
A Proof of Theorem 2

We first introduce the following technical lemmas.

Lemma 1. For X 2 Rk⇥n with k < n, denote P = X
†
X and P�k = X

†
�kX�k, with

X�i 2 R(k�1)⇥n the matrix X without its i-th row xi 2 Rn. Then, conditioned on the event
Ek :

n��� tr⌃(I�P�k)
x>
k (I�P�k)xk

� 1
���  1

2

o
:

(X>
X)†xk =

(I�P�k)xk

x
>
k (I�P�k)xk

, P�P�k =
(I�P�k)xkx

>
k (I�P�k)

x
>
k (I�P�k)xk

.

Proof. Since conditioned on Ek we have x>
k (I�P�k)xk 6= 0, from [Mey73, Theorem 1] we deduce

(X>
X)† = (A+ xkx

>
k )

† = A
† � A

†
xkx

>
k (I�P�k)

x
>
k (I�P�k)xk

� (I�P�k)xkx
>
kA

†

x
>
k (I�P�k)xk

+ (1 + x
>
kA

†
xk)

(I�P�k)xkx
>
k (I�P�k)

(x>
k (I�P�k)xk)2

for A = X
>
�kX�k so that I�P�k = I�A

†
A, where we used the fact that I�P�k is a projection

matrix so that (I�P�k)2 = I�P�k. As a consequence, multiplying by xk and simplifying we get

(X>
X)†xk =

(I�P�k)xk

x
>
k (I�P�k)xk

.

By definition of the pseudoinverse, P = X
†
X = (X>

X)†X>
X so that

P�P�k = X
†
X�X

†
�kX�k =

(I�P�k)xkx
>
k (I�P�k)

x
>
k (I�P�k)xk

where we used A(I�P�k) = A�AA
†
A = 0 and thus the conclusion.

Lemma 2. For a K-sub-gaussian random vector x 2 Rn with E[x] = 0, E[xx>] = In and positive
semi-definite matrix A 2 Rn⇥n, we have

Pr


|x>

Ax� trA| � 1

3
trA

�
 2 exp

✓
�min

⇢
rA

9C2K4
,

p
rA

3CK2

�◆

with rA = trA/kAk the stable rank of A, and

E
h
(x>

Ax� trA)2
i
 c K

4 trA2

for some C, c > 0 independent of K.

Proof. This follows from a Hanson-Wright type [RV13] sub-gaussian concentration inequality.
More precisely, from [Zaj18, Corollary 2.9] we have, for K-sub-gaussian x 2 Rn with E[x] = 0,
E[xx>] = In and symmetric positive semi-definite A 2 Rn⇥n that

Pr {|x>
Ax� trA| � t}  2 exp

✓
�min

⇢
t
2

C2K4trA2
,

t

CK2
p
trA2

�◆

for some universal constant C > 0. Taking t = 1
3 trA we have

t
2

C2K4trA2
=

(trA)2

9C2K4trA2
� trA

9C2K4kAk =
rA

9C2K4
,

t

CK2
p
trA2

�
p
rA

3CK2

where we use the fact that trA2  kAktrA.

Integrating this bound yields:

E
⇥
(x>

Ax� trA)2
⇤
 c K

4 trA2

and thus the conclusion.
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Lemma 3. With the notations of Lemma 1, for X = tr⌃(P�k � E[P�k]) and k⌃k = 1, we have

E[X2]  Ck and Pr{|X| � t}  2e�
t2

ck .

for some universal constant C, c > 0.

Proof. To simplify notations, we work on P instead of P�k, the same line of argument applies to
P�k by changing the sample size k to k � 1.

First note that

X = tr⌃(P� EP) = Ek[tr⌃P]� E0[tr⌃P]

=
kX

i=1

(Ei[tr⌃P]� Ei�1[tr⌃P]) =
kX

i=1

(Ei � Ei�1)tr⌃(P�P�i)

where we used the fact that Ei[tr⌃P�i] = Ei�1[tr⌃P�i], for Ei[·] the conditional expectation with
respect to Fi the �-field generating the rows x1 . . . ,xi of X. This forms a martingale difference
sequence (it is a difference sequence of the Doob martingale for tr⌃(P � P�i) with respect to
filtration Fi) hence it falls within the scope of the Burkholder inequality [Bur73], recalled as follows.

Lemma 4. For {xi}ki=1 a real martingale difference sequence with respect to the increasing � field
Fi, we have, for L > 1, there exists CL > 0 such that

E
���

kX

i=1

xi

���
L
�
 CLE

⇣ kX

i=1

|xi|2
⌘L/2

�
.

From Lemma 1, P�P�i =
(I�P�i)xix

>
i (I�P�i)

x>
i (I�P�i)xi

is positive semi-definite, we have tr⌃(P�P�i) 
k⌃k = 1 so that with Lemma 4 we obtain with xi = (Ei � Ei�1)tr⌃(P�P�i) that, for L > 1

E|X|L  CLk
L/2

.

In particular, for L = 2, we obtain E|X|2  Ck.

For the second result, since we have almost surely bounded martingale differences (|xi|  2), by the
Azuma-Hoeffding inequality

Pr{|X| � t}  2e
�t2

8k

as desired.

A.1 Complete proof of Theorem 2

Equipped with the lemmas above, we are ready to prove Theorem 2. First note that:

1. Since X
†
X

d
= (↵X)†(↵X) for any ↵ 2 R \ {0}, we can assume without loss of generality (after

rescaling P̄? correspondingly) that k⌃k = 1.

2. According to the definition of P̄? and �, the following bounds hold

1

� + 1
I � P̄? � I, �  k

r � k
=

1

⇢� 1
(7)

for r ⌘ tr⌃
k⌃k = tr⌃ and ⇢ ⌘ r

k > 1, where we used the fact that

k = n� tr P̄? = tr P̄?(�⌃+ I)� tr P̄? = �tr P̄?⌃ � �

� + 1
tr⌃,

so that r = tr⌃  k · �+1
� .
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3. As already discussed in Section 2.1, to obtain the lower and upper bound for E[P?] in the sense
of symmetric matrix as in Theorem 2, it suffices to bound the following spectral norm

kI� E[P?]P̄
�1
? k  C⇢p

r
, (8)

so that, with ⇢�1
⇢ I � P̄? � I from (7), we have

kI� P̄
� 1

2
? E[P?]P̄

� 1
2

? k = kP̄� 1
2

? (I� E[P?]P̄
�1
? )P̄

1
2
?k  C⇢p

r

r
⇢

⇢� 1
.

Defining ✏ = C⇢p
r

q
⇢
⇢�1 , this means that all eigenvalues of the p.s.d. matrix P̄

� 1
2

? E[P?]P̄
� 1

2
? lie

in the interval [1� ✏, 1 + ✏], and

(1� ✏)I � P̄
� 1

2
? E[P?]P̄

� 1
2

? � (1 + ✏)I.

so that by multiplying P̄
1
2
? on both sides, we obtain the desired bound.

As a consequence of the above observations, we only need to prove (8) under the setting k⌃k = 1.
The proof comes in the following two steps:

1. For P�i = X
†
�iX�i, with X�i 2 R(k�1)⇥n the matrix X without its i-th row, we define, for

i 2 {1, . . . , k}, the following events

Ei :

⇢����
tr(I�P�i)⌃

x
>
i (I�P�i)xi

� 1

���� 
1

2

�
, (9)

where we recall xi 2 Rn is the i-th row of X so that E[xi] = 0 and E[xix
>
i ] = ⌃. With Lemma 2,

we can bound the probability of ¬Ei, and consequently that of ¬E for E =
Vk

i=1 Ei;

2. We then bound, conditioned on E and ¬E respectively, the spectral norm kI�E[P?]P̄
�1
? k. More

precisely, since

I� E[P?]P̄
�1
? = E[P]� �E[P?]⌃

= E[P · 1E ] + E[P · 1¬E ]� �E[P?]⌃

= kE

(I�P�k)xkx

>
k

x
>
k (I�P�k)xk

· 1E

�
� �E[P?]⌃ + E[P · 1¬E ]

= � E

(s̄� ŝ) · (I�P�k)xkx

>
k

x
>
k (I�P�k)xk

· 1E

�

| {z }
T1

�� E[(I�P�k)xkx
>
k · 1¬E ]| {z }

T2

+ � E[P�P�k]⌃| {z }
T3

+E[P · 1¬E ]| {z }
T4

,

where we used Lemma 1 for the third equality and denote ŝ = x
>
k (I � P�k)xk as well as

s̄ = trP̄?⌃ = k/�. It then remains to bound the spectral norms of T1,T2,T3,T4 to reach the
conclusion.

Another important relation that will be constantly used throughout the proof is

tr(I�P�k)⌃ = tr⌃
1
2 (I�P�k)

2
⌃

1
2 = k⌃ 1

2 �⌃
1
2X

†
�kX�kk2F �

X

i�k

�i(⌃) � r � k (10)

where we used the fact that rank(X†
�kX�k)  rank(X�k)  k � 1 and arranged the eigenvalues

1 = �1(⌃) � . . . � �n(⌃) in a non-increasing order. As a consequence, we also have

tr(I�P�k)⌃

k(I�P�k)⌃k � tr(I�P�k)⌃ � r � k. (11)
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For the first step, we have, with Lemma 2 and (11) that

Pr(¬Ei)  Pr

⇢
|x>

i (I�P�i)xi � tr⌃(I�P�i)| �
1

3
tr⌃(I�P�i)

�

 2e
�min

n
r�k

9C2K4 ,
p

r�k
3CK2

o

.

so that with the union bound we obtain

Pr(¬E)  2ke
�min

n
r�k

9C2K4 ,
p

r�k
3CK2

o

 k

(r � k)2
· 2(r � k)2e

�min
n

r�k
9C2K4 ,

p
r�k

3CK2

o

 C⇢

r � k
(12)

where we used the fact that, for ↵ > 0, x2e�↵x  4e�2

↵2 and x
4e�↵x  256e�4

↵4 on x > 0. Also,
denote c⇢ =

r�k
r = ⇢�1

⇢ > 0, we have

Pr(¬E)  C⇢

r � k
=

C⇢

c⇢r
=

C
0
⇢

r
(13)

for some C
0
⇢ > 0 that depends on ⇢ = r/k > 1 and the sub-gaussian norm K.

At this point, note that, conditioned on the event E, we have for i 2 {1, . . . , k}
1

2

1

tr(I�P�i)⌃
 1

x
>
i (I�P�i)xi

 3

2

1

tr(I�P�i)⌃
, (14)

Also, with (13) and the fact that kPk  1, we have kT4k  C⇢

r for some C⇢ > 0 that depends on ⇢

and K. To handle non-symmetric matrix T2, note that T2 +T
>
2 is symmetric and

�E[(I�P�k)·1¬E ]�E[(x>
kxk)xkx

>
k ·1¬E ] � T2+T

>
2 � E[(I�P�k)·1¬E ]+E[(x>

kxk)xkx
>
k ·1¬E ]

(15)
with �(AA

> +BB
>) � AB

> +BA
> � AA

> +BB
>. To obtain an upper bound for operator

norm of E[(x>
kxk)xkx

>
k · 1¬E ], note that

kE[(x>
kxk)xkx

>
k · 1¬E ]k  E[(x>

kxk)
2 · 1¬E ] =

Z 1

0
Pr(x>

x · 1¬E �
p
t)dt


Z X

0
Pr(x>

x · 1¬E �
p
t)dt+

Z 1

X
Pr(x>

x �
p
t)dt

 X · Pr(¬E) +

Z 1

X
e
�min

n
t

C2K4r
,

p
t

CK2p
r

o

dt  c⇢

r

where we recall E[x>
x] = tr⌃ = r and take X � C

2
K

4
r, the third line follows from the proof of

Lemma 2 and the forth line from the same argument as in (12). Moreover, since kT2k  kT2 +T
>
2 k

(see for example [Ser10, Proposition 5.11]), we conclude that kT2k  C⇢

r .

And it thus remains to handle the terms T1 and T3 to obtain a bound on kI� E[P?]P̄
�1
? k.

To bound T3, with P�P�k = (I�P�k)xkx
>
k (I�P�k)

x>
k (I�P�k)xk

in Lemma 1, we have

kT3k 
����E

(I�P�k)xkx

>
k (I�P�k)

x
>
k (I�P�k)xk

· 1E

�����+ kE[(P�P�k) · 1¬E ]k

 3

2
E


1

tr(I�P�k)⌃

�
+

c⇢

r � k
 C⇢

r � k
=

C
0
⇢

r

where we used the fact that tr (I�P�k)⌃ � r � k from (10) and recall ⇢ ⌘ r/k > 1.

For T1 we write

kT1k  E

kI�P�kk ·

���E
h
|s̄� ŝ| · xkx

>
k

x
>
k (I�P�k)xk

· 1E | P�k

i���
�

 3

2

1

r � k
· E


sup
kvk=1

E
h
|s̄� ŝ| · v>

xkx
>
kv · 1E | P�k

i�

 C⇢

r
· E
q

E
⇥
(s̄� ŝ)2 · 1E | P�k

⇤

| {z }
T1,1

· sup
kvk=1

q
E
⇥
(v>xk)4

⇤

| {z }
T1,2

�
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where we used Jensen’s inequality for the first inequality, the relation in (10) for the second inequality,
and Cauchy–Schwarz for the third inequality.

We first bound T1,2 by definition of sub-gaussian random vectors. We have for xk a K-sub-gaussian
and kvk = 1 that, v>

xk is a sub-gaussian random variable with kv>
ak 2  K. As such, T1,2 

CK
2 for some absolute constant C > 0, see for example [Ver18, Section 2.5.2].

For T1,1 we have
p
E[(s̄� ŝ)2 · 1E | P�k] =

p
(s̄� s)2 + E[(s� ŝ)2 · 1E ]

where we denote s = E[ŝ] = trE[I�P�k]⌃. Note that

E
⇥
(s� ŝ)2

⇤
= E

⇥�
tr⌃(P�k � E[P�k])

�2⇤
+ E

⇥
(tr (I�P�k)⌃� x

>
k (I�P�k)xk)

2
⇤

 C1k + C2E
⇥
tr (⌃�P�k⌃)2

⇤
 C(k + s)  C

�
k + s̄+ |s� s̄|

�

where we used Lemma 3 and Lemma 2. Recall that s̄ = trP̄?⌃  tr⌃ = r and k < r, we have

T1,1 
p
(s̄� s)2 + C(|s̄� s|+ 2r) (16)

It remains to bound |s̄� s|. Note that P = (X>
X)†X>

X = X
>
X(X>

X)† and is symmetric, so

I� E[P?]P̄
�1
? + I� P̄

�1
? E[P?] = 2E[P]� E[�P?⌃]� E[�⌃P?]

=
kX

i=1

E
⇥
(X>

X)†xix
>
i + xix

>
i (X

>
X)†

⇤
� �(E[P?]⌃+⌃E[P?])

= � E

s̄ · (I�P�k)xkx

>
k + xkx

>
k (I�P�k)

x
>
k (I�P�k)xk

�
� � E


ŝ · (I�P�k)xkx

>
k + xkx

>
k (I�P�k)

x
>
k (I�P�k)xk

�

+ � (E[(I�P�k)⌃] + E[⌃(I�P�k)])� �(E[P?]⌃+⌃E[P?])

= � E

(s̄� ŝ) · (I�P�k)xkx

>
k + xkx

>
k (I�P�k)

x
>
k (I�P�k)xk

�
+ �(E[P�P�k]⌃+⌃E[P�P�k]).

Moreover, using the fact that P̄?⌃ � 1
�+1I and P̄?⌃ = ⌃P̄?, we obtain that

|s̄� s| = |tr(P̄? � E[I�P�k])⌃|  |tr(P̄? � E[P?])⌃|+ |trE[P�P�k]⌃|

=
1

2

��tr (I� E[P?]P̄
�1
? )P̄?⌃+ tr P̄?(I� P̄

�1
? E[P?])⌃

��+ trE

(I�P�k)xkx

>
k (I�P�k)

x
>
k (I�P�k)xk

�
⌃

 1

2

��tr (I� E[P?]P̄
�1
? + I� P̄

�1
? E[P?])P̄?⌃

��+ 1

 �

2
E

|s̄� ŝ| · tr ((I�P�k)xkx

>
k + xkx

>
k (I�P�k))P̄?⌃

tr (I�P�k)xkx
>
k

�

+ � E

tr (I�P�k)xkx

>
k (I�P�k)P̄?⌃

tr (I�P�k)xkx
>
k

�
+ 1

 �

� + 1

 
E

|s̄� ŝ| · x

>
k (I�P�k)xk

x
>
k (I�P�k)xk

�
+ 1

!
+ 1  �

� + 1

⇣
|s̄� s|+ E

⇥
|s� ŝ|

⇤
+ 1
⌘
+ 1

 �

� + 1

⇣
|s̄� s|+ C

p
|s̄� s|+ C

p
2r + 1

⌘
+ 1.

Solving for |s̄� s|, we deduce that
|s̄� s|  C1

p
r + C2,

so plugging back to (16) we get T1,1  C
p
r and kT1k  C⇢p

r
, thus completing the proof.

B Convergence analysis of randomized iterative methods

Here, we discuss how our surrogate expressions for the expected residual projection can be used to
perform convergence analysis for several randomized iterative optimization methods discussed in
Section 1.3.
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B.1 Generalized Kaczmarz method

Generalized Kaczmarz [GR15] is an iterative method for solving an m⇥ n linear system Ax = b,
which uses a k ⇥ m sketching matrix St to reduce the linear system and update an iterate x

t as
follows:

x
t+1 = argmin

x
kx� x

tk2 subject to StAx = Stb.

Assume that x⇤ is the unique solution to the linear system Ax = b. In Theorems 4.1 and 4.6, [GR15]
show that the expected trajectory of the generalized Kaczmarz iterates, as they converge to x

⇤, is
controlled by the projection matrix P = (StA)†StA as follows:

([GR15], Theorem 4.1) E[xt+1 � x
⇤] =

�
I� E[P]

�
E[xt � x

⇤],

([GR15], Theorem 4.6) E
⇥
kxt+1 � x

⇤k2
⇤
 (1� )E

⇥
kxt � x

⇤k2
⇤
, where  = �min

�
E[P]

�
.

Both of these results depend on the expected projection E[P]. The first one describes the expected
trajectory of the iterate, whereas the second one gives the worst-case convergence rate in terms of
the so-called stochastic condition number . We next demonstrate how Theorem 1 can be used in
combination with the above results to obtain convergence analysis for generalized Kaczmarz which
is formulated in terms of the spectral properties of A. This includes precise expressions for both
the expected trajectory and . The following result is a more detailed version of Corollary 2 from
Section 1.3.
Corollary 3. Let �i denote the singular values of A, and let k denote the size of sketch St. Define:

�t = x
t � x

⇤ and �̄t+1 = (�A>
A+ I)�1E[�t] s.t.

X

i

��
2
i

��2
i + 1

= k.

Suppose that St has i.i.d. mean-zero sub-gaussian entries and let r = kAk2F /kAk2 be the stable
rank of A. Assume that ⇢ = r/k is a constant larger than 1. Then, the expected trajectory satisfies:

��E[�t+1]� �̄t+1

��  ✏ · k�̄t+1k, for ✏ = O
�

1p
r

�
. (17)

Moreover, we obtain the following worst-case convergence guarantee:

E
⇥
k�t+1k2

⇤

�
1� (̄� ✏)

�
E
⇥
k�tk2

⇤
, where ̄ =

�
2
min

�2
min + 1/�

. (18)

Remark 2. Our worst-case convergence guarantee (18) requires the matrix A to be sufficiently
well-conditioned so that ̄ � ✏ > 0. However, we believe that our surrogate expression ̄ for the
stochastic condition number is far more accurate than suggested by the current analysis.

B.2 Randomized Subspace Newton

Randomized Subspace Newton (RSN, [GKLR19]) is a randomized Newton-type method for mini-
mizing a smooth, convex and twice differentiable function f : Rd ⇥ R. The iterative update for this
algorithm is defined as follows:

x
t+1 = x

t � 1

L
S

>
t (StH(xt)S>

t )
†
Stg(x

t),

where H(xt) and g(xt) are the Hessian and gradient of f at xt, respectively, whereas St is a k ⇥ d

sketching matrix (with k ⌧ d) which is refreshed at every iteration. Here, L denotes the relative
smoothness constant defined by [GKLR19] in Assumption 1, which also defines relative strong
convexity, denoted by µ. In Theorem 2, they prove the following convergence guarantee for RSN:

E[f(xt)]� f(x⇤) 
⇣
1� 

µ

L

⌘t
(f(x0)� f(x⇤)),

where  = minx (x) and (x) = �
+
min(E[P(x)]) is the smallest positive eigenvalue of the expec-

tation of the projection matrix P(x) = H
1
2 (x)S>

t (StH(x)S>
t )

†
StH

1
2 (x). Our results lead to the

following surrogate expression for this expected projection when the sketch is sub-gaussian:

E[P(x)] ' H(x)
�
H(x) + 1

�(x)I
��1 for �(x) > 0 s.t. trH(x)

�
H(x) + 1

�(x)I
��1

= k.
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Thus, the condition number  of RSN can be estimated using the following surrogate expression:

 ' ̄ := min
x

�
+
min(H(x))

�
+
min(H(x)) + 1/�(x)

.

Just as in Corollary 3, an approximation of the form |̄� |  ✏ can be shown from Theorem 1.
Corollary 4. Suppose that sketch St has size k and i.i.d. mean-zero sub-gaussian entries. Let
r = minx trH(x)/kH(x)k be the (minimum) stable rank of the (square root) Hessian and assume
that ⇢ = r/k is a constant larger than 1. Then,

|� ̄|  O
�

1p
r

�
.

B.3 Jacobian Sketching

Jacobian Sketching (JacSketch, [GRB20]) defines an n ⇥ n positive semi-definite weight matrix
W, and combines it with an k ⇥ n sketching matrix S (which is refreshed at every iteration of the
algorithm), to implicitly construct the following projection matrix:

⇧S = S
>(SWS

>)†SW,

which is used to sketch the Jacobian at the current iterate (for the complete method, we refer to their
Algorithm 1). The convergence rate guarantee given in their Theorem 3.6 for JacSketch is given in
terms of the Lyapunov function:

 t = kxt � x
⇤k2 + ↵

2L2
kJt �rF (x⇤)k2W�1 ,

where ↵ is the step size used by the algorithm. Under appropriate choice of the step-size, Theorem 3.6
states that:

E[ t] 
✓
1� µ min

n 1

4L1
,



4L2⇢/n
2 + µ

o◆t

· 0
,

where  = �min(E[⇧S]) is the stochastic condition number analogous to the one defined for
the Generalized Kaczmarz method, n is the data size and parameters ⇢, L1, L2 and µ are problem
dependent constants defined in Theorem 3.6. Similarly as before, we can use our surrogate expressions
for the expected residual projection to obtain a precise estimate for the stochastic condition number 
under sub-gaussian sketching:

 ' ̄ :=
�min(W)

�min(W) + 1/�
for � > 0 s.t. trW(W + 1

� I)
�1 = k.

Corollary 5. Suppose St has size k and i.i.d. mean-zero sub-gaussian entries. Let r = trW/kWk
be the stable rank of W

1
2 and assume that ⇢ = r/k is a constant larger than 1. Then,

|� ̄|  O
�

1p
r

�
.

B.4 Omitted proofs

Proof of Corollary 3 Using Theorem 1, for P̄? as defined in (1), we have
(1� ✏)P̄? � I� E[P] = E[P?] � (1 + ✏)P̄?, where ✏ = O

�
1p
r

�
.

In particular, this implies that kP̄� 1
2

? (E[P?]� P̄?)P̄
� 1

2
? k  ✏. Moreover, in the proof of Theorem 2

we showed that ⇢�1
⇢ I � P̄? � I, see (7), so it follows that:

P̄
�1
? (E[P?]� P̄?)

2
P̄

�1
? � ⇢

⇢� 1

�
P̄

� 1
2

? (E[P?]� P̄?)P̄
� 1

2
?
�2 � ⇢

⇢� 1
✏
2 · I,

where note that ⇢
⇢�1 ✏

2 = O(1/r), since ⇢ is treated as a constant. Thus we conclude that:

kE[�t+1]� �̄t+1k2 = E[�t]
>(E[P?]� P̄?)

2E[�t]

 O(1/r) · E[�t]
>
P̄

2
?E[�t] = O(1/r) · k�̄t+1k2,

which completes the proof of (17). To show (18), it suffices to observe that
�min(E[P]) = 1� �max(E[P?]) � 1� (1 + ✏)�max(P̄?) � �min(I� P̄?)� ✏,

which completes the proof since I� P̄? = �A
>
A(�A>

A+ I)�1.

Corollaries 4 and 5 follow analogously from Theorem 1.
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Figure 4: Theoretical predictions versus approximation error for the sketched Nyström with the RBF
kernel, using Gaussian and Rademacher sketches (spectral decay shown at the bottom).
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C Additional empirical results

We complement the results of Section 4 with empirical results on four additional libsvm datasets
[CL11] (bringing the total number of benchmark datasets to eight), which further establish the
accuracy of our surrogate expressions for the low-rank approximation error. Similary as in Figure
2, we use the sketched Nyström method [GM16] with the RBF kernel k(ai,aj) = exp(�kai �
ajk2/(2�2)), for several values of the parameter �. The values of � were chosen so as to demonstrate
the effectiveness of our theoretical predictions both when the stable rank is moderately large and
when it is very small.

In Figure 4 we show the results for both Gaussian and Rademacher sketches. These results reinforce
the conclusions we made in Section 4: our theoretical estimates are very accurate in all cases, for
both sketching methods, and even when the stable rank is close to 1 (a regime that is not supported
by the current theory).
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