉+ 2〈yk+1 − y∗, xk+1 − x∗〉

≤ 1

η
‖xk − x∗‖2 + α‖xkg − x∗‖2 −

3α

4
‖xk+1 − x∗‖2 − 1

2η
‖xk+1 − xk‖2

− 2〈∇r(xkg)−∇r(x∗), xk+1 − x∗〉+ 2〈yk+1 − y∗, xk+1 − x∗〉

+ Dr(x
k
g , x
∗)− ηδ

4
‖yk+1 − y∗‖2.

Using lines 6 and 12 of Algorithm 3 we get

1

η
‖xk+1 − x∗‖2 ≤ 1

η
‖xk − x∗‖2 + α‖xkg − x∗‖2 −

3α

4
‖xk+1 − x∗‖2

+
2(1− τ)

τ
〈∇r(xkg)−∇r(x∗), xkf − xkg〉 − 2〈∇r(xkg)−∇r(x∗), xkg − x∗〉

− 2− τ
τ
〈∇r(xkg)−∇r(x∗), xk+1

f − xkg〉 −
(2− τ)2

8ητ2
‖xk+1

f − xkg‖2

+ Dr(x
k
g , x
∗)− ηδ

4
‖yk+1 − y∗‖2 + 2〈yk+1 − y∗, xk+1 − x∗〉

≤ 1

η
‖xk − x∗‖2 + α‖xkg − x∗‖2 −

3α

4
‖xk+1 − x∗‖2

26

+
2(1− τ)

τ
〈∇r(xkg)−∇r(x∗), xkf − xkg〉 − 2〈∇r(xkg)−∇r(x∗), xkg − x∗〉

− 2− τ
τ

(
〈∇r(xkg)−∇r(x∗), xk+1

f − xkg〉+
1

8ητ
‖xk+1

f − xkg‖2
)

+ Dr(x
k
g , x
∗)− ηδ

4
‖yk+1 − y∗‖2 + 2〈yk+1 − y∗, xk+1 − x∗〉.

Using µ
2 -strong convexity and L-smoothness of r(x) and η defined by (23) we get

1

η
‖xk+1 − x∗‖2 ≤ 1

η
‖xk − x∗‖2 + α‖xkg − x∗‖2 −

3α

4
‖xk+1 − x∗‖2

+
2(1− τ)

τ
(Dr(x

k
f , x
∗)−Dr(x

k
g , x
∗))− 2Dr(x

k
g , x
∗)− µ

2
‖xkg − x∗‖2

− 2− τ
τ

(
〈∇r(xkg)−∇r(x∗), xk+1

f − xkg〉+
L

2
‖xk+1

f − xkg‖2
)

+ Dr(x
k
g , x
∗)− ηδ

4
‖yk+1 − y∗‖2 + 2〈yk+1 − y∗, xk+1 − x∗〉

≤ 1

η
‖xk − x∗‖2 +

(
α− µ

2

)
‖xkg − x∗‖2 −

3α

4
‖xk+1 − x∗‖2

+
2(1− τ)

τ
(Dr(x

k
f , x
∗)−Dr(x

k
g , x
∗))− 2− τ

τ
(Dr(x

k+1
f , x∗)−Dr(x

k
g , x
∗))

−Dr(x
k
g , x
∗)− ηδ

4
‖yk+1 − y∗‖2 + 2〈yk+1 − y∗, xk+1 − x∗〉

=
1

η
‖xk − x∗‖2 +

(
α− µ

2

)
‖xkg − x∗‖2 −

3α

4
‖xk+1 − x∗‖2

+
2(1− τ)

τ
Dr(x

k
f , x
∗)− 2− τ

τ
Dr(x

k+1
f , x∗)

− ηδ

4
‖yk+1 − y∗‖2 + 2〈yk+1 − y∗, xk+1 − x∗〉.

Using α defined by (21) we get

1

η
‖xk+1 − x∗‖2 ≤ 1

η
‖xk − x∗‖2 − 3α

4
‖xk+1 − x∗‖2 +

2(1− τ)

τ
Dr(x

k
f , x
∗)− 2− τ

τ
Dr(x

k+1
f , x∗)

− ηδ

4
‖yk+1 − y∗‖2 + 2〈yk+1 − y∗, xk+1 − x∗〉.

Lemma 7. For all y1, y2 ∈ Rnd and z1, z2 ∈ rangeW the following inequality holds:

Dh((y1, z1), (y2, z2)) ≤
(

2

µ
+
ν

2

)
‖y1 − y2‖2 +

2

µ
‖z1 − z2‖2.

Proof. It follows from from the definition of Dh:

Dh((y1, z1), (y2, z2)) =
1

µ
‖y1 + z1 − y2 − z2‖2 +

ν

2
‖y1 − y2‖2

≤
(

2

µ
+
ν

2

)
‖y1 − y2‖2 +

2

µ
‖z1 − z2‖2.

Lemma 8. Let θ satisfy

θ ≤
[
σ

(
4

µ
+ ν

)]−1
. (25)

Let λ satisfy

λ ≤
[

4σλmax(W)

µ

]−1
. (26)

27

Let β satisfy

β ≤ min

{
1

µ
,
ν

3

}
. (27)

Let γ satisfy
γ ≤ λ+min(W)β. (28)

Then the following inequality holds:∥∥∥∥∥∥∥
yk+1 − y∗

zk+1 − z∗

∥∥∥∥∥∥∥
2

M

≤

∥∥∥∥∥∥∥
yk − y∗
zk − z∗

∥∥∥∥∥∥∥
2

M

− (β − 2ν)‖yk+1 − y∗‖2 − γ‖zk+1 − z∗‖2W† (29)

+
2(1− σ)

σ
Dh((ykf , z

k
f), (y∗, z∗))− 2

σ
Dh((yk+1

f , zk+1
f), (y∗, z∗))

− 2〈xk+1 − x∗, yk+1 − y∗〉,

where M ∈ R2nd×2nd is a matrix defined by

M =

 1
θ I 0

0 1
λW

†

 . (30)

Proof. Using line 10 of Algorithm 3 we get

1

θ
‖yk+1 − y∗‖2 =

1

θ
‖yk − y∗‖2 +

2

θ
〈yk+1 − yk, yk+1 − y∗〉 − 1

θ
‖yk+1 − yk‖2

=
1

θ
‖yk − y∗‖2 − 1

θ
‖yk+1 − yk‖2 + 2β〈ykg − yk+1, yk+1 − y∗〉

− 2〈∇yh(ykg , z
k
g)− νyk+1 + xk+1, yk+1 − y∗〉

=
1

θ
‖yk − y∗‖2 − 1

θ
‖yk+1 − yk‖2 + 2β〈ykg − y∗, yk+1 − y∗〉 − 2β‖yk+1 − y∗‖2

− 2〈∇yh(ykg , z
k
g)− νyk+1 + xk+1, yk+1 − y∗〉

≤ 1

θ
‖yk − y∗‖2 + β‖ykg − y∗‖2 − β‖yk+1 − y∗‖2 − 1

θ
‖yk+1 − yk‖2

− 2〈∇yh(ykg , z
k
g)− νyk+1 + xk+1, yk+1 − y∗〉.

From optimality condition (19) it follows that x∗ = − 2
µ (y∗+ z∗) = −∇yh(y∗, z∗) + νy∗ and hence

1

θ
‖yk+1 − y∗‖2 ≤ 1

θ
‖yk − y∗‖2 + β‖ykg − y∗‖2 − β‖yk+1 − y∗‖2 − 1

θ
‖yk+1 − yk‖2

− 2〈∇yh(ykg , z
k
g)−∇yh(y∗, z∗), yk+1 − y∗〉

+ 2ν‖yk+1 − y∗‖2 − 2〈xk+1 − x∗, yk+1 − y∗〉

=
1

θ
‖yk − y∗‖2 − (β − 2ν)‖yk+1 − y∗‖2 + β‖ykg − y∗‖2 −

1

θ
‖yk+1 − yk‖2

− 2〈∇yh(ykg , z
k
g)−∇yh(y∗, z∗), yk+1 − y∗〉 − 2〈xk+1 − x∗, yk+1 − y∗〉.

Using lines 7 and 13 of Algorithm 3 we get

1

θ
‖yk+1 − y∗‖2 ≤ 1

θ
‖yk − y∗‖2 − (β − 2ν)‖yk+1 − y∗‖2 + β‖ykg − y∗‖2

+
2(1− σ)

σ
〈∇yh(ykg , z

k
g)−∇yh(y∗, z∗), ykf − ykg 〉

− 2

σ
〈∇yh(ykg , z

k
g)−∇yh(y∗, z∗), yk+1

f − ykg 〉 −
1

θσ2
‖yk+1
f − ykg‖2

− 2〈∇yh(ykg , z
k
g)−∇yh(y∗, z∗), ykg − y∗〉 − 2〈xk+1 − x∗, yk+1 − y∗〉.

28

Using θ defined by (25) we get

1

θ
‖yk+1 − y∗‖2 ≤ 1

θ
‖yk − y∗‖2 − (β − 2ν)‖yk+1 − y∗‖2 + β‖ykg − y∗‖2 (31)

+
2(1− σ)

σ
〈∇yh(ykg , z

k
g)−∇yh(y∗, z∗), ykf − ykg 〉

− 2

σ

(
〈∇yh(ykg , z

k
g)−∇yh(y∗, z∗), yk+1

f − ykg 〉+

(
2

µ
+
ν

2

)
‖yk+1
f − ykg‖2

)
− 2〈∇yh(ykg , z

k
g)−∇yh(y∗, z∗), ykg − y∗〉 − 2〈xk+1 − x∗, yk+1 − y∗〉.

Using line 11 of Algorithm 3 we get

1

λ
‖zk+1 − z∗‖2W† =

1

λ
‖zk − z∗‖2W† +

2

λ
〈zk+1 − zk,W†(zk+1 − z∗)〉 − 1

λ
‖zk+1 − zk‖2W†

=
1

λ
‖zk − z∗‖2W† −

1

λ
‖zk+1 − zk‖2W† + 2γ〈zkg − zk+1,W†(zk+1 − z∗)〉

− 2〈W∇zh(ykg , z
k
g),W†(zk+1 − z∗)〉

=
1

λ
‖zk − z∗‖2W† + 2γ〈zkg − z∗,W†(zk+1 − z∗)〉 − 2γ‖zk+1 − z∗‖2W†

− 1

λ
‖zk+1 − zk‖2W† − 2〈W∇zh(ykg , z

k
g),W†(zk+1 − z∗)〉

≤ 1

λ
‖zk − z∗‖2W† + γ‖zkg − z∗‖2W† − γ‖zk+1 − z∗‖2W† −

1

λ
‖zk+1 − zk‖2W†

− 2〈W∇zh(ykg , z
k
g),W†(zk+1 − z∗)〉.

From optimality condition (20) it follows that W∇zh(y∗, z∗) = 0 and hence

1

λ
‖zk+1 − z∗‖2W† ≤

1

λ
‖zk − z∗‖2W† + γ‖zkg − z∗‖2W† − γ‖zk+1 − z∗‖2W† −

1

λ
‖zk+1 − zk‖2W†

− 2〈W(∇zh(ykg , z
k
g)−∇zh(y∗, z∗)),W†(zk+1 − z∗)〉

=
1

λ
‖zk − z∗‖2W† + γ‖zkg − z∗‖2W† − γ‖zk+1 − z∗‖2W† −

1

λ
‖zk+1 − zk‖2W†

− 2〈∇zh(ykg , z
k
g)−∇zh(y∗, z∗),WW†(zk+1 − z∗)〉.

It’s easy to observe that zk, z∗ ∈ rangeW for all k = 0, 1, 2, . . ., which implies

WW†(zk+1 − z∗) = zk+1 − z∗ and ‖zk+1 − zk‖2W† ≥
1

λmax(W)
‖zk+1 − zk‖2.

Hence,

1

λ
‖zk+1 − z∗‖2W† ≤

1

λ
‖zk − z∗‖2W† − γ‖zk+1 − z∗‖2W† +

γ

λ+min(W)
‖zkg − z∗‖2

− 1

λ · λmax(W)
‖zk+1 − zk‖2 − 2〈∇zh(ykg , z

k
g)−∇zh(y∗, z∗), zk+1 − z∗〉.

Using lines 8 and 14 of Algorithm 3 we get

1

λ
‖zk+1 − z∗‖2W† ≤

1

λ
‖zk − z∗‖2W† − γ‖zk+1 − z∗‖2W† +

γ

λ+min(W)
‖zkg − z∗‖2W†

+
2(1− σ)

σ
〈∇zh(ykg , z

k
g)−∇zh(y∗, z∗), zkf − zkg 〉

− 2

σ
〈∇zh(ykg , z

k
g)−∇zh(y∗, z∗), zk+1

f − zkg 〉 −
1

λσ2λmax(W)
‖zk+1
f − zkg‖2

− 2〈∇zh(ykg , z
k
g)−∇zh(y∗, z∗), zkg − z∗〉.

29

Using λ defined by (26) we get

1

λ
‖zk+1 − z∗‖2W† ≤

1

λ
‖zk − z∗‖2W† − γ‖zk+1 − z∗‖2W† +

γ

λ+min(W)
‖zkg − z∗‖2W† (32)

+
2(1− σ)

σ
〈∇zh(ykg , z

k
g)−∇zh(y∗, z∗), zkf − zkg 〉

− 2

σ

(
〈∇zh(ykg , z

k
g)−∇zh(y∗, z∗), zk+1

f − zkg 〉 −
2

µ
‖zk+1
f − zkg‖2

)
− 2〈∇zh(ykg , z

k
g)−∇zh(y∗, z∗), zkg − z∗〉.

After combining (31) and (32) we get∥∥∥∥∥∥∥
yk+1 − y∗

zk+1 − z∗

∥∥∥∥∥∥∥
2

M

≤

∥∥∥∥∥∥∥
yk − y∗
zk − z∗

∥∥∥∥∥∥∥
2

M

− (β − 2ν)‖yk+1 − y∗‖2 − γ‖zk+1 − z∗‖2W†

+ β‖ykg − y∗‖2 +
γ

λ+min(W)
‖zkg − z∗‖2

+
2(1− σ)

σ

〈
∇h(ykg , z

k
g)−∇h(y∗, z∗),

ykf
zkf

−
ykg
zkg

〉

− 2

σ

〈
∇h(ykg , z

k
g)−∇h(y∗, z∗),

yk+1
f

zk+1
f

−
ykg
zkg

〉

− 2

σ

((
2

µ
+
ν

2

)
‖yk+1
f − zkg‖2 +

2

µ
‖zk+1
f − zkg‖2

)

− 2

〈
∇h(ykg , z

k
g)−∇h(y∗, z∗),

ykg
zkg

−
y∗
z∗

〉− 2〈xk+1 − x∗, yk+1 − y∗〉,

where M ∈ R2nd×2nd is a matrix defined by (30). Using convexity of h(y, z) and the fact that

∇h(y, z) =

 2
µ (y + z) + νy

2
µ (y + z)

 we get

∥∥∥∥∥∥∥
yk+1 − y∗

zk+1 − z∗

∥∥∥∥∥∥∥
2

M

≤

∥∥∥∥∥∥∥
yk − y∗
zk − z∗

∥∥∥∥∥∥∥
2

M

− (β − 2ν)‖yk+1 − y∗‖2 − γ‖zk+1 − z∗‖2W†

+ β‖ykg − y∗‖2 +
γ

λ+min(W)
‖zkg − z∗‖2

+
2(1− σ)

σ

[
Dh((ykf , z

k
f), (y∗, z∗))−Dh((ykg , z

k
g), (y∗, z∗))

]
− 2

σ

〈
∇h(ykg , z

k
g)−∇h(y∗, z∗),

yk+1
f

zk+1
f

−
ykg
zkg

〉

− 2

σ

((
2

µ
+
ν

2

)
‖yk+1
f − zkg‖2 +

2

µ
‖zk+1
f − zkg‖2

)
− 4

µ
‖ykg + zkg − y∗ − z∗‖2 − 2ν‖ykg − y∗‖2 − 2〈xk+1 − x∗, yk+1 − y∗〉.

30

Using lemma 7 we can obtain∥∥∥∥∥∥∥
yk+1 − y∗

zk+1 − z∗

∥∥∥∥∥∥∥
2

M

≤

∥∥∥∥∥∥∥
yk − y∗
zk − z∗

∥∥∥∥∥∥∥
2

M

− (β − 2ν)‖yk+1 − y∗‖2 − γ‖zk+1 − z∗‖2W†

+ (β − 2ν)‖ykg − y∗‖2 +
γ

λ+min(W)
‖zkg − z∗‖2 −

4

µ
‖ykg + zkg − y∗ − z∗‖2

+
2(1− σ)

σ

[
Dh((ykf , z

k
f), (y∗, z∗))−Dh((ykg , z

k
g), (y∗, z∗))

]
− 2

σ

[
Dh((yk+1

f , zk+1
f), (y∗, z∗))−Dh((ykg , z

k
g), (y∗, z∗))

]
− 2〈xk+1 − x∗, yk+1 − y∗〉

=

∥∥∥∥∥∥∥
yk − y∗
zk − z∗

∥∥∥∥∥∥∥
2

M

− (β − 2ν)‖yk+1 − y∗‖2 − γ‖zk+1 − z∗‖2W†

+ (β − 2ν)‖ykg − y∗‖2 +
γ

λ+min(W)
‖zkg − z∗‖2 −

4

µ
‖ykg + zkg − y∗ − z∗‖2

+
2(1− σ)

σ
Dh((ykf , z

k
f), (y∗, z∗))− 2

σ
Dh((yk+1

f , zk+1
f), (y∗, z∗))

+ 2Dh((ykg , z
k
g), (y∗, z∗))− 2〈xk+1 − x∗, yk+1 − y∗〉

=

∥∥∥∥∥∥∥
yk − y∗
zk − z∗

∥∥∥∥∥∥∥
2

M

− (β − 2ν)‖yk+1 − y∗‖2 − γ‖zk+1 − z∗‖2W†

+ (β − 2ν)‖ykg − y∗‖2 +
γ

λ+min(W)
‖zkg − z∗‖2 −

4

µ
‖ykg + zkg − y∗ − z∗‖2

+
2(1− σ)

σ
Dh((ykf , z

k
f), (y∗, z∗))− 2

σ
Dh((yk+1

f , zk+1
f), (y∗, z∗))

+
2

µ
‖ykg + zkg − y∗ − z∗‖2 + ν‖ykg − y∗‖2 − 2〈xk+1 − x∗, yk+1 − y∗〉

=

∥∥∥∥∥∥∥
yk − y∗
zk − z∗

∥∥∥∥∥∥∥
2

M

− (β − 2ν)‖yk+1 − y∗‖2 − γ‖zk+1 − z∗‖2W†

+
2(1− σ)

σ
Dh((ykf , z

k
f), (y∗, z∗))− 2

σ
Dh((yk+1

f , zk+1
f), (y∗, z∗))

+ (β − ν)‖ykg − y∗‖2 +
γ

λ+min(W)
‖zkg − z∗‖2 −

2

µ
‖ykg + zkg − y∗ − z∗‖2

− 2〈xk+1 − x∗, yk+1 − y∗〉.

Using γ defined by (28) and the fact that β ≤ 1
µ which follows from (27) we get∥∥∥∥∥∥∥

yk+1 − y∗

zk+1 − z∗

∥∥∥∥∥∥∥
2

M

≤

∥∥∥∥∥∥∥
yk − y∗
zk − z∗

∥∥∥∥∥∥∥
2

M

− (β − 2ν)‖yk+1 − y∗‖2 − γ‖zk+1 − z∗‖2W†

+
2(1− σ)

σ
Dh((ykf , z

k
f), (y∗, z∗))− 2

σ
Dh((yk+1

f , zk+1
f), (y∗, z∗))

+ (β − ν)‖ykg − y∗‖2 + β‖zkg − z∗‖2 − 2β‖ykg + zkg − y∗ − z∗‖2

− 2〈xk+1 − x∗, yk+1 − y∗〉

31

≤

∥∥∥∥∥∥∥
yk − y∗
zk − z∗

∥∥∥∥∥∥∥
2

M

− (β − 2ν)‖yk+1 − y∗‖2 − γ‖zk+1 − z∗‖2W†

+
2(1− σ)

σ
Dh((ykf , z

k
f), (y∗, z∗))− 2

σ
Dh((yk+1

f , zk+1
f), (y∗, z∗))

+ (β − ν)‖ykg − y∗‖2 + β‖zkg − z∗‖2 − β‖zkg − z∗‖2 + 2β‖ykg − y∗‖2

− 2〈xk+1 − x∗, yk+1 − y∗〉

=

∥∥∥∥∥∥∥
yk − y∗
zk − z∗

∥∥∥∥∥∥∥
2

M

− (β − 2ν)‖yk+1 − y∗‖2 − γ‖zk+1 − z∗‖2W†

+
2(1− σ)

σ
Dh((ykf , z

k
f), (y∗, z∗))− 2

σ
Dh((yk+1

f , zk+1
f), (y∗, z∗))

+ (3β − ν)‖ykg − y∗‖2 − 2〈xk+1 − x∗, yk+1 − y∗〉.

Using the fact that β ≤ ν
3 which follows from (27) we get∥∥∥∥∥∥∥

yk+1 − y∗

zk+1 − z∗

∥∥∥∥∥∥∥
2

M

≤

∥∥∥∥∥∥∥
yk − y∗
zk − z∗

∥∥∥∥∥∥∥
2

M

− (β − 2ν)‖yk+1 − y∗‖2 − γ‖zk+1 − z∗‖2W†

+
2(1− σ)

σ
Dh((ykf , z

k
f), (y∗, z∗))− 2

σ
Dh((yk+1

f , zk+1
f), (y∗, z∗))

− 2〈xk+1 − x∗, yk+1 − y∗〉.

Theorem 4. Let τ be defined by

τ =
1

2

√
µ

L
.

Let α be defined by
α =

µ

2
.

Let η be defined by

η =
1

2
√
µL

.

Let σ be defined by

σ =
1

18

√
µλ+min(W)

Lλmax(W)
.

Let ν be defined by

ν =
3

80L
.

Let β be defined by

β =
1

80L
.

Let θ be defined by

θ =
18
√
µLλmax(W)

5
√
λ+min(W)

Let γ be defined by

γ =
λ+min(W)

80L
.

32

Let λ be defined by

λ =
9
√
µL

2
√
λ+min(W)λmax(W)

.

where P ∈ R3nd×3nd is a matrix defined by

P =

1
η I 0 0

0 1
θ I 0

0 0 1
λW

†

 . (33)

Let ρ be defined by

ρ =
1

18

√
µλ+min(W)

Lλmax(W)
.

Let Ψk be the following Lyapunov function:

Ψk = (1 + ρ)

∥∥∥∥∥∥∥∥∥∥∥

xk − x∗

yk − y∗

zk − z∗

∥∥∥∥∥∥∥∥∥∥∥

2

P

+
(2− τ)

τ
Dr(x

k
f , x
∗) +

2

σ
Dh((ykf , z

k
f), (y∗, z∗)). (34)

Then the following inequality holds:

Ψk+1 ≤
(

1− 1

1 + ρ−1

)
Ψk.

Proof. One can observe that conditions of lemma 6 and lemma 8 are satisfied. Hence we can combine
(24) and (29) and get∥∥∥∥∥∥∥∥∥∥∥

xk+1 − x∗

yk+1 − y∗

zk+1 − z∗

∥∥∥∥∥∥∥∥∥∥∥

2

P

=
1

η
‖xk+1 − y∗‖2 +

∥∥∥∥∥∥∥
yk+1 − y∗

zk+1 − z∗

∥∥∥∥∥∥∥
2

M

≤ 1

η
‖xk − x∗‖2 − 3α

4
‖xk+1 − x∗‖2 +

2(1− τ)

τ
Dr(x

k
f , x
∗)

− 2− τ
τ

Dr(x
k+1
f , x∗)− ηδ

4
‖yk+1 − y∗‖2 + 2〈yk+1 − y∗, xk+1 − x∗〉

+

∥∥∥∥∥∥∥
yk − y∗
zk − z∗

∥∥∥∥∥∥∥
2

M

− (β − 2ν)‖yk+1 − y∗‖2 − γ‖zk+1 − z∗‖2W†

+
2(1− σ)

σ
Dh((ykf , z

k
f), (y∗, z∗))− 2

σ
Dh((yk+1

f , zk+1
f), (y∗, z∗))

− 2〈xk+1 − x∗, yk+1 − y∗〉

=

∥∥∥∥∥∥∥∥∥∥∥

xk − x∗

yk − y∗

zk − z∗

∥∥∥∥∥∥∥∥∥∥∥

2

P

− 3α

4
‖xk+1 − x∗‖2 −

(
ηδ

4
+ β − 2ν

)
‖yk+1 − y∗‖2

33

− γ‖zk+1 − z∗‖2W† +
2(1− τ)

τ
Dr(x

k
f , x
∗)− 2− τ

τ
Dr(x

k+1
f , x∗)

+
2(1− σ)

σ
Dh((ykf , z

k
f), (y∗, z∗))− 2

σ
Dh((yk+1

f , zk+1
f), (y∗, z∗)),

where P ∈ R3nd×3nd is a matrix defined by (33). From (22) it follows that

ηδ

4
= min

{
1

8
√
µL

,
1

8L

}
=

1

8L
,

and hence, using choice of α, β and ν, we get

∥∥∥∥∥∥∥∥∥∥∥

xk+1 − x∗

yk+1 − y∗

zk+1 − z∗

∥∥∥∥∥∥∥∥∥∥∥

2

P

≤

∥∥∥∥∥∥∥∥∥∥∥

xk − x∗

yk − y∗

zk − z∗

∥∥∥∥∥∥∥∥∥∥∥

2

P

− 3µ

8
‖xk+1 − x∗‖2 −

(
1

8L
+

1

80L
− 6

80L

)
‖yk+1 − y∗‖2

− λ+min(W)

80L
‖zk+1 − z∗‖2W† +

2(1− τ)

τ
Dr(x

k
f , x
∗)− 2− τ

τ
Dr(x

k+1
f , x∗)

+
2(1− σ)

σ
Dh((ykf , z

k
f), (y∗, z∗))− 2

σ
Dh((yk+1

f , zk+1
f), (y∗, z∗))

≤

∥∥∥∥∥∥∥∥∥∥∥

xk − x∗

yk − y∗

zk − z∗

∥∥∥∥∥∥∥∥∥∥∥

2

P

−min

{
3ηµ

8
,
θ

16L
,
λ · λ+min(W)

80L

}
∥∥∥∥∥∥∥∥∥∥∥

xk+1 − x∗

yk+1 − y∗

zk+1 − z∗

∥∥∥∥∥∥∥∥∥∥∥

2

P

+
(

1− τ

2

) (2− τ)

τ
Dr(x

k
f , x
∗)− 2− τ

τ
Dr(x

k+1
f , x∗)

+ (1− σ)
2

σ
Dh((ykf , z

k
f), (y∗, z∗))− 2

σ
Dh((yk+1

f , zk+1
f), (y∗, z∗))

=

∥∥∥∥∥∥∥∥∥∥∥

xk − x∗

yk − y∗

zk − z∗

∥∥∥∥∥∥∥∥∥∥∥

2

P

−min

 3

16

√
µ

L
,

9
√
µλmax(W)

40
√
Lλ+min(W)

,
9
√
µλ+min(W)

160
√
Lλmax(W)

∥∥∥∥∥∥∥∥∥∥∥

xk+1 − x∗

yk+1 − y∗

zk+1 − z∗

∥∥∥∥∥∥∥∥∥∥∥

2

P

+

(
1− 1

4

√
µ

L

)
(2− τ)

τ
Dr(x

k
f , x
∗)− 2− τ

τ
Dr(x

k+1
f , x∗)

+

1− 1

18

√
µλ+min(W)

Lλmax(W)

 2

σ
Dh((ykf , z

k
f), (y∗, z∗))− 2

σ
Dh((yk+1

f , zk+1
f), (y∗, z∗))

≤

∥∥∥∥∥∥∥∥∥∥∥

xk − x∗

yk − y∗

zk − z∗

∥∥∥∥∥∥∥∥∥∥∥

2

P

− ρ

∥∥∥∥∥∥∥∥∥∥∥

xk+1 − x∗

yk+1 − y∗

zk+1 − z∗

∥∥∥∥∥∥∥∥∥∥∥

2

P

+ (1− ρ)
(2− τ)

τ
Dr(x

k
f , x
∗)− 2− τ

τ
Dr(x

k+1
f , x∗)

+ (1− ρ)
2

σ
Dh((ykf , z

k
f), (y∗, z∗))− 2

σ
Dh((yk+1

f , zk+1
f), (y∗, z∗)).

34

After rearranging and using definition of Ψk (34) we get

Ψk+1 ≤

∥∥∥∥∥∥∥∥∥∥∥

xk − x∗

yk − y∗

zk − z∗

∥∥∥∥∥∥∥∥∥∥∥

2

P

+ (1− ρ)
(2− τ)

τ
Dr(x

k
f , x
∗)

+ (1− ρ)
2

σ
Dh((ykf , z

k
f), (y∗, z∗))

≤
(

1− 1

1 + ρ−1

)
Ψk.

35

	Introduction
	Formalism
	Computation and communication

	Related Work and Contributions
	Related work
	Summary of contributions

	Background
	Basic formulation of the decentralized problem
	Lower bounds
	Operator splitting

	New Decentralized Algorithms
	An accelerated primal dual algorithm
	A decentralized algorithm optimal both in communication and computation complexity

	Numerical Experiments
	Broader Impact
	Experiments with synthetic data
	Formal Definition of Decentralized Algorithms
	Proof of Theorem 2 (APAPC)
	Proof of Corollary 1 (OPAPC)
	A Loopless Algorithm Optimal in Communication Complexity
	Proof of Theorem 3 (Algorithm 3)

