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Abstract

SGD with momentum (SGDM) has been widely applied in many machine learning
tasks, and it is often applied with dynamic stepsizes and momentum weights
tuned in a stagewise manner. Despite of its empirical advantage over SGD, the
role of momentum is still unclear in general since previous analyses on SGDM
either provide worse convergence bounds than those of SGD, or assume Lipschitz
or quadratic objectives, which fail to hold in practice. Furthermore, the role of
dynamic parameters has not been addressed. In this work, we show that SGDM
converges as fast as SGD for smooth objectives under both strongly convex and
nonconvex settings. We also prove that multistage strategy is beneficial for SGDM
compared to using fixed parameters. Finally, we verify these theoretical claims by
numerical experiments.

1 Introduction

Stochastic gradient methods have been a widespread practice in machine learning. They aim to
minimize the following empirical risk:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

`(x, qi), (1)

where ` is a loss function and {qi}ni=1 denotes the training data, x denotes the trainable parameters of
the machine learning model, e.g., the weight matrices in a neural network.

In general, stochastic gradient methods can be written as

mk = βmk−1 + (1− β)g̃k,
xk+1 = xk − αmk.

(2)

where α > 0 is a stepsize, β ∈ [0, 1) is called momentum weight, and m0 = 0. The classical
Stochastic Gradient Descent(SGD) method [21] uses β = 0 and mk = g̃k, where g̃k is a stochastic
gradient of f(x) at xk. To boost the practical performance, one often applies a momentum weight of
β > 0. and the resulting algorithm is often called SGD with momentum (SGDM). SGDM is very
popular for training neural networks with remarkable empirical successes, and has been implemented
as the default SGD optimizer in Pytorch [19] and Tensorflow [1]1.

The idea behind SGDM originates from Polyak’s heavy-ball method [20] for deterministic optimiza-
tion. For strongly convex and smooth objectives, heavy-ball method enjoys an accelerated linear

1Their implementation of SGDM does not have the (1− β) before g̃k, which gives mk =
∑k
i=1 β

k−ig̃i,
while mk = (1− β)

∑k
i=1 β

k−ig̃i for (2). Therefore, they only differ by a constant scaling.
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convergence rate over gradient descent [7]. However, the theoretical understanding of its stochastic
counterpart is far from being complete.

In the case of fixed stepsize and momentum weight, most of the current results only apply to restrictive
settings. In [15, 16] and [12], the behavior of SGDM on least square regression is analyzed and linear
convergence is established. [9] analyzes the local convergence rate of SGDM for strongly convex and
smooth functions, where the initial point x0 is assumed to be close enough to the minimizer x∗. [25]
provides global convergence of SGDM, but only for objectives with uniformly bounded gradients,
thus excluding many machine learning models such as Ridge regression. Very recently, [26] presents
a convergence bound of O( 1

kα + α
1−β ) for general smooth nonconvex objectives3. When β = 0, this

recovers the classical convergence bound of O( 1
kα + α) of SGD [4]. However, the size of stationary

distribution O( α
1−β ) is 1

1−β times larger than that of SGD. This factor is not negligible, especially
when large β values such as 0.99 and 0.995 is applied [24]. Therefore, their result does not explain
the competitiveness of SGDM compared to SGD. Concurrent to this work, [22] shows that SGDM
converges as fast as SGD under convexity and strong convexity, and that it is asymptotically faster
than SGD for overparameterized models. Remarkably, their analysis considers a different stepsize
and momentum weight schedule from this work, and applies to arbitrary sampling without assuming
the bounded variance of the gradient noise.

In deep learning, SGDM is often applied with various parameter tuning rules to achieve efficient
training. One of the most widely adopted rules is called “constant and drop", where a constant
stepsize is applied for a long period and is dropped by some constant factor to allow for refined
training, while the momentum weight is either kept unchanged (usually 0.9) or gradually increasing.
We call this strategy Multistage SGDM and summarize it in Algorithm 1. Practically, (multistage)
SGDM was successfully applied to training large-scale neural networks [13, 11], and it was found
that appropriate parameter tuning leads to superior performance [24]. Since then, (multistage) SGDM
has become increasingly popular [23].

At each stage, Multistage SGDM (Algorithm 1) requires three parameters: stepsize, momentum
weight, and stage length. In [8] and [10], doubling argument based rules are analyzed for SGD
on strongly convex objectives, where the stage length is doubled whenever the stepsize is halved.
Recently, certain stepsize schedules are shown to yield faster convergence for SGD on nonconvex
objectives satisfying growth conditions [27, 5], and a nearly optimal stepsize schedule is provided for
SGD on least square regression [6]. These results consider only the momentum-free case. Another
recent work focuses on the asymptotic convergence of SGDM (i.e., without convergence rate) [9],
which requires the momentum weights to approach either 0 or 1, and therefore contradicts the
common practice in neural network training. In summary, the convergence rate of Multistage SGDM
(Algorithm 1) has not been established except for the momentum-free case, and the role of parameters
in different stages is unclear.

Algorithm 1 Multistage SGDM
Input: problem data f(x) as in (1), number of stages n, momentum weights {βi}ni=1 ⊆ [0, 1), step
sizes {αi}ni=1, and stage lengths {Ti}ni=1 at n stages, initialization x1 ∈ Rd and m0 = 0, iteration
counter k = 1.

1: for i = 1, 2, ..., n do
2: α← αi, β ← βi;
3: for j = 1, 2, ..., Ti do
4: Sample a minibatch ζk uniformly from the training data;
5: g̃k ← ∇xl(xk, ζk);
6: mk ← βmk−1 + (1− β)g̃k;
7: xk+1 ← xk − αmk;
8: k ← k + 1;
9: end for

10: end for
11: return x̃, which is generated by first choosing a stage l ∈ {1, 2, ...n} uniformly at random, and

then choosing x̃ ∈ {xT1+...+Tl−1+1, xT1+...+Tl−1+2, ..., xT1+...+Tl} uniformly at random;

3Here k is the number of iterations. Note that in [26], a different but equivalent formulation of SGDM is
analyzed; their stepsize γ is effectively α

1−β in our setting.
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1.1 Our contributions

In this work, we provide new convergence analysis for SGDM and Multistage SGDM that resolve the
aforementioned issues. A comparison of our results with prior work can be found in Table 1.

1. We show that for both strongly convex and nonconvex objectives, SGDM (2) enjoys the same
convergence bound as SGD. This helps explain the empirical observations that SGDM is at
least as fast as SGD [23]. Our analysis relies on a new observation that, the update direction
mk of SGDM (2) has a controllable deviation from the current full gradient ∇f(xk), and
enjoys a smaller variance. Inspired by this, we construct a new Lyapunov function that
properly handles this deviation and exploits an auxiliary sequence to take advantage of the
reduced variance.
Compared to aforementioned previous work, our analysis applies to not only least squares,
does not assume uniformly bounded gradient, and improves the convergence bound.

2. For the more popular SGDM in the multistage setting (Algorithm 1), we establish its conver-
gence and demonstrate that the multistage strategy are faster at initial stages. Specifically,
we allow larger stepsizes in the first few stages to boost initial performance, and smaller step-
sizes in the final stages decrease the size of stationary distribution. Theoretically, we properly
redefine the aforementioned auxiliary sequence and Lyapunov function to incorporate the
stagewise parameters.
To the best of our knowledge, this is the first convergence guarantee for SGDM in the
multistage setting.

Method Additional
Assumptions

Convergence
Bound

SGDM [25] Bounded gradient E[‖∇f(xout)‖2] = O
(

1
kα + ασ2

1−β

)
SGDM [26] - E[‖∇f(xout)‖2] = O

(
1
kα + ασ2

1−β

)
SGDM (*) - E[‖∇f(xout)‖2] = O

(
1
kα + ασ2

)
SGDM (*) Strong convexity E[f(xk)− f∗] = O

(
(1− αµ)k + ασ2

)
Multistage SGDM(*) - E[‖∇f(xout)‖2] = O

(
1

nA2
+ 1

n

∑n
l=1 αlσ

2
)

Table 1: Comparison of our results (*) with prior work under Assumption 1 and additional assump-
tions. “Bounded gradient" stands for the bounded gradient assumption ‖∇f(x)‖ ≤ G for some
G > 0 and all x ∈ Rd. This work removes this assumption and improves convergence bounds.
Strongly convex setting and multistage setting are also analyzed. We omit the results of [8] and [10]
as their analysis only applies to SGD (momentum-free case).

1.2 Other related work

Nesterov’s momentum achieves optimal convergence rate in deterministic optimization [18], and
has also been combined with SGD for neural network training [24]. Recently, its multistage version
has been analyzed for convex or strongly convex objectives [3, 14]. Other forms of momentum
for stochastic optimization include PID Control-based methods [2], Accelerated SGD [12], and
Quasi-Hyperbolic Momentum [17]. In this work, we restrict ourselves to heavy-ball momentum,
which is arguably the most popular form of momentum in current deep learning practice.

2 Notation and Preliminaries

Throughout this paper, we use ‖ · ‖ for vector `2-norm, 〈·, ·〉 stands for dot product. Let gk denote the
full gradient of f at xk, i.e., gk := ∇f(xk), and f∗ := minx∈Rd f(x).

Definition 1. We say that f : Rd → R is L−smooth with L ≥ 0, if it is differentiable and satisfies

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2
‖y − x‖2,∀x, y ∈ Rd .
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We say that f : Rd → R is µ−strongly convex with µ ≥ 0, if it satisfies

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
‖y − x‖2,∀x, y ∈ Rd .

The following assumption is effective throughout, which is standard in stochastic optimization.
Assumption 1. 1. Smoothness: The objective f(x) in (1) is L−smooth.

2. Unbiasedness: At each iteration k, g̃k satisfies Eζk [g̃
k] = gk.

3. Independent samples: the random samples {ζk}∞k=1 are independent.

4. Bounded variance: the variance of g̃k with respect to ζk satisfies Varζk(g̃k) = Eζk [‖g̃k −
gk‖2] ≤ σ2 for some σ2 > 0.

Unless otherwise noted, all the proof in the paper are deferred to the appendix.

3 Key Ingredients of Convergence Theory

In this section, we present some key insights for the analysis of stochastic momentum methods. For
simplicity, we first focus on the case of fixed stepsize and momentum weight, and make proper
generalizations for Multistage SGDM in App. C.

3.1 A key observation on momentum

In this section, we make the following observation on the role of momentum:

With a momentum weight β ∈ [0, 1), the update vector mk enjoys a reduced “variance" of
(1− β)σ2, while having a controllable deviation from the full gradient gk in expectation.

First, without loss of generality, we can take m0 = 0, and express mk as

mk = (1− β)
k∑
i=1

βk−ig̃i. (3)

mk is a moving average of the past stochastic gradients, with smaller weights for older ones1.

we have the following result regarding the “variance" of mk, which is measured between mk and its
deterministic version (1− β)

∑k
i=1 β

k−igi.

Lemma 1. Under Assumption 1, the update vector mk in SGDM (2) satisfies

E

∥∥∥∥∥mk − (1− β)
k∑
i=1

βk−igi

∥∥∥∥∥
2
 ≤ 1− β

1 + β
(1− β2k)σ2.

Lemma 1 follows directly from the property of the moving average.

On the other hand, (1−β)
∑k
i=1 β

k−igi is a moving average of all past gradients, which is in contrast
to SGD. It seems unclear how far is (1− β)

∑k
i=1 β

k−igi from the ideal descent direction gk, which
could be unbounded unless stronger assumptions are imposed. Previous analysis such as [25] and [9]
make the blanket assumption of bounded∇f to circumvent this difficulty.

In this work, we provide a different perspective to resolve this issue.
Lemma 2. Under Assumption 1, we have

E

∥∥∥∥∥ 1

1− βk
(1− β)

k∑
i=1

βk−igi − gk
∥∥∥∥∥
2
 ≤ k−1∑

i=1

ak,i E[‖xi+1 − xi‖2],

where

ak,i =
L2βk−i

1− βk

(
k − i+ β

1− β

)
. (4)

1Note the sum of weights (1− β)
∑k
i=1 β

k−i = 1− βk → 1 as k →∞.
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From Lemma 2, we know the deviation of 1
1−βk (1− β)

∑k
i=1 β

k−igi from gk is controllable sum
of past successive iterate differences, in the sense that the coefficients ak,i decays linearly for older
ones. This inspires the construction of a new Lyapunov function to handle the deviation brought by
the momentum, as we shall see next.

3.2 A new Lyapunov function

Let us construct the following Lyapunov function for SGDM:

Lk =
(
f(zk)− f?

)
+

k−1∑
i=1

ci‖xk+1−i − xk−i‖2. (5)

In the Lyapunov function (5), {ci}∞i=1 are positive constants to be specified later corresponding to
the deviation described in Lemma 2. Since the coefficients in (4) converges linearly to 0 as k →∞,
we can choose {ci}∞i=1 in a diminishing fashion, such that this deviation can be controlled, and Lk
defined in (5) is indeed a Lyapunov function under strongly convex and nonconvex settings (see
Propositions 1 and 2).

In (5), zk is an auxiliary sequence defined as

zk =

{
xk k = 1,
1

1−βx
k − β

1−βx
k−1 k ≥ 2.

(6)

This auxiliary sequence first appeared in the analysis of deterministic heavy ball methods in [7], and
later applied in the analysis of SGDM [26, 25]. It enjoys the following property.
Lemma 3. zk defined in (6) satisfies

zk+1 − zk = −αg̃k.

Lemma 3 indicates that it is more convenient to analyze zk than xk since zk behaves more like a
SGD iterate, although the stochastic gradient g̃k is not taken at zk.

Since the coefficients of the deviation in Lemma 2 converges linearly to 0 as k →∞, we can choose
{ci}∞i=1 in a diminishing fashion, such that this deviation can be controlled. Remarkably, we shall see

in Sec. 4 that with c1 = O
(

L
1−β

)
, Lk defined in (5) is indeed a Lyapunov function under strongly

convex and nonconvex settings, and that SGDM converges as fast as SGD.

Now, let us turn to the Multistage SGDM (Algorithm 1), which has been very successful in neural
network training. However, its convergence still remains unclear except for the momentum-free case.
To establish convergence, we require the parameters of Multistage SGDM to satisfy

αiβi
1− βi

≡ A1, for i = 1, 2, ...n.

αiTi ≡ A2, for i = 1, 2, ...n.

0 ≤ β1 ≤ β2 ≤ ... ≤ βn < 1.

(7)

where αi, βi, and Ti are the stepsize, momentum weight, and stage length of ith stage, respectively,
and A1, A2 are properly chosen constants. In principle, one applies larger stepsizes αi at the initial
stages, which will accelerate initial convergence, and smaller stepsizes for the final stages, which
will shrink the size of final stationary distribution. As a result, (7) stipulates that less iterations are
required for stages with large stepsizes and more iterations for stages with small stepsizes. Finally,
(7) requires the momentum weights to be monotonically increasing, which is consistent with what’s
done in practice [24]. often, using constant momentum weight also works.

Under the parameter choices in (7), let us define the auxiliary sequence zk by

zk = xk −A1m
k−1. (8)

This {zk}∞k=1 sequence reduces to (6) when a constant stepsize and momentum weight are applied.
Furthermore, the observations made in Lemmas 1, 2, and 3 can also be generalized (see Lemmas 4, 5,
6, and 7 in App. C). In Sec. 5. we shall see that with (7) and appropriately chosen {ci}∞i=1, Lk in (5)
also defines a Lyapunov function in the multistage setting, which in turn leads to the convergence of
Multistage SGDM.
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4 Convergence of SGDM

In this section, we proceed to establish the convergence of SGDM described in (2). First, by following
the idea presented in Sec. 3, we can show that Lk defined in (5) is a Lyapunov function.

Proposition 1. Let Assumption 1 hold. In (2), let α ≤ 1−β
2
√
2L
√
β+β2

. Let {ci}∞i=1 in (5) be defined by

c1 =

β+β2

(1−β)3L
3α2

1− 4α2 β+β2

(1−β)2L
2
, ci+1 = ci −

(
4c1α

2 +
Lα2

1− β

)
βi(i+

β

1− β
)L2 for all i ≥ 1.

Then, ci > 0 for all i ≥ 1, and

E[Lk+1 − Lk] ≤
(
−α+

3− β + β2

2(1− β)
Lα2 + 4c1α

2

)
E[‖gk‖2]

+

(
β2

2(1 + β)
Lα2σ2 +

1

2
Lα2σ2 + 2c1

1− β
1 + β

α2σ2

)
.

(9)

By telescoping (9), we obtain the stationary convergence of SGDM under nonconvex settings.

Theorem 1. Let Assumption 1 hold. In (2), let α ≤ α ≤ min{ 1−β
L(4−β+β2) ,

1−β
2
√
2L
√
β+β2

}. Then,

1

k

k∑
i=1

E[‖gi‖2] ≤
2
(
f(x1)− f∗

)
kα

+

(
β + 3β2

2(1 + β)
+ 1

)
Lασ2 = O

(
f(x1)− f∗

kα
+ Lασ2

)
.

(10)

Now let us turn to the strongly convex setting, for which we have

Proposition 2. Let Assumption 1 hold. Assume in addition that f is µ−strongly convex. In (2), let
α ≤ min{ 1−β5L , 1−β

L
(
3−β+2β2+ 48

√
β

25
2L+18µ

L

)}. Then, there exists positive constants ci for (5) such that

for all k ≥ k0 := b log 0.5
log β c, we have

E[Lk+1 − Lk] ≤ − αµ

1 + 8µ
L

E[Lk] + (
1 + β + β2

2(1 + β)
L+

1− β
1 + β

2c1)α
2σ2 +

β2 + Lα
2

β2

1−β

(1 + 8µ
L )(1 + β)

2µα2σ2.

The choices of {ci}∞i=1 is similar to those of Proposition 1 and can be found in App. B.4. With
Proposition 2, we immediately have

Theorem 2. Let Assumption 1 hold and assume in addition that f is µ−strongly convex. Under the
same settings as in Proposition 2, for all k ≥ k0 = b log 0.5

log β c we have

E[f(zk)− f∗] ≤

(
1− αµ

1 + 8µ
L

)k−k0
E[Lk0 ] +

(
1 +

8µ

L

)
1 + β + β2

2(1 + β)

L

µ
ασ2

+

(
1 +

8µ

L

)(
1

1 + β

12
√
β

25

2L+ 18µ

µ
ασ2 +

β2 + Lα
10 β

2

1 + 8µ
L

2

1 + β
ασ2

)

= O
(
(1− αµ)k + L

µ
ασ2

)
.

Corollary 1. Let Assumption 1 hold and assume in addition that f is µ−strongly convex. Under the
same settings as in Proposition 2, for all k ≥ k0 = b log 0.5

log β c we have

E[f(xk)− f∗] = O
(
rk +

L

µ
ασ2

)
,

where r = max{1− αµ, β}.
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Remark 1. 1. Under nonconvex settings, the classical convergence bound of SGD is
O
(
f(x1)−f∗

kα + Lασ2
)

with α = O( 1
L ) (see, e.g., Theorem 4.8 of [4]). Therefore, Theorem

1 tells us that with α = O( 1−βL ), SGDM achieves the same convergence bound as SGD.
2. In contrast, the radius of the stationary distribution for SGDM in [26] and [25] is O( ασ

2

1−β ),
and the latter one also assumes that∇f is uniformly bounded.

3. In Theorem 2 and Corollary 1, the convergence bounds hold for k ≥ k0 = b log 0.5
log β c, where

k0 is a mild constant1. when r = 1− αµ, the O(rk) part in Corollary 1 matches the lower
bound established in Proposition 3 of [12].

4. The convergence bound of SGD under strong convexity is O
(
(1− αµ)k + L

µασ
2
)

(see,
e.g, Theorem 4.6 of [4]), our result for SGDM in Corollary 1 recovers this when β = 0.

5 Convergence of Multistage SGDM

In this section, we switch to the Multistage SGDM (Algorithm 1).

Let us first show that when the (7) is applied, we can define the constants ci properly so that (5) still
produces a Lyapunov function.
Proposition 3. Let Assumption 1 hold. In Algorithm 1, let the parameters satisfy (7) with A1 =

1
24
√
2L

. In addition, let

1− β1
β1

≤ 12
1− βn√
βn + β2

n

, c1 =

α2
1

1−β1

βn+β
2
n

(1−βn)2L
3

1− 4α2
1
βn+β2

n

(1−βn)2L
2
,

and for any i ≥ 1, let

ci+1 = ci −
(
4c1α

2
1 + L

α2
1

1− β1

)
βin(i+

βn
1− βn

)L2.

Then, we have ci > 0 for any i ≥ 1. Furthermore, with zk defined in (8), for any k ≥ 1, we have

E[Lk+1 − Lk]

≤
(
− α(k) + 3− β(k) + 2β2(k)

2(1− β(k))
Lα2(k) + 4c1α

2(k)

)
E[‖gk‖2]

+

(
β2(k)Lα2(k)12

β1√
βn + β2

n

σ2 +
1

2
Lα2(k)σ2 + 4c1(1− β1)α2(k)σ2

)
.

where α(k), β(k) are the stepsize and momentum weight applied at kth iteration, respectively.
Theorem 3. Let Assumption 1 hold. Under the same settings as in Proposition 3, let β1 ≥ 1

2 and let
A2 be large enough such that

β2Ti
i ≤ 1

2
for i = 1, 2, ...n.

Then, we have

1

n

n∑
l=1

1

Tl

T1+..+Tl∑
i=T1+..+Tl−1+1

E[‖gi‖2] ≤ 2(f(x1)− f∗)
nA2

+
1

n

n∑
l=1

(
24β2

l

β1√
βn + β2

n

L+ 3L

)
αlσ

2

= O

(
f(x1)− f∗

nA2
+

1

n

n∑
l=1

Lαlσ
2

)
.

(11)

Remark 2. 1. On the left hand side of (11), we have the average of the averaged squared
gradient norm of n stages.

1For example, we have k0 = 6 for the popular choice β = 0.9.
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2. On the right hand side of (11), the first term dominates at initial stages, we can apply large
αi for these stages to accelerate initial convergence, and use smaller αi for later stages so
that the size of stationary distribution is small. In contrast, (static) SGDM need to use a
small stepsize α to make the size of stationary distribution with small.

3. It is unclear whether the iteration complexity of Multistage SGDM is better than SGDM or
not. However, we do observe that Multistage SGDM is faster numerically. We leave the
possible improved analysis of Multistage SGDM to future work.

6 Experiments

In this section, we verify our theoretical claims by numerical experiments. For each combination
of algorithm and training task, training is performed with 3 random seeds 1, 2, 3. Unless otherwise
stated, we report the average of losses of the past m batches, where m is the number of batches for
the whole dataset. Our implementation is available at GitHub1. Additional implementation details
can be found in App. E.

6.1 Logistic regression

Setup. The MNIST dataset consists of n = 60000 labeled examples of 28× 28 gray-scale images
of handwritten digits in K = 10 classes 0, 1, . . . , 9. For all algorithms, we use batch size s = 64
(and hence number batches per epoch is m = 1874), number of epochs T = 50. The regularization
parameter is λ = 5× 10−4.

The effect of α in (static) SGDM. By Theorem 2 we know that, with a fixed β, a larger α leads to
faster loss decrease to the stationary distribution. However, the size of the stationary distribution
is also larger. This is well illustrated in Figure 1. For example, α = 1.0 and α = 0.5 make losses
decrease more rapidly than α = 0.1. During later iterations, α = 0.1 leads to a lower final loss.
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Figure 1: Logistic Regression on the MNIST Dataset using SGDM with fixed (α, β)

Multistage SGDM. We take 3 stages for Multistage SGDM. The parameters are chosen according to
(7): T1 = 3, T2 = 6, T3 = 21, αi = A2/Ti, βi = A1/(c2 + αi), where A2 = 2.0 and A1 = 1.0.1
We compare Multistage SGDM with SGDM with (α, β) = (0.66, 0.9) and (α, β) = (0.095, 0.9),
where 0.66, 0.095 are the stepsizes of the first and last stage of Multistage SGDM, respectively. The
training losses of initial and later iterations are shown in Figure 2.

We can see that SGDM with (α, β) = (0.66, 0.9) converges faster initially, but has a higher final
loss; while SGDM with (α, β) = (0.095, 0.9) behaves the other way. Multistage SGDM takes the
advantage of both, as predicted by Theorem 3. The performances of SGDM and Vanilla SGD with
the same stepsize are similar.

6.2 Image classification

For the task of training ResNet-18 on the CIFAR-10 dataset, we compare Multistage SGDM, a
baseline SGDM, and YellowFin [28], an automatic momentum tuner based on heuristics from

1https://github.com/gao-yuan-hangzhou/improved-analysis-sgdm
1Here, A1 is not set by its theoretical value 1

24L
, since the dataset is very large and the gradient Lipschitz

constant L cannot be computed easily.
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Figure 2: Logistic Regression on the MNIST using Multistage SGDM and SGDM with fixed β

optimizing strongly convex quadratics. The initial learning rate of YellowFin is set to 0.1,1 and other
parameters are set as their default values. All algorithms are run for T = 50 epochs and the batch
size is fixed as s = 128.

For Multistage SGDM, the parameters choices are governed by (7): the stage lengths are T1 = 5,
T2 = 10, and T3 = 35. Take A1 = 1.0, A2 = 2.0, set the per-stage stepsizes and momentum weights
as αi = A2/Ti and βi = A1/(A1 + αi), for stages i = 1, 2, 3. For the baseline SGDM, the stepsize
schedule of Multistage SGDM is applied, but with a fixed momentum β = 0.9.

In Figure 3, we present training losses and end-of-epoch validation accuracy of the tested algorithms.
We can see that Multistage SGDM performs the best. Baseline SGDM is slightly worse, possibly
because of its fixed momentum weight. Finally, Multistage SGDM can reach a test accuracy of 93%
around 200 epochs.
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Figure 3: Training ResNet-18 on CIFAR-10

7 Summary and Future Directions

In this work, we provide new theoretical insights into the convergence behavior of SGDM and
Multistage SGDM. For SGDM, we show that it is as fast as plain SGD in both nonconvex and
strongly convex settings. For the widely adopted multistage SGDM, we establish its convergence and
show the advantage of stagewise training.

There are still open problems to be addressed. For example, (a) Is it possible to show that SGDM
converges faster than SGD for special objectives such as quadratic ones? (b) Are there more efficient
parameter choices than (7) that guarantee even faster convergence?

1We have experimented with initial learning rates 0.001 (default), 0.01, 0.1 and 0.5, each repeated 3 times;
we found that the choice 0.1 is the best in terms of the final training loss.
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Broader Impact

The results of this paper improves the performance of stochastic gradient descent with momentum as
well as its multistage version. Our study will also benefit the machine learning community. We do
not believe that the results in this work will cause any ethical issue, or put anyone at a disadvantage
in our society.
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A Proof of Preliminary Lemmas

A.1 Proof of Lemma 1

Since mk = (1− β)
∑k
i=1 β

k−ig̃i, we have

E

∥∥∥∥∥mk − (1− β)
k∑
i=1

βk−igi

∥∥∥∥∥
2
 = (1− β)2 E

∥∥∥∥∥
k∑
i=1

βk−i(g̃i − gi)

∥∥∥∥∥
2
 .

Moreover, since ζ1, ζ2, ..., ζk are independent random variables (item 3 of Assumption 1), we can
write the total expectation as E = Eζ1Eζ2 ...Eζk , and therefore

E

∥∥∥∥∥mk − (1− β)
k∑
i=1

βk−igi

∥∥∥∥∥
2


= (1− β)2Eζ1Eζ2 ...Eζk

∥∥∥∥∥
k∑
i=1

βk−i(g̃i − gi)

∥∥∥∥∥
2


= (1− β)2Eζ1Eζ2 ...Eζk

 k∑
i=1

k∑
j=1

〈βk−i(g̃i − gi), βk−j(g̃j − gj)〉

 .

By applying Eζi [g̃i] = gi (item 2 in Assumption 1), we further have for any i > j that

Eζ1Eζ2 ...Eζk
[
〈g̃i − Eζi [g̃

i], g̃j − Eζj [g̃
j ]〉
]

= Eζ1Eζ2 ...Eζi
[
〈g̃i − Eζi [g̃

i], g̃j − Eζj [g̃
j ]〉
]

= Eζ1Eζ2 ...Eζi−1

[
〈Eζi [g̃i]− Eζi [g̃

i], g̃j − Eζj [g̃
j ]〉
]

= 0.

.

It is straightforward to see that the same conclusion holds for i < j.

Finally, we know from the item 4 in Assumption 1 that

E

∥∥∥∥∥mk − (1− β)
k∑
i=1

βk−igi

∥∥∥∥∥
2


= (1− β)2Eζ1Eζ2 ...Eζk

[
k∑
i=1

β2(k−i)‖g̃i − Eζi [g̃
i]‖2
]

≤ 1− β
1 + β

(1− β2k)σ2.
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A.2 Proof of Lemma 2

We have

E

∥∥∥∥∥ 1− β
1− βk

k∑
i=1

βk−igi − gk
∥∥∥∥∥
2


=

(
1− β
1− βk

)2 k∑
i,j=1

E[〈βk−i(gk − gi), βk−j(gk − gj)〉]

≤
(

1− β
1− βk

)2 k∑
i,j=1

β2k−i−j(
1

2
E[‖gk − gi‖2] + 1

2
E[‖gk − gj‖2])

=

(
1− β
1− βk

)2 k∑
i=1

 k∑
j=1

β2k−i−j

 1

2
E[‖gk − gj‖2]

+

(
1− β
1− βk

)2 k∑
j=1

(
k∑
i=1

β2k−i−j

)
1

2
E[‖gk − gi‖2]

=

(
1− β
1− βk

)2 k∑
i=1

βk−i(1− βk)
1− β

E[‖gk − gi‖2]

=
1− β
1− βk

k∑
i=1

βk−i E[‖gk − gi‖2],

where we have applied Cauchy-Schwarz in the first inequality.

By applying triangle inequality and the smoothness of f (item 1 in Assumption 1), we further have

E

∥∥∥∥∥ 1− β
1− βk

k∑
i=1

βk−igi − gk
∥∥∥∥∥
2


≤ 1− β
1− βk

k∑
i=1

βk−i(k − i)
k−1∑
j=i

E[‖gj+1 − gj‖2]

≤ 1− β
1− βk

k∑
i=1

βk−i(k − i)
k−1∑
j=i

L2 E[‖xj+1 − xj‖2]

=
1− β
1− βk

k−1∑
j=1

(
j∑
i=1

βk−i(k − i)

)
L2 E[‖xj+1 − xj‖2].

Therefore, by defining a′k,j =
1−β
1−βkL

2
∑j
i=1 β

k−i(k − i), we get

E

∥∥∥∥∥ 1− β
1− βk

k∑
i=1

βk−igi − gk
∥∥∥∥∥
2
 ≤ k−1∑

j=1

a′k,j E[‖xj+1 − xj‖2]. (12)

Furthermore, a′k,j can be calculated as

a′k,j =
L2βk

1− βk

(
−(k − 1)− 1

1− β

)
+
L2βk−j

1− βk

(
k − j + β

1− β

)
. (13)

Notice that

a′k,j < ak,j :=
L2βk−j

1− βk

(
k − j + β

1− β

)
. (14)
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Combining this with (12), we finally arrive at

E

∥∥∥∥∥ 1− β
1− βk

k∑
i=1

βk−igi − gk
∥∥∥∥∥
2
 ≤ k−1∑

i=1

ak,i E[‖xi+1 − xi‖2],

where

ak,i =
L2βk−i

1− βk

(
k − i+ β

1− β

)
.

A.3 Proof of Lemma 3

Let us consider the cases of k = 1 and k ≥ 2 separately.

For k = 1, we have

z2 − z1 =
1

1− β
x2 − β

1− β
x1 − x1 =

1

1− β
(x2 − x1) = −αg̃1.

And for k ≥ 2, we have

zk+1 − zk =
1

1− β
(xk+1 − xk)− β

1− β
(xk − xk−1)

=
1

1− β
(−αmk)− β

1− β
(−αmk−1)

=
1

1− β
(−αmk + αβmk−1)

= −αg̃k.

B Main Theory for SGDM

B.1 Objective descent

In order to prove Proposition 1, let us first show an auxiliary result.

Proposition 4. Take Assumption 1. Then, for zk defined in (6), we have

E[f(zk+1)] ≤ E[f(zk)] + (−α+
1 + β2

1− β
Lα2 +

1

2
Lα2)E[‖gk‖2]

+ (
β2

2(1 + β)
+

1

2
)Lα2σ2 +

β2(1− βk)2Lα2

1− β
E

∥∥∥∥∥ 1− β
1− βk

k∑
i=1

βk−igi − gk
∥∥∥∥∥
2
 .
(15)

The smoothness of f yields

Eζk [f(z
k+1)] ≤ f(zk) + Eζk [〈∇f(zk), zk+1 − zk〉] + L

2
Eζk [‖zk+1 − zk‖2]

= f(zk) + Eζk [〈∇f(zk),−αg̃k〉] +
Lα2

2
Eζk [‖g̃k‖2],

(16)

where we have applied Lemma 3 in the second step.

For the inner product term, we can take full expectation E = Eζ1 ...Eζk to get

E[〈∇f(zk),−αg̃k〉] = E[〈∇f(zk),−αgk〉],

which follows from the fact that zk is determined by the previous k−1 random samples ζ1, ζ2, ...ζk−1,
which is independent of ζk, and Eζk [g̃

k] = gk.
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So, we can bound

E[〈∇f(zk),−αg̃k〉] = E[〈∇f(zk)− gk,−αgk〉]− αE[‖gk‖2]

≤ αρ0
2
L2 E[‖zk − xk‖2] + α

1

2ρ0
E[‖gk‖2]− αE[‖gk‖2],

where ρ0 > 0 can be any positive constant (to be determined later).

Combining (16) and the last inequality, we arrive at

E[f(zk+1)] ≤ E[f(zk)] + α
ρ0
2
L2 E[‖zk − xk‖2]

+ (α
1

2ρ0
− α)E[‖gk‖2] + Lα2

2
E[‖g̃k‖2].

Since zk = xk when k = 1 and zk = 1
1−βx

k − β
1−βx

k−1 when k ≥ 2, it can be verified that

zk − xk = − β
1−βαm

k−1. Consequently,

E[f(zk+1)] ≤ E[f(zk)] + α3 ρ0
2
L2(

β

1− β
)2 E[‖mk−1‖2]

+ (α
1

2ρ0
− α)E[‖gk‖2] + Lα2

2
E[‖g̃k‖2].

(17)

On the other hand, from Lemma 1 we know that

E[‖mk−1‖2] ≤ 2E[‖mk−1 − (1− β)
k−1∑
i=1

βk−1−igi‖2] + 2E[‖(1− β)
k−1∑
i=1

βk−1−igi‖2]

≤ 2
1− β
1 + β

σ2 + 2E[‖(1− β)
k−1∑
i=1

βk−1−igi‖2]

E[‖ 1− β
1− βk−1

k−1∑
i=1

βk−1−igi‖2] ≤ 2E[‖gk‖2] + 2E[‖ 1− β
1− βk−1

k−1∑
i=1

βk−1−igi − gk‖2],

E[‖g̃k‖2] ≤ σ2 + E[‖gk‖2].
(18)

Putting these into (17), we arrive at

E[f(zk+1)] ≤ E[f(zk)] +

(
− α+ α

1

2ρ0
+ 2α3ρ0L

2(
β

1− β
)2(1− βk−1)2 + Lα2

2

)
E[‖gk‖2]

+

(
α3ρ0L

2(
β

1− β
)2
1− β
1 + β

σ2 +
Lα2

2
σ2

)
+ 2α3ρ0L

2(
β

1− β
)2(1− βk−1)2 E[‖ 1− β

1− βk−1
k−1∑
i=1

βk−1−igi − gk‖2].

Substituting

E[‖ 1− β
1− βk

k∑
i=1

βk−igi − gk‖2] = E[‖ 1

1− βk
β(1− β)

k−1∑
i=1

βk−1−igi − 1− βk−1

1− βk
βgk‖2]

= β2(
1− βk−1

1− βk
)2 E[‖ 1− β

1− βk−1
k−1∑
i=1

βk−1−igi − gk‖2]
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into the last inequality produces

E[f(zk+1)] ≤ E[f(zk)] +

(
− α+ α

1

2ρ0
+ 2α3ρ0L

2(
β

1− β
)2(1− βk−1)2 + Lα2

2

)
E[‖gk‖2]

+

(
α3ρ0L

2(
β

1− β
)2
1− β
1 + β

σ2 +
Lα2

2
σ2

)
+ 2α3ρ0L

2(
1

1− β
)2(1− βk)2 E[‖ 1− β

1− βk
k∑
i=1

βk−igi − gk‖2].

(19)

Finally, using 1− βk−1 < 1 and ρ0 = 1−β
2Lα gives

E[f(zk+1)] ≤ E[f(zk)] + (−α+
1 + β2

1− β
Lα2 +

1

2
Lα2)E[‖gk‖2]

+ (
β2

2(1 + β)
+

1

2
)Lα2σ2 +

β2(1− βk)2Lα2

1− β
E

∥∥∥∥∥ 1− β
1− βk

k∑
i=1

βk−igi − gk
∥∥∥∥∥
2
 .

B.2 Proof of Proposition 1

Recall that Lk is defined as

Lk = f(zk)− f∗ +
k−1∑
i=1

ci‖xk+1−i − xk−i‖2,

Therefore, by (19) we know that

E[Lk+1 − Lk] ≤
(
− α+ α

1

2ρ0
+ 2α3ρ0L

2(
β

1− β
)2 +

Lα2

2

)
E[‖gk‖2]

+

(
α3ρ0L

2(
β

1− β
)2
1− β
1 + β

σ2 +
1

2
Lα2σ2

)
+

k−1∑
i=1

(ci+1 − ci)E[‖xk+1−i − xk−i‖2]

+ c1 E[‖xk+1 − xk‖2]

+ 2α3ρ0L
2(

1

1− β
)2(1− βk)2 E[‖ 1− β

1− βk
k∑
i=1

βk−igi − gk‖2],

(20)

where ρ0 = 1−β
2Lα .

To bound the c1 E[‖xk+1 − xk‖2] term, we need to following inequalities, which are obtained in a
similar way as (18).

E[‖mk‖2] ≤ 2E[‖mk − (1− β)
k∑
i=1

βk−igi‖2] + 2E[‖(1− β)
k∑
i=1

βk−igi‖2]

≤ 2
1− β
1 + β

σ2 + 2E[‖(1− β)
k∑
i=1

βk−igi‖2]

E[‖ 1− β
1− βk

k∑
i=1

βk−igi‖2] ≤ 2E[‖gk‖2] + 2E[‖ 1− β
1− βk

k∑
i=1

βk−igi − gk‖2],

E[‖g̃k‖2] ≤ σ2 + E[‖gk‖2].
(21)
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Therefore, c1 E[‖xk+1 − xk‖2] can be bounded as

c1 E[‖xk+1 − xk‖2] = c1α
2 E[‖mk‖2]

≤ c1α2

(
2
1− β
1 + β

σ2 + 4E[‖gk‖2](1− βk)2
)

+ 4c1α
2 E[‖ 1− β

1− βk
k∑
i=1

βk−igi − gk‖2]

< c1α
2

(
2
1− β
1 + β

σ2 + 4E[‖gk‖2]
)

+ 4c1α
2(1− βk)2 E[‖ 1− β

1− βk
k∑
i=1

βk−igi − gk‖2]

Combine this with (20), we obtain

E[Lk+1 − Lk]

≤
(
−α+ α

1

2ρ0
+ 2α3ρ0L

2(
β

1− β
)2 +

Lα2

2
+ 4c1α

2

)
E[‖gk‖2]

+

(
α3ρ0L

2(
β

1− β
)2
1− β
1 + β

σ2 +
1

2
Lα2σ2 + 2c1

1− β
1 + β

α2σ2

)
+

k−1∑
i=1

(ci+1 − ci)E[‖xk+1−i − xk−i‖2]

+ 4c1α
2(1− βk)2 E[‖ 1− β

1− βk
k∑
i=1

βk−igi − gk‖2]

+ 2α3ρ0L
2(

1

1− β
)2(1− βk)2 E[‖ 1− β

1− βk
k∑
i=1

βk−igi − gk‖2].

(22)

In the rest of the proof, let us show that the sum of the last three terms in (22) is non-positive.

First of all, by Lemma 2 we know that

E

∥∥∥∥∥ 1

1− βk
(1− β)

k∑
i=1

βk−igi − gk
∥∥∥∥∥
2
 ≤ k−1∑

i=1

ak,i E[‖xi+1 − xi‖2],

where

ak,i =
L2βk−i

1− βk

(
k − i+ β

1− β

)
.

Or equivalently,

E

∥∥∥∥∥ 1

1− βk
(1− β)

k∑
i=1

βk−igi − gk
∥∥∥∥∥
2

≤
k−1∑
i=1

ak,k−i E ‖xk+1−i − xk−i‖2,

where

ak,k−i =
L2βi

1− βk

(
i+

β

1− β

)
.

Therefore, in order to make the sum of the last three terms of (22) to be non-positive, we need to have

ci+1 ≤ ci −
(
4c1α

2(1− βk)2 + 2α3ρ0L
2 (1− βk)2

(1− β)2

)
ak,k−i

for all i ≥ 1.
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Since 1− βk < 1, it suffices to enforce the following for all i ≥ 1:

ci+1 = ci −
(
4c1α

2 + 2α3ρ0L
2 1

(1− β)2

)
βi(i+

β

1− β
)L2. (23)

And in order for ci > 0 for all i ≥ 1, we can determine c1 by

c1 =

(
4c1α

2 + 2α3ρ0L
2 1

(1− β)2

) ∞∑
i=1

βi(i+
β

1− β
)L2.

Since
j∑
i=1

iβi =
1

1− β

(
β(1− βj)
1− β

− jβj+1

)
,

we have
∑∞
i=1 iβ

i = β
(1−β)2 and

c1 =

(
4c1α

2 + 2α3ρ0L
2 1

(1− β)2

)
β + β2

(1− β)2
L2.

This stipulates that

c1 =
2α3ρ0L

4 β+β2

(1−β)4

1− 4α2 β+β2

(1−β)2L
2
. (24)

Notice that α ≤ 1−β
4L
√
β+β2

ensures c1 > 0.

With the choices of ci in (23) and (24), the sum of the last three terms of (22) is non-positive.
Therefore,

E[Lk+1 − Lk] ≤
(
− α+ α

1

2ρ0
+ 2α3ρ0L

2(
β

1− β
)2 +

Lα2

2
+ 4c1α

2

)
E[‖gk‖2]

+

(
α3ρ0L

2(
β

1− β
)2
1− β
1 + β

σ2 +
1

2
Lα2σ2 + 2c1

1− β
1 + β

α2σ2

)
.

(25)

Finally, taking

ρ0 =
1− β
2Lα

(26)

in (24), (23), and (25) gives

c1 =

β+β2

(1−β)3L
3α2

1− 4α2 β+β2

(1−β)2L
2
,

ci+1 = ci −
(
4c1α

2 +
Lα2

(1− β)

)
βi(i+

β

1− β
)L2,

E[Lk+1 − Lk] ≤
(
−α+

3− β + 2β2

2(1− β)
Lα2 + 4c1α

2

)
E[‖gk‖2]

+

(
β2

2(1 + β)
Lα2σ2 +

1

2
Lα2σ2 + 2c1

1− β
1 + β

α2σ2

)
.

B.3 Proof of Theorem 1

From (25) we know that

E[Lk+1 − Lk] ≤ −R1 E[‖gk‖2] +R2, (27)
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where

R1 = α− α 1

2ρ0
− 2α3ρ0L

2(
β

1− β
)2 − Lα2

2
− 4c1α

2 (28)

R2 = α3ρ0L
2(

β

1− β
)2
1− β
1 + β

σ2 +
1

2
Lα2σ2 + 2c1

1− β
1 + β

α2σ2, (29)

and ρ0 = 1−β
2Lα .

This immediately tells us that

L1 ≥ E[L1 − Lk+1] ≥ R1

k∑
i=1

E[‖gi‖2]− kR2,

and therefore

1

k

k∑
i=1

E[‖gk‖2] ≤ L1

kR1
+
R2

R1
. (30)

In the rest the proof, we will bound R1 and R2 appropriately.

First, let us show that R1 ≥ α
2 when ρ0 = 1−β

2Lα as in (26) and α ≤ min{ 1−β
L(4−β+β2) ,

1−β
2L
√
β+β2

}.

From (24) we know that

c1 =
2α3ρ0L

4 β+β2

(1−β)4

1− 4α2 β+β2

(1−β)2L
2
.

Since α ≤ 1−β
2
√
2L
√
β+β2

, we have

4α2 β + β2

(1− β)2
L2 ≤ 1

2
(31)

and

c1 ≤ 4α3ρ0L
4 β + β2

(1− β)4
≤ 1

4
αρ0

L2

(1− β)2
. (32)

Therefore, in order to ensure R1 ≥ α
2 where R1 is defined in (28), it suffices to have

α
1

2ρ0
+ 2αρ0L

2(
β

1− β
)2α2 +

Lα2

2
+ αρ0L

2 1

(1− β)2
α2 ≤ α

2
. (33)

Applying ρ0 = 1−β
2Lα yields

α
1

2ρ0
+ 2αρ0L

2(
β

1− β
)2α2 +

Lα2

2
+ αρ0L

2 1

(1− β)2
α2

=
Lα2

1− β
+ α2L

β2

1− β
+

1

2
α2L

1

1− β
+
Lα2

2

= Lα2

(
1

1− β
+

β2

1− β
+

1

2

1

1− β
+

1

2

)
= Lα2 4− β + 2β2

2(1− β)

≤ α

2
,

where we have applied α ≤ 1−β
L(4−β+2β2) in the last step.

Therefore, (33) is true and

R1 ≥
α

2
. (34)
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Now let us turn to R2. By (32) we know that

R2 = αρ0L
2(

β

1− β
)2α2 1− β

1 + β
σ2 +

1

2
Lα2σ2 + 2c1

1− β
1 + β

α2σ2

≤ αρ0L2(
β

1− β
)2α2 1− β

1 + β
σ2 +

1

2
Lα2σ2 + 8α3ρ0L

4 β + β2

(1− β)4
1− β
1 + β

α2σ2.

Since ρ0 = 1−β
2Lα , we have

R2 ≤
β2

2(1 + β)
Lα2σ2 +

1

2
Lα2σ2 +

4β

(1− β)2
L3α4σ2.

By applying α ≤ min{ 1−β
L(4−β+β2) ,

1−β
2
√
2L
√
β+β2

} ≤ 1−β
3.75L <

1−β
4L , we further have

R2 ≤
β2

2(1 + β)
Lα2σ2 +

1

2
Lα2σ2 +

β

4
Lα2σ2. (35)

By putting (34) and (35) into (30), we finally obtain

1

k

k∑
i=1

E[‖gi‖2] ≤
2
(
f(x1)− f∗

)
kα

+

(
β + 3β2

2(1 + β)
+ 1

)
Lασ2

= O
(
f(x1)− f∗

kα

)
+O

(
Lασ2

)
.

B.4 Proof of Proposition 2

In order to prove Proposition 2, we will set

c1 =

( √
β

(1−
√
β)2

+

√
β

1−
√
β

β

1− β

)(
2L3α2

1− β
+

18L2µα2

(1− β)(1 + 8µ
L )

)
,

ci+1 − ci +A32L
2βk−i

(
k − i+ β

1− β

)
= A1ci, ∀i ≥ 1,

Take ρ0 = 1−β
2Lα in (22), we have

E[Lk+1 − Lk] ≤
(
−α+

3− β + 2β2

2(1− β)
Lα2 + 4c1α

2

)
E[‖gk‖2]

+

(
β2

2(1 + β)
Lα2σ2 +

1

2
Lα2σ2 + 2c1

1− β
1 + β

α2σ2

)
+

k−1∑
i=1

(ci+1 − ci)E[‖xk+1−i − xk−i‖2]

+

(
4c1α

2 +
Lα2

(1− β)

)
(1− βk)2 E[‖ 1

1− βk
(1− β)

k∑
i=1

βk−igi − gk‖2].

(36)

Let us first derive a lower bound of the first term on the right hand side of (36).

From the strong convexity of f we have

E[‖gk‖2] = E[‖∇f(xk)‖2] ≥ 2µE[f(xk)− f?], (37)
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where f? = minx∈Rd f(x). On the other hand, for E[f(xk)] we have

E[f(zk)] ≤ E[f(xk)] + E[〈gk, zk − xk〉] + L

2
E[‖zk − xk‖2]

= E[f(xk)] + E[〈gk − 1

1− βk
(1− β)

k∑
i=1

βk−igi +
1

1− βk
(1− β)

k∑
i=1

βk−igi,− αβ

1− β
mk−1〉]

+
L

2
E[‖ αβ

1− β
mk−1‖2]

≤ E[f(xk)] + α
ρ

2
E[‖gk − 1

1− βk
(1− β)

k∑
i=1

βk−igi‖2] + α

2ρ
E[‖ β

1− β
mk−1‖2]

+ E[〈 1

1− βk
(1− β)

k∑
i=1

βk−igi,− αβ

1− β
mk−1〉] + L

2
E[‖ αβ

1− β
mk−1‖2]

≤ E[f(xk)] + α
ρ

2
E[‖gk − 1

1− βk
(1− β)

k∑
i=1

βk−igi‖2]

+

(
α

2ρ
(

β

1− β
)2 +

Lα2

2
(

β

1− β
)2
)

E[‖mk−1‖2]

+ α
β

1− β

(
ρ1
2

E[‖ 1

1− βk
(1− β)

k∑
i=1

βk−igi‖2] + 1

2ρ1
E[‖mk−1‖2]

)

= E[f(xk)] + α
ρ

2
E[‖gk − 1

1− βk
(1− β)

k∑
i=1

βk−igi‖2]

+

(
α

2ρ
(

β

1− β
)2 +

Lα2

2
(

β

1− β
)2 + α

β

1− β
1

2ρ1

)
E[‖mk−1‖2]

+ α
β

1− β
ρ1
2

E[‖ 1

1− βk
(1− β)

k∑
i=1

βk−igi‖2],

where ρ, ρ1 > 0 are to be determined later.

Combining this with (37) gives

E[‖gk‖2] ≥ 2µ

(
E[f(zk)]− f? − αρ

2
E[‖gk − 1

1− βk
(1− β)

k∑
i=1

βk−igi‖2]

−
(
α

2ρ
(

β

1− β
)2 +

Lα2

2
(

β

1− β
)2 + α

β

1− β
1

2ρ1

)
E[‖mk−1‖2]

− α β

1− β
ρ1
2

E[‖ 1

1− βk
(1− β)

k∑
i=1

βk−igi‖2],
)
.

(38)

On the other hand, we have from (18) that

E[‖mk−1‖2] ≤ 2
1− β
1 + β

σ2 + 2(1− βk−1)2
(
2E[‖gk‖2] + 2E[‖ 1

1− βk−1
(1− β)

k−1∑
i=1

βk−1−igi − gk‖2]

)

= 2
1− β
1 + β

σ2

+ 2(1− βk−1)2
(
2E[‖gk‖2] + 2

1

β2
(

1− βk

1− βk−1
)2 E[‖ 1

1− βk
(1− β)

k∑
i=1

βk−igi − gk‖2]

)
,

and that

E[‖ 1

1− βk
(1− β)

k∑
i=1

βk−igi‖2] ≤ 2E[‖gk‖2] + 2E[‖ 1

1− βk
(1− β)

k∑
i=1

βk−igi − gk‖2].
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Putting these two inequalities into (38) and rearranging gives

[
1 + 2µ

((
α

2ρ
(

β

1− β
)2 +

Lα2

2
(

β

1− β
)2 + α

β

1− β
1

2ρ1

)
4(1− βk−1)2

+ α
β

1− β
ρ1

)]
E[‖gk‖2]

≥ 2µ

[
E[f(zk)]− f? − αρ

2
E[‖gk − 1

1− βk
(1− β)

k∑
i=1

βk−igi‖2]

−
(
α

2ρ
(

β

1− β
)2 +

Lα2

2
(

β

1− β
)2 + α

β

1− β
1

2ρ1

)
×

(
2
1− β
1 + β

σ2 + (1− βk−1)24 1

β2
(

1− βk

1− βk−1
)2 E[‖ 1

1− βk
(1− β)

k∑
i=1

βk−igi − gk‖2]

)

− α β

1− β
ρ1
2
2E[‖ 1

1− βk
(1− β)

k∑
i=1

βk−igi − gk‖2
]

= 2µ

[
E[f(zk)]− f?

−
(
α

2ρ
(

β

1− β
)2 +

Lα2

2
(

β

1− β
)2 + α

β

1− β
1

2ρ1

)
2
1− β
1 + β

σ2

−
(
α
ρ

2
+

(
α

2ρ
(

β

1− β
)2 +

Lα2

2
(

β

1− β
)2 + α

β

1− β
1

2ρ1

)
4(1− βk)2 1

β2
+ α

β

1− β
ρ1

)
× E[‖ 1

1− βk
(1− β)

k∑
i=1

βk−igi − gk‖2
]
.

Taking ρ = 1
1−β and ρ1 = 1

β gives

[
1 + 2µ

((
α

β2

1− β
+
Lα2

2
(

β

1− β
)2
)
4(1− βk−1)2 + α

1

1− β

)]
E[‖gk‖2]

≥ 2µ

[
E[f(zk)]− f?

−
(
α

β2

1− β
+
Lα2

2
(

β

1− β
)2
)
2
1− β
1 + β

σ2

−
(
α

1

2(1− β)
+

(
α

β2

1− β
+
Lα2

2
(

β

1− β
)2
)
4(1− βk)2 1

β2
+ α

1

1− β

)
× E[‖ 1

1− βk
(1− β)

k∑
i=1

βk−igi − gk‖2
]
.

(39)

Since

α ≤ 1− β
5L

, (40)
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(39) gives (
1 + 8

µ

L

)
E[‖gk‖2]

≥ 2µ

[
E[f(zk)]− f?

−
(
α

β2

1− β
+
Lα2

2
(

β

1− β
)2
)
2
1− β
1 + β

σ2

−
(
α

1

2(1− β)
+

(
α

β2

1− β
+
Lα2

2
(

β

1− β
)2
)
4(1− βk)2 1

β2
+ α

1

1− β

)
× E[‖ 1

1− βk
(1− β)

k∑
i=1

βk−igi − gk‖2
]
.

(41)

Since α ≤ 1−β
5L , we have that

c1 =

( √
β

(1−
√
β)2

+

√
β

1−
√
β

β

1− β

)(
2L3α2

1− β
+

18L2µα2

(1− β)(1 + 8µ
L )

)

≤
(

4
√
β

(1− β)2
+

2
√
β

1− β
β

1− β

)(
2L(1− β)

25
+

18µ(1− β)
25(1 + 8µ

L )

)

≤ 6
√
β

25(1− β)

(
2L+

18µ

1 + 8µ
L

)

≤ 6
√
β

25(1− β)
(2L+ 18µ)

(42)

Therefore, by α ≤ 1−β
L
(
3−β+2β2+ 48

√
β

25
2L+18µ

L

) we have

− α+
3− β + 2β2

2(1− β)
Lα2 + 4c1α

2

= −α
2
− α

2
+

3− β + 2β2

2(1− β)
Lα2 +

24
√
β

25(1− β)
(2L+ 18µ)α2

≤ −α
2
.

(43)

Combine (43) with (36), we have

E[Lk+1 − Lk] ≤ −α
2

E[‖gk‖2] +
(

β2

2(1 + β)
Lα2σ2 +

1

2
Lα2σ2 + 2c1

1− β
1 + β

α2σ2

)
+

k−1∑
i=1

(ci+1 − ci)E[‖xk+1−i − xk−i‖2]

+

(
4c1α

2 +
Lα2

(1− β)

)
(1− βk)2 E[‖ 1

1− βk
(1− β)

k∑
i=1

βk−igi − gk‖2].

(44)

By combining (44) with (41), we further obtain

E[Lk+1 − Lk] ≤ B1 E[f(zk)− f?] +B2

+B3 E[‖ 1

1− βk
(1− β)

k∑
i=1

βk−igi − gk‖2] +
k−1∑
i=1

(ci+1 − ci)E[‖xk+1−i − xk−i‖2],

(45)
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where

B1 = −α
2

2µ

1 + 8µ
L

,

B2 =
β2

2(1 + β)
Lα2σ2 +

1

2
Lα2σ2 + 2c1

1− β
1 + β

α2σ2

+
α

2

2µ
(
α β2

1−β + Lα2

2 ( β
1−β )

2
)
2 1−β
1+βσ

2

1 + 8µ
L

,

B3 = 4c1α
2 +

Lα2

(1− β)

+
α

2

2µ
(
α 1

2(1−β) +
(
α β2

1−β + Lα2

2 ( β
1−β )

2
)
4 1
β2 + α 1

1−β

)
1 + 8µ

L

.

(46)

From Lemma 2 we know that

E

[
‖ 1

1− βk
(1− β)

k∑
i=1

βk−igi − gk‖2
]
≤
k−1∑
i=1

ak,i E[‖xi+1 − xi‖2],

where

ak,i =
L2βk−i

1− βk

(
k − i+ β

1− β

)
. (47)

Putting this into (45) yields

E[Lk+1 − Lk] ≤ B1 E[f(zk)− f?] +B2

+

k−1∑
i=1

(ci+1 − ci +B3ak,k−i)E[‖xk+1−i − xk−i‖2.
(48)

In the rest of the proof, we will show that if the constants ci are chosen such that

c1 =

( √
β

(1−
√
β)2

+

√
β

1−
√
β

β

1− β

)(
4L3α2

1− β
+

30L2µα2

(1− β)(1 + 8µ
L )

)
, (49)

and

ci+1 − ci +B32L
2βk−i

(
k − i+ β

1− β

)
= B1ci, ∀i ≥ 1. (50)

Then, we have ci > 0 for all i ≥ 1 and

ci+1 − ci +B3ak,k−i ≤ B1ci, ∀i ≥ 1. (51)

And therefore, we will have the desired result:

E[Lk+1 − Lk] ≤ B1 E[f(zk)− f?] +B2 +B1

k−1∑
i=1

ci E[‖xk+1−i − xk−i‖2

= − αµ

1 + 8µ
L

E[Lk] +
β2

2(1 + β)
Lα2σ2 +

1

2
Lα2σ2 + 2c1

1− β
1 + β

α2σ2

+
β2 + Lα

2
β2

1−β

1 + 8µ
L

2

1 + β
µα2σ2.

First of all. by k ≥ log 0.5
log β , we know that βk ≤ 1

2 , and (47) gives

ak,k−i ≤ 2L2βi
(
i+

β

1− β

)
.
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Therefore, in order for (51) to hold, it suffices to set

ci+1 − ci +B32L
2βk−i

(
k − i+ β

1− β

)
= B1ci ∀i ≥ 1.

This is exactly (50).

On the other hand, (50) is also equivalent to

ci+1

(1 +B1)i+1
− ci

(1 +B1)i
= − 2L2B3

(1 +B1)i+1
βi
(
i+

β

1− β

)
, ∀i ≥ 1.

Therefore, in order to have ci > 0 for all i ≥ 1, we can set

c1 ≥ 2L2B3

∞∑
i=1

(
β

1 +B1

)i(
i+

β

1− β

)
. (52)

Since β ≤
√
β ≤ 1 +B1 = 1− αµ 1

1+ 8µ
L

and

j∑
i=1

iqi =
1

1− q

(
q(1− qj)
1− q

− jqj+1

)
,

for any q ∈ (0, 1), (52) is equivalent to

c1 ≥ 2L2B3

(
β

1+B1

(1− β
1+B1

)2
+

β
1+B1

1− β
1+B1

β

1− β

)
. (53)

Recall from (46) that

B3 = 4c1α
2 +

Lα2

(1− β)

+
α

2

2µ
(
α 1

2(1−β) +
(
α β2

1−β + Lα2

2 ( β
1−β )

2
)
4 1
β2 + α 1

1−β

)
1 + 8µ

L

=

(
4c1α

2 +
Lα2

(1− β)

)
+
α

2

2µ
(
α 11

2(1−β) + 2Lα2( 1
1−β )

2
)

1 + 8µ
L

.

Since α ≤ 1−β
L , we further have

B3 ≤
(
4c1α

2 +
Lα2

(1− β)

)
+
α

2

2µ
(
α 15

2(1−β)

)
1 + 8µ

L

.

Since B1 = − αµ

1+ 8µ
L

and α ≤ 1−β
5L , it can be verified that β

1+B1
≤
√
β for all β ∈ [0, 1) and µ ≤ L.

Therefore,
β

1+B1

(1− β
1+B1

)2
+

β
1+B1

1− β
1+B1

β

1− β
≤

√
β

(1−
√
β)2

+

√
β

1−
√
β

β

1− β
.

As a result, in order to have (53), it suffices to set

c1 ≥ 2L2

( √
β

(1−
√
β)2

+

√
β

1−
√
β

β

1− β

)4c1α
2 +

Lα2

(1− β)
+
α

2

2µ
(
α 15

2(1−β)

)
1 + 8µ

L

 , (54)

Since α ≤ 1−β
5L , we have

1− 8α2L2

( √
β

(1−
√
β)2

+

√
β

1−
√
β

β

1− β

)
≥ 1

2
,

(54) in turn just requires

c1 =

( √
β

(1−
√
β)2

+

√
β

1−
√
β

β

1− β

)(
4L3α2

1− β
+

30L2µα2

(1− β)(1 + 8µ
L )

)
,

which is exactly our choice of c1 as in (49).
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B.5 Proof of Theorem 2

From Proposition 2 we know that for all k ≥ k0 = b log 0.5
log β c,

E[Lk+1 − Lk] ≤ − αµ

1 + 8µ
L

E[Lk] +
1 + β + β2

2(1 + β)
Lα2σ2 +

1− β
1 + β

2c1α
2σ2

+
β2 + Lα

2
β2

1−β

(1 + 8µ
L )(1 + β)

2µα2σ2.

Rearranging gives

E[Lk+1] ≤

(
1− αµ

1 + 8µ
L

)
E[Lk] +

1 + β + β2

2(1 + β)
Lα2σ2 +

1− β
1 + β

2c1α
2σ2

+
β2 + Lα

2
β2

1−β

(1 + 8µ
L )(1 + β)

2µα2σ2

≤

(
1− αµ

1 + 8µ
L

)
E[Lk] +

1 + β + β2

2(1 + β)
Lα2σ2 +

1− β
1 + β

2c1α
2σ2

+
β2 + Lα

10 β
2

1 + 8µ
L

2

1 + β
µα2σ2,

where we have applied α ≤ 1−β
5L in the last step. Therefore,

E[Lk+1]− 1
αµ

1+ 8µ
L

(
1 + β + β2

2(1 + β)
Lα2σ2 +

1− β
1 + β

2c1α
2σ2 +

β2 + Lα
10 β

2

1 + 8µ
L

2

1 + β
µα2σ2

)

≤

(
1− αµ

1 + 8µ
L

)

×

(
E[Lk]− 1

αµ

1+ 8µ
L

(
1 + β + β2

2(1 + β)
Lα2σ2 +

1− β
1 + β

2c1α
2σ2 +

β2 + Lα
10 β

2

1 + 8µ
L

2

1 + β
µα2σ2

))
.

This immediately yields

E[Lk]

≤

(
1− αµ

1 + 8µ
L

)k−k0

×

(
E[Lk0 ]− 1

αµ

1+ 8µ
L

(
1 + β + β2

2(1 + β)
Lα2σ2 +

1− β
1 + β

2c1α
2σ2 +

β2 + Lα
10 β

2

1 + 8µ
L

2

1 + β
µα2σ2

))

+
1
αµ

1+ 8µ
L

(
1 + β + β2

2(1 + β)
Lα2σ2 +

1− β
1 + β

2c1α
2σ2 +

β2 + Lα
10 β

2

1 + 8µ
L

2

1 + β
µα2σ2

)

≤

(
1− αµ

1 + 8µ
L

)k−k0
E[Lk0 ]

+

(
1 +

8µ

L

)(
1 + β + β2

4(1 + β)

L

µ
ασ2 +

1− β
1 + β

2c1
µ
ασ2 +

β2 + Lα
10 β

2

1 + 8µ
L

2

1 + β
ασ2

)
.
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By ci ≥ 0 for all i ≥ 1 and (42), we conclude that

E[f(zk)− f∗]

≤

(
1− αµ

1 + 8µ
L

)k−k0
E[Lk0 ]

+

(
1 +

8µ

L

)(
1 + β + β2

2(1 + β)

L

µ
ασ2 +

1

1 + β

12
√
β

25

2L+ 18µ

µ
ασ2 +

β2 + Lα
10 β

2

1 + 8µ
L

2

1 + β
ασ2

)

= O
(
(1− αµ)k−k0 + L

µ
ασ2

)
.

B.6 Proof of Corollary 1

In fact, by (6) we can express xk as a convex combination of {zi}ki=1:

xk = (1− β)
k∑
i=2

βk−izi + βk−1z1.

The desired result follows directly from the convexity of f and Theorem 2.

C Generalizations of Lemmas 1, 2, and 3 for Multistage SGDM

In order to establish the convergence of Multistage SGDM(Algorithm 1), we need to generalize the
Lemmas 1 and 2 , which play a key role in the convergence of SGDM in (2).

C.1 Generalization of Lemma 1 for Multistage SGDM

Lemma 4. Under the assumptions of Theorem 3, the variance of update vector mk in Algorithm 1
satisfies

1

1− β1
E[‖mk −

k∑
i=1

bk,ig
i‖2] ≤ 2σ2,

where bk,i =
(
1− β(i)

)∏k
j=i+1 β(j).

Proof. To begin with, let us express mk by the past stochastic gradients:

mk = β(k)mk−1 +
(
1− β(k)

)
g̃k

= β(k)β(k − 1)mk−2 + β(k)
(
1− β(k − 1)

)
g̃k−1

+ · · ·+
(
1− β(k)

)
g̃k

= ...

=

k∏
i=1

β(i)m0 +

k∏
i=2

β(i)
(
1− β(1)

)
g̃1

+ · · ·+
(
1− β(k)

)
g̃k

=

k∑
i=1

bk,ig̃
i,

(55)

where we have applied m0 = 0 and defined

bk,i =
(
1− β(i)

) k∏
j=i+1

β(j) (56)
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in the last step.

It can be verified that the sum of weights is

k∑
i=1

bk,i = 1−
k∏
i=1

β(i). (57)

As a result, by applying Assumption 1 we have

E[‖mk −
k∑
i=1

bk,ig
i‖2] = E[‖

k∑
i=1

bk,i(g̃
i − gi)‖2] ≤

k∑
i=1

b2k,iσ
2.

Note that by setting k = T1 + · · ·+ Tnk + rk, we have

bk,i =


βrknk+1β

Tnk
nk ...βT2

2 (1− β1)βT1−i
1 , 1 ≤ i ≤ T1,

βrknk+1β
Tnk
nk ...βT3

3 (1− β2)βT1+T2−i
1 , T1 + 1 ≤ i ≤ T1 + T2,

.....

(1− βnk+1)β
T1+···+Tnk+rk−i
1 ,

∑nk
l=1 Tl + 1 ≤ i ≤

∑nk
l=1 Tl + rk.

Therefore,

E[‖mk −
k∑
i=1

bk,ig
i‖2] ≤ (βrknk+1β

Tnk
nk ...βT2

2 )2
1− β1
1 + β1

(1− β2T1
1 )σ2

+ (βrknk+1β
Tnk
nk ...βT3

3 )2
1− β2
1 + β2

(1− β2T2
2 )σ2

+ . . .

+ (βrknk+1)
2 1− βnk
1 + βnk

(1− β2Tnk
nk )σ2

+
1− βnk+1

1 + βnk+1
(1− β2rk

nk+1)σ
2.

Since for any l ∈ [1, n], we have

(βTll )2 ≤ 1

2
,

1− βl ≤ 1− β1,

1 + βl ≥
3

2
,

1− β2Tl
l < 1.

Therefore,

1

1− β1
E[‖mk −

k∑
i=1

bk,ig
i‖2] ≤ (βrknk+1)

2(
1

2
)nk−1

2

3
· 1− β1
1− β1

σ2

+ (βrknk+1)
2(
1

2
)nk−2

2

3
· 1− β2
1− β1

σ2

+ . . .

+ (βrknk+1)
2(
1

2
)0
2

3
· 1− βnk
1− β1

σ2

+
2

3
· 1− βnk+1

1− β1
σ2

≤ 2σ2.
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Lemma 5. Under the assumptions of Theorem 3, the update vector mk−1 in Algorithm 1 satisfies

1

1− β(k)
E[‖mk−1 −

k−1∑
i=1

bk−1,ig
i‖2] ≤ 24

β1√
βn + β2

n

σ2.

Proof. By setting k − 1 = T1 + · · ·+ Tnk−1
+ rk−1, we have

E[‖mk−1 −
k−1∑
i=1

bk−1,ig
i‖2] ≤ (β

rk−1

nk−1+1β
Tnk−1
nk−1 ...βT2

2 )2
1− β1
1 + β1

(1− β2T1
1 )σ2

+ (β
rk−1

nk−1+1β
Tnk−1
nk−1 ...βT3

3 )2
1− β2
1 + β2

(1− β2T2
2 )σ2

+ . . .

+ (β
rk−1

nk−1+1)
2 1− βnk−1

1 + βnk−1

(1− β
2Tnk−1
nk−1 )σ2

+
1− βnk−1+1

1 + βnk−1+1
(1− β2rk−1

nk−1+1)σ
2.

Similar as before, we have

1

1− β(k)
E[‖mk−1 −

k∑
i=1

bk−1,ig
i‖2] ≤ (β

rk−1

nk−1+1)
2(
1

2
)nk−1−1 2

3
· 1− β1
1− β(k)

σ2

+ (β
rk−1

nk−1+1)
2(
1

2
)nk−1−2 2

3
· 1− β1
1− β(k)

σ2

+ . . .

+ (β
rk−1

nk−1+1)
2(
1

2
)0
2

3
· 1− β1
1− β(k)

σ2

+
2

3
· 1− β1
1− β(k)

σ2

≤ 2
1− β1
1− β(k)

σ2.

Finally, by applying
1− β1
1− βn

≤ 12
β1√

βn + β2
n

,

we arrive at

1

1− β(k)
E[‖mk−1 −

k∑
i=1

bk−1,ig
i‖2] ≤ 24

β1√
βn + β2

n

σ2.

C.2 Generalization of Lemma 3 for Multistage SGDM

Lemma 6. zk defined in (8) satisfies

zk+1 − zk = −α(k)g̃k,

where α(k) is the stepsize applied at the kth step.

Proof. Recall that the auxiliary sequence zk is defined by

zk = xk −A1m
k−1,
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where A1 ≡ αiβi
1−βi and αi, βi are the stepsize and momentum weight at the ith stage, respectively.

Therefore, we also have

A1 ≡
α(k)β(k)

1− β(k)
,

where α(k), β(k) are the stepsize and momentum weight applied at the kth step. Using this, we
obtain

zk+1 − zk = xk+1 − xk −A1(m
k −mk−1)

= −α(k)mk −A1(1− β(k))(g̃k −mk−1)

= −α(k)mk − α(k)β(k)(g̃k −mk−1)

= α(k)(β(k)mk−1 −mk)− α(k)β(k)g̃k

= −α(k)g̃k.

C.3 Generalization of Lemma 2 for Multistage SGDM

Lemma 7. In Multistage SGDM(Algorithm 1), assume that the momentum weights at n stages satisfy
β1 ≤ β2 ≤ ... ≤ βn. Then, we have

E

∥∥∥∥∥ 1

1−
∏k
i=1 β(i)

k∑
i=1

bk,ig
i − gk

∥∥∥∥∥
2
 ≤ k−1∑

i=1

ak,i E[‖xj+1 − xj‖2],

where bk,i =
(
1− β(i)

)∏k
j=i+1 β(j) and β(i) is the momentum weight applied at the ith iteration,

and

ak,i =
L2βk−i(k)

1−
∏k
i=1 β(i)

(
k − i+ β(k)

1− β(k)

)
. (58)

Proof. By By (55), (56) and (57), we can compute that

E

∥∥∥∥∥ 1

1−
∏k
i=1 β(i)

k∑
i=1

bk,ig
i − gk

∥∥∥∥∥
2


= E ‖ 1

1−
∏k
j=1 β(j)

k∑
i=1

bk,i(g
i − gk)‖2

=

(
1

1−
∏k
j=1 β(j)

)2 k∑
i,j=1

bk,ibk,j E〈(gk − gi), (gk − gj)〉

≤

(
1

1−
∏k
j=1 β(j)

)2 k∑
i,j=1

bk,ibk,j(
1

2
E ‖gk − gi‖2

+
1

2
E ‖gk − gj‖2)

=

(
1

1−
∏k
j=1 β(j)

)
k∑
j=1

bk,j E ‖gk − gj‖2

≤

(
1

1−
∏k
j=1 β(j)

)
k∑
j=1

bk,j(k − j)
k−1∑
i=j

L2 E ‖xi+1 − xi‖2,

where we have used (57) in the first and third equality, and Cauchy-Schwarz in the first inequality. In
the last inequality, we have applied the triangle inequality and the L−smoothness of f .
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Consequently, we have

E

∥∥∥∥∥ 1

1−
∏k
j=1 β(j)

k∑
i=1

bk,ig
i − gk

∥∥∥∥∥
2

≤

(
1

1−
∏k
j=1 β(j)

)
k∑
j=1

bk,j(k − j)
k−1∑
i=j

L2 E ‖xi+1 − xi‖2

=

(
1

1−
∏k
j=1 β(j)

)
k−1∑
i=1

i∑
j=1

bk,j(k − j)L2 E ‖xi+1 − xi‖2

=

k−1∑
i=1

dk,i E[‖xi+1 − xi‖2],

where in the last step we have defined

dk,i =

(
L2

1−
∏k
j=1 β(j)

)
i∑

j=1

(k − j)bk,j . (59)

In the Proposition 5 below, we shall see that dk,i ≤ ak,i for all i ≤ k − 1, where ak,i is defined in
(58). Therefore,

E[‖ 1

1−
∏k
i=1 β(i)

k∑
i=1

bk,ig
i − gk‖2] ≤

k−1∑
i=1

ak,i E[‖xj+1 − xj‖2],

and the proof will be complete.

Proposition 5. dk,i defined in (59) and ak,i defined in (58) satisfy

dk,i ≤ ak,i for all i ≤ k − 1.

Proof. We aim to show that dk,i ≤ ak,i for all i ≤ k − 1. Or equivalently, dk,j ≤ ak,j for all
j ≤ k − 1.

In order to show dk,j ≤ ak,j , we just need to show that

j∑
i=1

(k − i)bk,i ≤ βk−j(k)
(
k − j + β(k)

1− β(k)

)
, (60)

where

bk,i =
(
1− β(i)

) k∏
j=i+1

β(j).

Let k = T1+T2+ · · ·+Tnk + rk, where 0 ≤ nk ≤ n−1. If nk < n−1, then 0 ≤ rk ≤ Tnk+1−1.
If nk = n− 1, then 0 ≤ rk ≤ Tnk+1 = Tn.

Since j ≤ k − 1, we have j = T1 + · · ·+ Tnj + rj , where 0 ≤ nj ≤ nk.

Now, let us compute the left hand side of (60) explicitly.

j∑
i=1

(k − i)bk,i

=

 T1∑
i=1

+

T1+T2∑
i=T1+1

+ · · ·+
T1+···+Tnj+rj∑
i=T1+···+Tnj+1

 (k − i)bk,i.
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Notice that

bk,i =



βrknk+1β
Tnk
nk · · ·βT2

2 (1− β1)βT1−i
1 , 1 ≤ i ≤ T1,

βrknk+1β
Tnk
nk · · ·βT3

3 (1− β2)βT1+T2−i
1 ,

T1 + 1 ≤ i ≤ T1 + T2,

. . . . . .

(1− βnk+1)β
T1+···+Tnk+rk−i
1 ,∑nk

l=1 Tl + 1 ≤ i ≤
∑nk
l=1 Tl + rk.

As a result, we have

j∑
i=1

(k − i)bk,i

=

 T1∑
i=1

+

T1+T2∑
i=T1+1

+ · · ·+
T1+···+Tnj+rj∑
i=T1+···+Tnj+1

 (k − i)bk,i

≤ βrknk+1β
Tnk
nk · · ·βT2

2 (1− β1)
T1∑
i=1

βT1−i
1 (k − i)

+ βrknk+1β
Tnk
nk · · ·βT3

3 (1− β2)
T1+T2∑
i=T1+1

βT1+T2−i
2 (k − i)

+ . . .

+ βrknk+1β
Tnk
nk ...β

Tnj+1

nj+1 (1− βnj )
T1+···+Tnj∑

i=T1+···+Tnj−1+1

β
T1+···+Tnj−i
nl (k − i)

+ βrknk+1β
Tnk
nk ...β

Tnj+2

nj+2 (1− βnj+1)

T1+···+Tnj+rj∑
i=T1+···+Tnj+1

β
T1+···+Tnj+rj−i
nj+1 (k − i),

(61)

where we have applied rj ≤ Tnj+1 if nj < nk and rj ≤ rk if nj = nk in the last term. Since

l∑
i=1

βk−i(k − i) = βk
(
−k − 1

1− β
− 1

(1− β)2

)
+ βk−l

(
k − l
1− β

+
β

(1− β)2

)
.
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we have

T1∑
i=1

βT1−i
1 (k − i) = βT1−k

1

T1∑
i=1

βk−i1 (k − i)

= βT1
1

(
− k − 1

1− β1
− 1

(1− β1)2

)
+

(
k − T1
1− β1

+
β1

(1− β1)2

)
,

T1+T2∑
i=T1+1

βT1+T2−i
2 (k − i) =

T2∑
i=1

βT2−i
2 (k − T1 − i)

= βT1+T2−k
2

T2∑
i=1

βk−T1−i
2 (k − T1 − i)

= βT2
2

(
−k − T1 − 1

1− β2
− 1

(1− β2)2

)
+

(
k − T1 − T2

1− β2
+

β2
(1− β2)2

)
.

And that in general

T1+···+Tnj+rj∑
i=T1+···+Tnj+1

β
T1+···+Tnj+rj−i
nj+1 (k − i)

=

rj∑
i=1

β
rj−i
nj+1(k − T1 − · · · − Tnj − i)

= β
T1+···+Tnj+rj−k
nj+1

rj∑
i=1

β
k−T1−···−Tnj−i
nj+1 (k − T1 − · · · − Tnj − i)

= β
rj
nj+1

(
−
k − T1 − · · · − Tnj − 1

1− βnj+1
− 1

(1− βnj+1)2

)
+

(
k − T1 − · · · − Tnj − rj

1− βnj+1
+

βnj+1

(1− βnj+1)2

)
.
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By applying these equalities on (61), we have

j∑
i=1

(k − i)bk,i

= βrknk+1β
Tnk
nk ...βT2

2

(
βT1
1

(
−(k − 1)− 1

1− β1

)
+

(
(k − T1) +

β1
1− β1

))

+ βrknk+1β
Tnk
nk ...βT3

3

(
βT2
2

(
− (k − T1 − 1)− 1

1− β2

)

+

(
(k − T1 − T2) +

β2
1− β2

))
+ . . .

+ βrknk+1β
Tnk
nk ...β

Tnj+1

nj+1(
β
Tnj
nj

(
− (k − T1 − · · · − Tnj−1 − 1)− 1

1− βnj

)

+

(
(k − T1 − · · · − Tnj ) +

βnj
1− βnj

))
+ βrknk+1β

Tnk
nk ...β

Tnj+2

nj+2(
β
rj
nj+1

(
− (k − T1 − · · · − Tnj − 1)− 1

1− βnj+1

)

+

(
(k − T1 − Tnj − rj) +

βnj+1

1− βnj+1

))
.

This yields

j∑
i=1

(k − i)bk,i = βrknk+1β
Tnk
nk ...βT2

2 βT1
1

(
− (k − 1)− 1

1− β1

)
+ βrknk+1β

Tnk
nk ...βT2

2

(
β1

1− β1
+ 1− 1

1− β2

)
+ βrknk+1β

Tnk
nk ...βT3

3

(
β2

1− β2
+ 1− 1

1− β3

)
+ . . .

+ βrknk+1β
Tnk
nk ...β

Tnj
nj

(
βnj−1

1− βnj−1
+ 1− 1

1− βnj

)
+ βrknk+1β

Tnk
nk ...β

Tnj+1

nj+1

(
k − T1 − · · · − Tnj +

βnj
1− βnj

)
+ βrknk+1β

Tnk
nk ...β

Tnj+2

nj+2

·

(
β
rj
nj+1

(
− (k − T1 − · · · − Tnj − 1)− 1

1− βnj+1

)

+

(
(k − T1 − Tnj − rj) +

βnj+1

1− βnj+1

))
.
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On the right hand side, the first nj terms are non-positive since β1 ≤ β2 ≤ ... ≤ βn. Therefore,

j∑
i=1

(k − i)bk,i ≤ βrknk+1β
Tnk
nk ...β

Tnj+1

nj+1

(
k − T1 − · · · − Tnj +

βnj
1− βnj

)
+ βrknk+1β

Tnk
nk ...β

Tnj+2

nj+2(
β
rj
nj+1

(
− (k − T1 − · · · − Tnj − 1)− 1

1− βnj+1

)

+

(
(k − T1 − Tnj − rj) +

βnj+1

1− βnj+1

))
.

By applying βrjnj+1 ≥ β
Tnj+1

nj+1 and k−T1− · · ·−Tnj − 1 = k− (j− rj)− 1 ≥ 0 (since j ≤ k− 1),
we arrive at

j∑
i=1

(k − i)bk,i ≤ βrknk+1β
Tnk
nk ...β

Tnj+1

nj+1

(
k − T1 − · · · − Tnj +

βnj
1− βnj

)
+ βrknk+1β

Tnk
nk ...β

Tnj+2

nj+2(
β
Tnj+1

nj+1

(
− (k − T1 − · · · − Tnj − 1)− 1

1− βnj+1

)

+

(
(k − T1 − Tnj − rj) +

βnj+1

1− βnj+1

))

≤ βrknk+1β
Tnk
nk ...β

Tnj+1

nj+1

(
βnj

1− βnj
+ 1− 1

1− βnj+1

)
+ βrknk+1β

Tnk
nk ...β

Tnj+2

nj+2

(
k − T1 − · · · − Tnj − rj +

βnj+1

1− βnj+1

)
≤ βrknk+1β

Tnk
nk ...β

Tnj+2

nj+2

(
k − T1 − · · · − Tnj − rj +

βnj+1

1− βnj+1

)
= βrknk+1β

Tnk
nk ...β

Tnj+2

nj+2

(
k − j +

βnj+1

1− βnj+1

)
.

Now let us consider two cases: rk > 0 and rk = 0.

1. rk > 0.

In this case, we apply β1 ≤ ... ≤ βn to get

j∑
i=1

(k − i)bk,i

≤ β
rk+Tnk+···+Tnj+2

nk+1

(
k − j + βnk+1

1− βnk+1

)
.

Notice that

rk + Tnk + · · ·+ Tnj+2 = (T1 + · · ·+ Tnk + rk)

− (T1 + · · ·+ Tnj + Tnj+1)

≤ (T1 + · · ·+ Tnk + rk)

− (T1 + · · ·+ Tnj + rj)

= k − j.
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This tells us that
j∑
i=1

(k − i)bk,i ≤ βk−jnk+1

(
k − j + βnk+1

1− βnk+1

)
.

Since rk > 0, iteration k is at the (nk +1)−th stage, we have β(k) = βnk+1, and the above
inequality is exactly what we want to show in (60).

2. rk = 0

In this case, we apply β1 ≤ ... ≤ βn to get
j∑
i=1

(k − i)bk,i ≤ β
Tnk+···+Tnj+2

nk

(
k − j +

βnj+1

1− βnj+1

)
.

Notice that

rk + Tnk + · · ·+ Tnj+2 = (T1 + · · ·+ Tnk + rk)

− (T1 + · · ·+ Tnj + Tnj+1)

≤ (T1 + · · ·+ Tnk + rk)

− (T1 + · · ·+ Tnj + rj)

= k − j.
This tells us that

j∑
i=1

(k − i)bk,i ≤ βk−jnk

(
k − j +

βnj+1

1− βnj+1

)
,

Since rk = 0, we have β(k) = βnk and by j ≤ k − 1 we deduce that nj ≤ nk − 1
(Otherwise j = T1 + · · · + Tnj + rj = T1 + · · · + Tnk + rj ≥ T1 + · · · + Tnk = k).
Therefore, we have

j∑
i=1

(k − i)bk,i ≤ βk−jnk

(
k − j + βnk

1− βnk

)
,

which is exactly what we want to show in (60).

D Main Theory for Multistage SGDM

In this section, we prove the main convergence theory of Multistage SGDM.

D.1 Proof of Proposition 3

Proposition 3 is a generalization of Propositions 4 and 1 to the multistage case. Therefore, its proof is
similar to those of Propositions 4 and 1.

First of all, by the smoothness of f we have

E[f(zk+1)] ≤ E[f(zk)] + E〈∇f(zk), zk+1 − zk〉+ L

2
E ‖zk+1 − zk‖2

= E[f(zk)] + E〈∇f(zk),−α(k)g̃k〉+ Lα2(k)

2
E ‖g̃k‖2,

(62)

where we have applied Lemma 6 in the second step. Note that α(k) is the stepsize applied at the
k−th iteration.

For the inner product term, we have

E〈∇f(zk),−α(k)g̃k〉 = E〈∇f(zk),−α(k)gk〉,
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which follows from the fact that zk is determined by the previous k−1 random samples ζ1, ζ2, ...ζk−1,
which is independent of ζk, and Eζk [g̃

k] = gk.

As a result, we can write

E〈∇f(zk),−α(k)g̃k〉 = E〈∇f(zk)− gk,−α(k)gk〉 − α(k)E ‖gk‖2

≤ α(k)ρ0,k
2
L2 E[‖zk − xk‖2] + α(k)

1

2ρ0,k
E[‖gk‖2]− α(k)E[‖gk‖2],

(63)

where ρ0,k > 0 can be any positive constant.

Combining (62) and (63) gives

E[f(zk+1)] ≤ E[f(zk)] + α(k)
ρ0,k
2
L2 E[‖zk − xk‖2]

+
(
α(k)

1

2ρ0,k
− α(k)

)
E[‖gk‖2] + Lα2(k)

2
E[‖g̃k‖2]

By (8) we know that zk − xk = −A1m
k−1, which leads to

E[f(zk+1)] ≤ E[f(zk)] + α(k)
ρ0,k
2
L2A2

1 E[‖mk−1‖2]

+
(
α(k)

1

2ρ0,k
− α(k)

)
E[‖gk‖2] + Lα2(k)

2
(σ2 + E[‖gk‖2]).

Therefore, we have

E[Lk+1 − Lk] ≤ α(k)ρ0,k
2
L2A2

1 E[‖mk−1‖2]

+

(
α(k)

1

2ρ0,k
− α(k) + Lα2(k)

2

)
E[‖gk‖2] + Lα2(k)

2
σ2

+ c1α
2(k)E[‖mk‖2]

+

k−1∑
i=1

(ci+1 − ci)E[‖xk+1−i − xk−i‖2]

≤ α(k)ρ0,k
2
L2A2

1

(
2E[‖mk−1 −

k−1∑
i=1

bk−1,ig
i‖2] + 2E[‖

k−1∑
i=1

bk−1,ig
i‖2]
)

+

(
α(k)

1

2ρ0,k
− α(k) + Lα2(k)

2

)
E[‖gk‖2] + Lα2(k)

2
σ2

+ c1α
2(k)

(
2E[‖mk −

k∑
i=1

bk,ig
i‖2] + 2E[‖

k∑
i=1

bk,ig
i‖2]
)

+

k−1∑
i=1

(ci+1 − ci)E[‖xk+1−i − xk−i‖2].

(64)

On the other hand, we know that

E[‖ 1

1−
∏k
i=1 β(i)

k∑
i=1

bk,ig
i‖2] = E[‖ 1

1−
∏k
i=1 β(i)

k∑
i=1

bk,ig
i − gk + gk‖2]

≤ 2E[‖gk‖2] + 2E[‖ 1

1−
∏k
i=1 β(i)

k∑
i=1

bk,ig
i − gk‖2].

(65)
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Furthermore,

E[‖ 1

1−
∏k
i=1 β(i)

k∑
i=1

bk,ig
i − gk‖2]

= E[‖ 1

1−
∏k
i=1 β(i)

β(k)

k−1∑
i=1

bk−1,ig
i +

1− β(k)
1−

∏k
i=1 β(i)

gk − gk‖2]

= E[‖ 1

1−
∏k
i=1 β(i)

β(k)

k−1∑
i=1

bk−1,ig
i − β(k)

1−
∏k−1
i=1 β(i)

1−
∏k
i=1 β(i)

gk‖2]

= β2(k)

(
1−

∏k−1
i=1 β(i)

1−
∏k
i=1 β(i)

)2

E[‖ 1

1−
∏k−1
i=1 β(i)

k−1∑
i=1

bk−1,ig
i − gk‖2].

(66)

Therefore, we have

E[‖ 1

1−
∏k−1
i=1 β(i)

k−1∑
i=1

bk−1,ig
i‖2]

= E[‖ 1

1−
∏k−1
i=1 β(i)

k−1∑
i=1

bk−1,ig
i − gk + gk‖2]

≤ 2E[‖gk‖2] + 2E[‖ 1

1−
∏k−1
i=1 β(i)

k−1∑
i=1

bk−1,ig
i − gk‖2]

= 2E[‖gk‖2] + 2
1

β2(k)

(
1−

∏k
i=1 β(i)

1−
∏k−1
i=1 β(i)

)2

E[‖ 1

1−
∏k
i=1 β(i)

k∑
i=1

bk,ig
i − gk‖2].

(67)

Plugging (65) and (67) into (64) gives us

E[Lk+1 − Lk]

≤
(
− α(k) + α(k)

1

2ρ0,k
+ 2α(k)ρ0,kL

2A2
1 +

Lα2(k)

2
+ 4c1α

2(k)

)
E[‖gk‖2]

+

(
α(k)ρ0,kL

2A2
1E[‖mk−1 −

k−1∑
i=1

bk−1,ig
i‖2]) + 1

2
Lα2(k)σ2 + 2c1α

2(k)E[‖mk −
k∑
i=1

bk,ig
i‖2]

)

+

k−1∑
i=1

(ci+1 − ci)E[‖xk+1−i − xk−i‖2]

+ 2α(k)ρ0,kL
2A2

1

1

β2(k)

(
1−

k∏
i=1

β(i)

)2

E[‖ 1

1−
∏k
i=1 β(i)

k∑
i=1

bk,ig
i − gk‖2]

+ 4c1α
2(k)

(
1−

k∏
i=1

β(i)

)2

E[‖ 1

1−
∏k
i=1 β(i)

k∑
i=1

bk,ig
i − gk‖2]

(68)

In the rest of the proof, we will show that the sum of the last three terms in (68) is non-positive.

First, by Lemma 7 we know that

E ‖ 1

1−
∏k
i=1 β(i)

k∑
i=1

bk,ig
i − gk‖2 ≤

k−1∑
i=1

ak,i E ‖xi+1 − xi‖2,

where

ak,i =
L2βk−i(k)

1−
∏k
i=1 β(i)

(
k − i+ β(k)

1− β(k)

)
.
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Or equivalently,

E ‖ 1

1−
∏k
i=1 β(i)

k∑
i=1

bk,ig
i − gk‖2 ≤

k−1∑
i=1

ak,k−i E ‖xk+1−i − xk−i‖2,

where

ak,k−i =
L2βi(k)

1−
∏k
i=1 β(i)

(
i+

β(k)

1− β(k)

)
.

Therefore, in order to make the sum of the last three terms of (68) to be non-positive, we need to
enforce that

ci+1 ≤ ci −
(
4c1α

2(k)
(
1−

k∏
i=1

β(i)
)2

+ 2α(k)ρ0,kL
2A2

1

1

β2(k)

(
1−

k∏
i=1

β(i)
)2)

ak,k−i

for all i ≥ 1 and k ≥ 1.

Since 1−
∏k
i=1 β(i) < 1, β1 ≤ β(k) ≤ βn, and α1 ≤ α(k) ≤ αn, we need to enforce the following

for all i ≥ 1:

ci+1 ≤ ci −
(
4c1α

2
1 + 2α(k)ρ0,kL

2A2
1

1

β2
1

)
βin(i+

βn
1− βn

)L2.

Recall that αiβi
1−βi ≡ A1 for all n stages i = 1, 2, ..., n. This gives us

ci+1 ≤ ci −
(
4c1α

2
1 + 2α(k)ρ0,kL

2 α2
1

(1− β1)2

)
βin(i+

βn
1− βn

)L2.

Let us also set

ρ0,k =
1− β(k)
2Lα(k)

. (69)

Then, we need to enforce

ci+1 ≤ ci −
(
4c1α

2
1 + 2

1− β(k)
2

L
α2
1

(1− β1)2

)
βin(i+

βn
1− βn

)L2.

Since β1 ≤ β(k), it suffices to enforce that

ci+1 = ci −
(
4c1α

2
1 + L

α2
1

(1− β1)

)
βin(i+

βn
1− βn

)L2. (70)

Note that the equalities in (70) does not depend on k. In order for ci > 0 for all i ≥ 1, we can
determine c1 by

c1 =

(
4c1α

2
1 + L

α2
1

(1− β1)

) ∞∑
i=1

βin(i+
βn

1− βn
)L2.

Since
j∑
i=1

iβin =
1

1− βn

(
βn(1− βjn)
1− βn

− jβj+1
n

)
,

we have
∑∞
i=1 iβ

i
n = βn

(1−βn)2 and

c1 =

(
4c1α

2
1 + L

α2
1

(1− β1)

)
βn + β2

n

(1− βn)2
L2.

This stipulates that

c1 =

α2
1

(1−β1)
βn+β

2
n

(1−βn)2L
3

1− 4α2
1
βn+β2

n

(1−βn)2L
2
. (71)
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Notice that A1 = 1
24
√
2L

and 1−β1

β1
≤ 12 1−βn√

βn+β2
n

ensures

4L2α2
1

βn + β2
n

(1− βn)2
≤ 1

2

and therefore

0 < c1 ≤ 2
α2
1

(1− β1)
βn + β2

n

(1− βn)2
L3 ≤ L

4(1− β1)
. (72)

With the choices of ci in (70) and (71), the sum of the last three terms of (68) is non-positive.
Therefore,

E[Lk+1 − Lk]

≤
(
− α(k) + α(k)

1

2ρ0,k
+ 2α(k)ρ0,kL

2A2
1 +

Lα2(k)

2
+ 4c1α

2(k)

)
E[‖gk‖2]

+

(
α(k)ρ0,kL

2A2
1E[‖mk−1 −

k−1∑
i=1

bk−1,ig
i‖2] + 1

2
Lα2(k)σ2 + 2c1α

2(k)E[‖mk −
k∑
i=1

bk,ig
i‖2]
)
.

(73)

Taking ρ0,k = 1−β(k)
2Lα(k) in (73) gives

E[Lk+1 − Lk]

≤
(
− α(k) + 3− β(k) + 2β2(k)

2(1− β(k))
Lα2(k) + 4c1α

2(k)

)
E[‖gk‖2]

+

(
β2(k)

2(1− β(k))
Lα2(k)E[‖mk−1 −

k−1∑
i=1

bk−1,ig
i‖2] + 1

2
Lα2(k)σ2 + 2c1α

2(k)E[‖mk −
k∑
i=1

bk,ig
i‖2]
)
.

Finally, by applying Lemma 4 and Lemma 5, we arrive at

E[Lk+1 − Lk]

≤
(
− α(k) + 3− β(k) + 2β2(k)

2(1− β(k))
Lα2(k) + 4c1α

2(k)

)
E[‖gk‖2]

+

(
β2(k)

2
Lα2(k)24

β1√
βn + β2

n

σ2 +
1

2
Lα2(k)σ2 + 4c1(1− β1)α2(k)σ2

)
.

D.2 Proof of Theorem 3

From (73) we know that

E[Lk+1 − Lk] ≤ −R1,k E[‖gk‖2] +R2,k, (74)

where

R1,k = α(k)− α(k) 1

2ρ0,k
− 2α(k)ρ0,kL

2A2
1 −

Lα2(k)

2
− 4c1α

2(k) (75)

R2,k = α(k)ρ0,kL
2A2

1E[‖mk−1 −
k−1∑
i=1

bk−1,ig
i‖2] + 1

2
Lα2(k)σ2 + 2c1α

2(k)E[‖mk −
k∑
i=1

bk,ig
i‖2].

(76)

This immediately tells us that

L1 ≥ E[L1 − Lk+1] ≥
k∑
i=1

R1,i E[‖gi‖2]−
k∑
i=1

R2,i, (77)
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In the rest the proof, we will bound R1,i and R2,i appropriately.

First, let us show that R1,i ≥ α(i)
2 under ρ0,i = 1−β(i)

2Lα(i) as in (69) and α(i) = A1(1−β(i))
β(i) =

1−β(i)
24
√
2Lβ(i)

.

From (72) we know that

c1 ≤
L

4(1− β1)
.

Therefore, in order for R1,i ≥ α(i)
2 , it suffices to have

α(i)
1

2ρ0,i
+ 2α(i)ρ0,iL

2A2
1 +

Lα2(i)

2
+ 4

L

4(1− β1)
α2(i) ≤ α(i)

2
. (78)

By β(i) ≥ β1 ≥ 1
2 we know that

α(i) =
1− β(i)

24
√
2Lβ(i)

≤ 1

2L
.

Therefore, Lα
2(i)
2 ≤ α(i)

4 . Furthermore, ρ0,i =
1−β(i)
2Lα(i) yields

α(i)
1

2ρ0,i
+ 2α(i)ρ0,iL

2A2
1 + 4

L

4(1− β1)
α2(i)

=
Lα2(i)

1− β(i)
+
β2(i)Lα2(i)(
1− β(i)

) +
L

(1− β1)
α2(i)

≤ α(i)

12
+
α(i)

12
+
α(i)

12

=
α(i)

4
,

where in the inequality above, we have applied

α(i) =
1− β(i)

24
√
2Lβ(i)

≤ 1− β(i)
24L 1

2

≤ 1− β(i)
12L

,

α(i) =
1− β(i)

24
√
2Lβ(i)

≤ 1− β(i)
12Lβ2(i)

,

α(i) =
1− β(i)

24
√
2Lβ(i)

≤ 1− β1
24Lβ1

≤ 1− β1
12L

.

Therefore, (78) is true and

R1,i ≥
α(i)

2
. (79)

Now let us turn to R2,i. By (76) and (72) we know that

R2,i = α(k)ρ0,iL
2A2

1E[‖mi−1 −
i−1∑
j=1

bi−1,jg
j‖2] + 1

2
Lα2(i)σ2 + 2c1α

2(i)E[‖mi −
i∑

j=1

bi,jg
j‖2].

≤ α(k)ρ0,iL2A2
1E[‖mi−1 −

i−1∑
j=1

bi−1,jg
j‖2] + 1

2
Lα2(i)σ2 +

L

2(1− β1)
α2(i)E[‖mi −

i∑
j=1

bi,jg
j‖2].

Since ρ0,i =
1−β(i)
2Lα(i) and α(i)β(i)

1−β(i) ≡ A1, we have

R2,i ≤
1

2
Lα2(i)β2(i)

1

1− β(i)
E[‖mi−1 −

i−1∑
j=1

bi−1,ig
j‖2] + 1

2
Lα2(i)σ2 +

L

2(1− β1)
α2(i)E[‖mi −

i∑
j=1

bi,jg
j‖2].
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By applying Lemmas 4 and 5, we further have

R2,i ≤ 12Lα2(i)β2(i)
β1√

βn + β2
n

σ2 +
3

2
Lα2(i)σ2. (80)

By putting (79) and (80) into (77) with k = T1 + T2 + · · ·+ Tn, we obtain

n∑
l=1

αl
2

T1+···+Tl∑
i=T1+···+Tl−1+1

E[‖gi‖2] ≤ L1 +

n∑
l=1

Tl

(
12Lα2

l β
2
l

β1√
βn + β2

n

σ2 +
3

2
Lα2

l σ
2

)
.

Dividing both sides by 1
2nA2 ≡ 1

2nαlTl gives

1

n

n∑
l=1

1

Tl

T1+···+Tl∑
i=T1+···+Tl−1+1

E[‖gi‖2]

≤
2
(
f(x1)− f∗

)
nA2

+
1

n

n∑
l=1

(
24β2

l

β1√
βn + β2

n

Lαlσ
2 + 3Lαlσ

2

)

= O
(
f(x1)− f∗

nA2

)
+O( 1

n

n∑
l=1

Lαlσ
2).

E Details of computational infrastructure

All experiments were performed on a computing server with Intel(R) Core(TM) i9-9940X CPU @
3.30GHz and NVidia GeForce RTX 2080 P8. The weights of the neural networks are initialized by
the default, random initialization routines.
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