
We thank the reviewers for their feedback. We will release our implementation on github. We thank R1 for pointing out1

our calibration metric of choice, D-Calibration (D-Cal), has been published at JMLR 2020 (we cite this as [H] here).2

[R3: Relation to D-Cal] Building on [H]’s D-cal, we propose X-cal to regularize a model to have low D-Cal. X-cal is3

a differentiable approximation of an upper-bound on D-Cal, amenable to stochastic optimization.4

[R1, R2: Real world dataset with censoring; Survival benchmarks] We evaluated X-Cal on [Avati et al]’s alternative5

MIMIC set with 70% censored points. D-Cal goes from 2× 10−4 → 9× 10−5 as λ increases from 0→ 103. We will6

add this to the paper. We are glad to include specific evaluations/benchmark sets that the reviewers think are relevant.7

[R2: Comparison with MTLR/ approaches mentioned in [H]] We do not include methods from [H] because our8

work focuses on using flexible models with good likelihood but poor calibration, like S-CRPS. We use a categorical9

model because it is a common flexible likelihood that can approximate many continuous distributions given enough bins.10

This allows us to evaluate X-Cal without parametric restrictions. We did cite an approach like MTLR [Ranganath 2018].11

We will cite MTLR [Yu et al. 2011] and its neural version [Fotso 2018]. We ran MTLR using PyCox library on the12

uncensored synthetic gamma dataset. This gave a model with D-cal 0.7486, which is higher than any model we study.13

[R3,R4: Comparison to other established calibration metrics] The alternative notion of calibration for fixed time t*14

suggested by reviewers [Yadlowsky 2019, Royston/Altman 2013] are described in [H] as “1-Calibration". [H] proves15

that D-Cal (with fixed bins) and 1-Cal for time t* (with fixed bins) measure different aspects of the survival distribution:16

0 D-Cal and 0 1-Cal do not imply each other. A practitioner may need calibration at several times e.g. 6 months, 1 year.17

Future work is to regularize models with approximations of 1-Cal. measures (e.g. Hosmer-Lemeshow statistic) using18

soft indicators. Our focus is to maintain a certain level of calibration based on the specific metric, D-cal.19

[R2: p-value] The p-value reported by [H] is the result of a χ2-test on the D-Cal test statistic. Thus, if models are20

ordered in the test statistic their corresponding p-values are ordered in the same way. While p-values help test for perfect21

calibration, our focus is on improving calibration of existing models which we demonstrate in in our experiments.22

[R3: Discontinuous learned conditional survival model] As mentioned in 4.1, a discontinuous model will have a23

lower bound greater than 0 for D-Cal because its CDF values will not be a continuous Unif(0,1) variable. However,24

minimizing D-Cal will still spread out the CDF values to whichever extent possible and thus improve calibration. In the25

case of a categorical model, this lower bound decreases to 0 as the size of each bin goes to 0 when adding more bins.26

[R3: Adjustments for right censoring / MNIST censoring] This is an important issue. In line 151 of our paper, we27

handle right censoring using the technique proposed in appendix B.5 in [H] and proved to result in a valid test statistic.28

As noted in [H] on page 47, the estimation of D-cal on a censored dataset will not equal the estimate when censored29

times are revealed. This is due to the fact that in the censored dataset [H]’s correction for right censoring gives a30

few bins the correct weight for free meaning D-cal will be lesser. However, for a given dataset, D-Cal is 0 for any31

bin for the true conditional p(T | X) for any non-informative censoring process that meets a "positivity" assumption.32

Thus, two models evaluated on the same data (censored or uncensored) can be compared with D-Cal. Reweighting33

methods, such as Yadlowsky et al. that R3 suggests, can be used to adjust for censoring. One option is to adjust with34

with p(C | X). This requires C ⊥ T | X and solving a censored survival problem p(C | X) with a high-dimensional35

conditioning set. Another option is to adjust with the lower dimensional conditioning set p(C | riskθ(X)). This36

requires C ⊥ T | riskθ(X) and differentiating through the estimation of p(C | riskθ(X)) w.r.t. θ. The approach we37

take requires neither another censored survival problem nor differentiating through estimation.38

γ 10 104 1.1× 104 105

D-Cal 0.4 0.0005 0.0002 0.0003
NLL 4.33 1.82 1.88 2.49

Table 1: Soft D-cal as γ varies.

[R2: λ and γ] Choosing λ: the user first decides on a39

threshold of D-Cal and then increase λ until D-Cal eval-40

uated on a held-out validation set meets this threshold.41

See Table 1 for the role of γ. With low γ, soft D-cal approximates42

poorly and D-Cal/NLL suffer. For γ too large, gradients vanish43

and D-Cal/NLL suffer. We found γ = 104 allowed for easy44

optimization with soft D-Cal approximating D-Cal well.45

λ Batch size D-Cal Bound

10 500 0.0040 0.0059
5000 ” 0.0042

50 500 0.0006 0.0024
5000 ” 0.0008

100 500 0.0003 0.0022
5000 ” 0.0005

Table 2: Slack in the Upper Bound

[R2, Tightness of upper-bound] Table 2 shows that models ordered by46

the upper-bound are ordered in D-cal the same way. Further, when batch47

size is large enough, if λi < λj , the bound for λj is less than D-Cal for λi.48

[R4: Choosing D-Cal on a validation set] During training we evaluated49

NLL+D-cal on a validation set at every epoch and save the model. Then,50

we report test metrics for the model with best validation NLL + D-Cal. If51

we only select/optimize X-cal on a validation set, the predictive likelihood52

may get arbitrarily worse. This issue occurs with Platt scaling as well.53

[Minor comments/ Typos] We thank the reviewers for detailed feedback54

about our writing. We will define Harrell’s Concordance Index, change 10k55

to our intended 104, and rephrase "calibration means accurate prognosis".56


