
An Improved Analysis of Stochastic Gradient Descent
with Momentum

Yanli Liu∗ Yuan Gao† Wotao Yin∗
∗Department of Mathematics, University of California, Los Angeles

†Department of IEOR, Columbia University
{yanli, wotaoyin}@math.ucla.edu, {gao.yuan}@columbia.edu

Abstract

SGD with momentum (SGDM) has been widely applied in many machine learning
tasks, and it is often applied with dynamic stepsizes and momentum weights
tuned in a stagewise manner. Despite of its empirical advantage over SGD, the
role of momentum is still unclear in general since previous analyses on SGDM
either provide worse convergence bounds than those of SGD, or assume Lipschitz
or quadratic objectives, which fail to hold in practice. Furthermore, the role of
dynamic parameters has not been addressed. In this work, we show that SGDM
converges as fast as SGD for smooth objectives under both strongly convex and
nonconvex settings. We also prove that multistage strategy is beneficial for SGDM
compared to using fixed parameters. Finally, we verify these theoretical claims by
numerical experiments.

1 Introduction

Stochastic gradient methods have been a widespread practice in machine learning. They aim to
minimize the following empirical risk:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

`(x, qi), (1)

where ` is a loss function and {qi}ni=1 denotes the training data, x denotes the trainable parameters of
the machine learning model, e.g., the weight matrices in a neural network.

In general, stochastic gradient methods can be written as

mk = βmk−1 + (1− β)g̃k,
xk+1 = xk − αmk.

(2)

where α > 0 is a stepsize, β ∈ [0, 1) is called momentum weight, and m0 = 0. The classical
Stochastic Gradient Descent(SGD) method [21] uses β = 0 and mk = g̃k, where g̃k is a stochastic
gradient of f(x) at xk. To boost the practical performance, one often applies a momentum weight of
β > 0. and the resulting algorithm is often called SGD with momentum (SGDM). SGDM is very
popular for training neural networks with remarkable empirical successes, and has been implemented
as the default SGD optimizer in Pytorch [19] and Tensorflow [1]1.

The idea behind SGDM originates from Polyak’s heavy-ball method [20] for deterministic optimiza-
tion. For strongly convex and smooth objectives, heavy-ball method enjoys an accelerated linear

1Their implementation of SGDM does not have the (1− β) before g̃k, which gives mk =
∑k
i=1 β

k−ig̃i,
while mk = (1− β)

∑k
i=1 β

k−ig̃i for (2). Therefore, they only differ by a constant scaling.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

convergence rate over gradient descent [7]. However, the theoretical understanding of its stochastic
counterpart is far from being complete.

In the case of fixed stepsize and momentum weight, most of the current results only apply to restrictive
settings. In [15, 16] and [12], the behavior of SGDM on least square regression is analyzed and linear
convergence is established. [9] analyzes the local convergence rate of SGDM for strongly convex and
smooth functions, where the initial point x0 is assumed to be close enough to the minimizer x∗. [25]
provides global convergence of SGDM, but only for objectives with uniformly bounded gradients,
thus excluding many machine learning models such as Ridge regression. Very recently, [26] presents
a convergence bound of O(1

kα + α
1−β) for general smooth nonconvex objectives3. When β = 0, this

recovers the classical convergence bound of O(1
kα + α) of SGD [4]. However, the size of stationary

distribution O(α
1−β) is 1

1−β times larger than that of SGD. This factor is not negligible, especially
when large β values such as 0.99 and 0.995 is applied [24]. Therefore, their result does not explain
the competitiveness of SGDM compared to SGD. Concurrent to this work, [22] shows that SGDM
converges as fast as SGD under convexity and strong convexity, and that it is asymptotically faster
than SGD for overparameterized models. Remarkably, their analysis considers a different stepsize
and momentum weight schedule from this work, and applies to arbitrary sampling without assuming
the bounded variance of the gradient noise.

In deep learning, SGDM is often applied with various parameter tuning rules to achieve efficient
training. One of the most widely adopted rules is called “constant and drop", where a constant
stepsize is applied for a long period and is dropped by some constant factor to allow for refined
training, while the momentum weight is either kept unchanged (usually 0.9) or gradually increasing.
We call this strategy Multistage SGDM and summarize it in Algorithm 1. Practically, (multistage)
SGDM was successfully applied to training large-scale neural networks [13, 11], and it was found
that appropriate parameter tuning leads to superior performance [24]. Since then, (multistage) SGDM
has become increasingly popular [23].

At each stage, Multistage SGDM (Algorithm 1) requires three parameters: stepsize, momentum
weight, and stage length. In [8] and [10], doubling argument based rules are analyzed for SGD
on strongly convex objectives, where the stage length is doubled whenever the stepsize is halved.
Recently, certain stepsize schedules are shown to yield faster convergence for SGD on nonconvex
objectives satisfying growth conditions [27, 5], and a nearly optimal stepsize schedule is provided for
SGD on least square regression [6]. These results consider only the momentum-free case. Another
recent work focuses on the asymptotic convergence of SGDM (i.e., without convergence rate) [9],
which requires the momentum weights to approach either 0 or 1, and therefore contradicts the
common practice in neural network training. In summary, the convergence rate of Multistage SGDM
(Algorithm 1) has not been established except for the momentum-free case, and the role of parameters
in different stages is unclear.

Algorithm 1 Multistage SGDM
Input: problem data f(x) as in (1), number of stages n, momentum weights {βi}ni=1 ⊆ [0, 1), step
sizes {αi}ni=1, and stage lengths {Ti}ni=1 at n stages, initialization x1 ∈ Rd and m0 = 0, iteration
counter k = 1.

1: for i = 1, 2, ..., n do
2: α← αi, β ← βi;
3: for j = 1, 2, ..., Ti do
4: Sample a minibatch ζk uniformly from the training data;
5: g̃k ← ∇xl(xk, ζk);
6: mk ← βmk−1 + (1− β)g̃k;
7: xk+1 ← xk − αmk;
8: k ← k + 1;
9: end for

10: end for
11: return x̃, which is generated by first choosing a stage l ∈ {1, 2, ...n} uniformly at random, and

then choosing x̃ ∈ {xT1+...+Tl−1+1, xT1+...+Tl−1+2, ..., xT1+...+Tl} uniformly at random;

3Here k is the number of iterations. Note that in [26], a different but equivalent formulation of SGDM is
analyzed; their stepsize γ is effectively α

1−β in our setting.

2

1.1 Our contributions

In this work, we provide new convergence analysis for SGDM and Multistage SGDM that resolve the
aforementioned issues. A comparison of our results with prior work can be found in Table 1.

1. We show that for both strongly convex and nonconvex objectives, SGDM (2) enjoys the same
convergence bound as SGD. This helps explain the empirical observations that SGDM is at
least as fast as SGD [23]. Our analysis relies on a new observation that, the update direction
mk of SGDM (2) has a controllable deviation from the current full gradient ∇f(xk), and
enjoys a smaller variance. Inspired by this, we construct a new Lyapunov function that
properly handles this deviation and exploits an auxiliary sequence to take advantage of the
reduced variance.
Compared to aforementioned previous work, our analysis applies to not only least squares,
does not assume uniformly bounded gradient, and improves the convergence bound.

2. For the more popular SGDM in the multistage setting (Algorithm 1), we establish its conver-
gence and demonstrate that the multistage strategy are faster at initial stages. Specifically,
we allow larger stepsizes in the first few stages to boost initial performance, and smaller step-
sizes in the final stages decrease the size of stationary distribution. Theoretically, we properly
redefine the aforementioned auxiliary sequence and Lyapunov function to incorporate the
stagewise parameters.
To the best of our knowledge, this is the first convergence guarantee for SGDM in the
multistage setting.

Method Additional
Assumptions

Convergence
Bound

SGDM [25] Bounded gradient E[‖∇f(xout)‖2] = O
(

1
kα + ασ2

1−β

)
SGDM [26] - E[‖∇f(xout)‖2] = O

(
1
kα + ασ2

1−β

)
SGDM (*) - E[‖∇f(xout)‖2] = O

(
1
kα + ασ2

)
SGDM (*) Strong convexity E[f(xk)− f∗] = O

(
(1− αµ)k + ασ2

)
Multistage SGDM(*) - E[‖∇f(xout)‖2] = O

(
1

nA2
+ 1

n

∑n
l=1 αlσ

2
)

Table 1: Comparison of our results (*) with prior work under Assumption 1 and additional assump-
tions. “Bounded gradient" stands for the bounded gradient assumption ‖∇f(x)‖ ≤ G for some
G > 0 and all x ∈ Rd. This work removes this assumption and improves convergence bounds.
Strongly convex setting and multistage setting are also analyzed. We omit the results of [8] and [10]
as their analysis only applies to SGD (momentum-free case).

1.2 Other related work

Nesterov’s momentum achieves optimal convergence rate in deterministic optimization [18], and
has also been combined with SGD for neural network training [24]. Recently, its multistage version
has been analyzed for convex or strongly convex objectives [3, 14]. Other forms of momentum
for stochastic optimization include PID Control-based methods [2], Accelerated SGD [12], and
Quasi-Hyperbolic Momentum [17]. In this work, we restrict ourselves to heavy-ball momentum,
which is arguably the most popular form of momentum in current deep learning practice.

2 Notation and Preliminaries

Throughout this paper, we use ‖ · ‖ for vector `2-norm, 〈·, ·〉 stands for dot product. Let gk denote the
full gradient of f at xk, i.e., gk := ∇f(xk), and f∗ := minx∈Rd f(x).

Definition 1. We say that f : Rd → R is L−smooth with L ≥ 0, if it is differentiable and satisfies

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2
‖y − x‖2,∀x, y ∈ Rd .

3

We say that f : Rd → R is µ−strongly convex with µ ≥ 0, if it satisfies

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
‖y − x‖2,∀x, y ∈ Rd .

The following assumption is effective throughout, which is standard in stochastic optimization.
Assumption 1. 1. Smoothness: The objective f(x) in (1) is L−smooth.

2. Unbiasedness: At each iteration k, g̃k satisfies Eζk [g̃
k] = gk.

3. Independent samples: the random samples {ζk}∞k=1 are independent.

4. Bounded variance: the variance of g̃k with respect to ζk satisfies Varζk(g̃k) = Eζk [‖g̃k −
gk‖2] ≤ σ2 for some σ2 > 0.

Unless otherwise noted, all the proof in the paper are deferred to the appendix.

3 Key Ingredients of Convergence Theory

In this section, we present some key insights for the analysis of stochastic momentum methods. For
simplicity, we first focus on the case of fixed stepsize and momentum weight, and make proper
generalizations for Multistage SGDM in App. C.

3.1 A key observation on momentum

In this section, we make the following observation on the role of momentum:

With a momentum weight β ∈ [0, 1), the update vector mk enjoys a reduced “variance" of
(1− β)σ2, while having a controllable deviation from the full gradient gk in expectation.

First, without loss of generality, we can take m0 = 0, and express mk as

mk = (1− β)
k∑
i=1

βk−ig̃i. (3)

mk is a moving average of the past stochastic gradients, with smaller weights for older ones1.

we have the following result regarding the “variance" of mk, which is measured between mk and its
deterministic version (1− β)

∑k
i=1 β

k−igi.

Lemma 1. Under Assumption 1, the update vector mk in SGDM (2) satisfies

E

∥∥∥∥∥mk − (1− β)
k∑
i=1

βk−igi

∥∥∥∥∥
2
 ≤ 1− β

1 + β
(1− β2k)σ2.

Lemma 1 follows directly from the property of the moving average.

On the other hand, (1−β)
∑k
i=1 β

k−igi is a moving average of all past gradients, which is in contrast
to SGD. It seems unclear how far is (1− β)

∑k
i=1 β

k−igi from the ideal descent direction gk, which
could be unbounded unless stronger assumptions are imposed. Previous analysis such as [25] and [9]
make the blanket assumption of bounded∇f to circumvent this difficulty.

In this work, we provide a different perspective to resolve this issue.
Lemma 2. Under Assumption 1, we have

E

∥∥∥∥∥ 1

1− βk
(1− β)

k∑
i=1

βk−igi − gk
∥∥∥∥∥
2
 ≤ k−1∑

i=1

ak,i E[‖xi+1 − xi‖2],

where

ak,i =
L2βk−i

1− βk

(
k − i+ β

1− β

)
. (4)

1Note the sum of weights (1− β)
∑k
i=1 β

k−i = 1− βk → 1 as k →∞.

4

From Lemma 2, we know the deviation of 1
1−βk (1− β)

∑k
i=1 β

k−igi from gk is controllable sum
of past successive iterate differences, in the sense that the coefficients ak,i decays linearly for older
ones. This inspires the construction of a new Lyapunov function to handle the deviation brought by
the momentum, as we shall see next.

3.2 A new Lyapunov function

Let us construct the following Lyapunov function for SGDM:

Lk =
(
f(zk)− f?

)
+

k−1∑
i=1

ci‖xk+1−i − xk−i‖2. (5)

In the Lyapunov function (5), {ci}∞i=1 are positive constants to be specified later corresponding to
the deviation described in Lemma 2. Since the coefficients in (4) converges linearly to 0 as k →∞,
we can choose {ci}∞i=1 in a diminishing fashion, such that this deviation can be controlled, and Lk
defined in (5) is indeed a Lyapunov function under strongly convex and nonconvex settings (see
Propositions 1 and 2).

In (5), zk is an auxiliary sequence defined as

zk =

{
xk k = 1,
1

1−βx
k − β

1−βx
k−1 k ≥ 2.

(6)

This auxiliary sequence first appeared in the analysis of deterministic heavy ball methods in [7], and
later applied in the analysis of SGDM [26, 25]. It enjoys the following property.
Lemma 3. zk defined in (6) satisfies

zk+1 − zk = −αg̃k.

Lemma 3 indicates that it is more convenient to analyze zk than xk since zk behaves more like a
SGD iterate, although the stochastic gradient g̃k is not taken at zk.

Since the coefficients of the deviation in Lemma 2 converges linearly to 0 as k →∞, we can choose
{ci}∞i=1 in a diminishing fashion, such that this deviation can be controlled. Remarkably, we shall see

in Sec. 4 that with c1 = O
(

L
1−β

)
, Lk defined in (5) is indeed a Lyapunov function under strongly

convex and nonconvex settings, and that SGDM converges as fast as SGD.

Now, let us turn to the Multistage SGDM (Algorithm 1), which has been very successful in neural
network training. However, its convergence still remains unclear except for the momentum-free case.
To establish convergence, we require the parameters of Multistage SGDM to satisfy

αiβi
1− βi

≡ A1, for i = 1, 2, ...n.

αiTi ≡ A2, for i = 1, 2, ...n.

0 ≤ β1 ≤ β2 ≤ ... ≤ βn < 1.

(7)

where αi, βi, and Ti are the stepsize, momentum weight, and stage length of ith stage, respectively,
and A1, A2 are properly chosen constants. In principle, one applies larger stepsizes αi at the initial
stages, which will accelerate initial convergence, and smaller stepsizes for the final stages, which
will shrink the size of final stationary distribution. As a result, (7) stipulates that less iterations are
required for stages with large stepsizes and more iterations for stages with small stepsizes. Finally,
(7) requires the momentum weights to be monotonically increasing, which is consistent with what’s
done in practice [24]. often, using constant momentum weight also works.

Under the parameter choices in (7), let us define the auxiliary sequence zk by

zk = xk −A1m
k−1. (8)

This {zk}∞k=1 sequence reduces to (6) when a constant stepsize and momentum weight are applied.
Furthermore, the observations made in Lemmas 1, 2, and 3 can also be generalized (see Lemmas 4, 5,
6, and 7 in App. C). In Sec. 5. we shall see that with (7) and appropriately chosen {ci}∞i=1, Lk in (5)
also defines a Lyapunov function in the multistage setting, which in turn leads to the convergence of
Multistage SGDM.

5

4 Convergence of SGDM

In this section, we proceed to establish the convergence of SGDM described in (2). First, by following
the idea presented in Sec. 3, we can show that Lk defined in (5) is a Lyapunov function.

Proposition 1. Let Assumption 1 hold. In (2), let α ≤ 1−β
2
√
2L
√
β+β2

. Let {ci}∞i=1 in (5) be defined by

c1 =

β+β2

(1−β)3L
3α2

1− 4α2 β+β2

(1−β)2L
2
, ci+1 = ci −

(
4c1α

2 +
Lα2

1− β

)
βi(i+

β

1− β
)L2 for all i ≥ 1.

Then, ci > 0 for all i ≥ 1, and

E[Lk+1 − Lk] ≤
(
−α+

3− β + β2

2(1− β)
Lα2 + 4c1α

2

)
E[‖gk‖2]

+

(
β2

2(1 + β)
Lα2σ2 +

1

2
Lα2σ2 + 2c1

1− β
1 + β

α2σ2

)
.

(9)

By telescoping (9), we obtain the stationary convergence of SGDM under nonconvex settings.

Theorem 1. Let Assumption 1 hold. In (2), let α ≤ α ≤ min{ 1−β
L(4−β+β2) ,

1−β
2
√
2L
√
β+β2

}. Then,

1

k

k∑
i=1

E[‖gi‖2] ≤
2
(
f(x1)− f∗

)
kα

+

(
β + 3β2

2(1 + β)
+ 1

)
Lασ2 = O

(
f(x1)− f∗

kα
+ Lασ2

)
.

(10)

Now let us turn to the strongly convex setting, for which we have

Proposition 2. Let Assumption 1 hold. Assume in addition that f is µ−strongly convex. In (2), let
α ≤ min{ 1−β5L , 1−β

L
(
3−β+2β2+ 48

√
β

25
2L+18µ

L

)}. Then, there exists positive constants ci for (5) such that

for all k ≥ k0 := b log 0.5
log β c, we have

E[Lk+1 − Lk] ≤ − αµ

1 + 8µ
L

E[Lk] + (
1 + β + β2

2(1 + β)
L+

1− β
1 + β

2c1)α
2σ2 +

β2 + Lα
2

β2

1−β

(1 + 8µ
L)(1 + β)

2µα2σ2.

The choices of {ci}∞i=1 is similar to those of Proposition 1 and can be found in App. B.4. With
Proposition 2, we immediately have

Theorem 2. Let Assumption 1 hold and assume in addition that f is µ−strongly convex. Under the
same settings as in Proposition 2, for all k ≥ k0 = b log 0.5

log β c we have

E[f(zk)− f∗] ≤

(
1− αµ

1 + 8µ
L

)k−k0
E[Lk0] +

(
1 +

8µ

L

)
1 + β + β2

2(1 + β)

L

µ
ασ2

+

(
1 +

8µ

L

)(
1

1 + β

12
√
β

25

2L+ 18µ

µ
ασ2 +

β2 + Lα
10 β

2

1 + 8µ
L

2

1 + β
ασ2

)

= O
(
(1− αµ)k + L

µ
ασ2

)
.

Corollary 1. Let Assumption 1 hold and assume in addition that f is µ−strongly convex. Under the
same settings as in Proposition 2, for all k ≥ k0 = b log 0.5

log β c we have

E[f(xk)− f∗] = O
(
rk +

L

µ
ασ2

)
,

where r = max{1− αµ, β}.

6

Remark 1. 1. Under nonconvex settings, the classical convergence bound of SGD is
O
(
f(x1)−f∗

kα + Lασ2
)

with α = O(1
L) (see, e.g., Theorem 4.8 of [4]). Therefore, Theorem

1 tells us that with α = O(1−βL), SGDM achieves the same convergence bound as SGD.
2. In contrast, the radius of the stationary distribution for SGDM in [26] and [25] is O(ασ

2

1−β),
and the latter one also assumes that∇f is uniformly bounded.

3. In Theorem 2 and Corollary 1, the convergence bounds hold for k ≥ k0 = b log 0.5
log β c, where

k0 is a mild constant1. when r = 1− αµ, the O(rk) part in Corollary 1 matches the lower
bound established in Proposition 3 of [12].

4. The convergence bound of SGD under strong convexity is O
(
(1− αµ)k + L

µασ
2
)

(see,
e.g, Theorem 4.6 of [4]), our result for SGDM in Corollary 1 recovers this when β = 0.

5 Convergence of Multistage SGDM

In this section, we switch to the Multistage SGDM (Algorithm 1).

Let us first show that when the (7) is applied, we can define the constants ci properly so that (5) still
produces a Lyapunov function.
Proposition 3. Let Assumption 1 hold. In Algorithm 1, let the parameters satisfy (7) with A1 =

1
24
√
2L

. In addition, let

1− β1
β1

≤ 12
1− βn√
βn + β2

n

, c1 =

α2
1

1−β1

βn+β
2
n

(1−βn)2L
3

1− 4α2
1
βn+β2

n

(1−βn)2L
2
,

and for any i ≥ 1, let

ci+1 = ci −
(
4c1α

2
1 + L

α2
1

1− β1

)
βin(i+

βn
1− βn

)L2.

Then, we have ci > 0 for any i ≥ 1. Furthermore, with zk defined in (8), for any k ≥ 1, we have

E[Lk+1 − Lk]

≤
(
− α(k) + 3− β(k) + 2β2(k)

2(1− β(k))
Lα2(k) + 4c1α

2(k)

)
E[‖gk‖2]

+

(
β2(k)Lα2(k)12

β1√
βn + β2

n

σ2 +
1

2
Lα2(k)σ2 + 4c1(1− β1)α2(k)σ2

)
.

where α(k), β(k) are the stepsize and momentum weight applied at kth iteration, respectively.
Theorem 3. Let Assumption 1 hold. Under the same settings as in Proposition 3, let β1 ≥ 1

2 and let
A2 be large enough such that

β2Ti
i ≤ 1

2
for i = 1, 2, ...n.

Then, we have

1

n

n∑
l=1

1

Tl

T1+..+Tl∑
i=T1+..+Tl−1+1

E[‖gi‖2] ≤ 2(f(x1)− f∗)
nA2

+
1

n

n∑
l=1

(
24β2

l

β1√
βn + β2

n

L+ 3L

)
αlσ

2

= O

(
f(x1)− f∗

nA2
+

1

n

n∑
l=1

Lαlσ
2

)
.

(11)

Remark 2. 1. On the left hand side of (11), we have the average of the averaged squared
gradient norm of n stages.

1For example, we have k0 = 6 for the popular choice β = 0.9.

7

2. On the right hand side of (11), the first term dominates at initial stages, we can apply large
αi for these stages to accelerate initial convergence, and use smaller αi for later stages so
that the size of stationary distribution is small. In contrast, (static) SGDM need to use a
small stepsize α to make the size of stationary distribution with small.

3. It is unclear whether the iteration complexity of Multistage SGDM is better than SGDM or
not. However, we do observe that Multistage SGDM is faster numerically. We leave the
possible improved analysis of Multistage SGDM to future work.

6 Experiments

In this section, we verify our theoretical claims by numerical experiments. For each combination
of algorithm and training task, training is performed with 3 random seeds 1, 2, 3. Unless otherwise
stated, we report the average of losses of the past m batches, where m is the number of batches for
the whole dataset. Our implementation is available at GitHub1. Additional implementation details
can be found in App. E.

6.1 Logistic regression

Setup. The MNIST dataset consists of n = 60000 labeled examples of 28× 28 gray-scale images
of handwritten digits in K = 10 classes 0, 1, . . . , 9. For all algorithms, we use batch size s = 64
(and hence number batches per epoch is m = 1874), number of epochs T = 50. The regularization
parameter is λ = 5× 10−4.

The effect of α in (static) SGDM. By Theorem 2 we know that, with a fixed β, a larger α leads to
faster loss decrease to the stationary distribution. However, the size of the stationary distribution
is also larger. This is well illustrated in Figure 1. For example, α = 1.0 and α = 0.5 make losses
decrease more rapidly than α = 0.1. During later iterations, α = 0.1 leads to a lower final loss.

0 100 200 300 400 500

0.5

1.0

1.5

2.0

Initial Iterations

10000 15000 20000 25000

0.4

0.6

0.8

1.0

1.2

1.4

Later Iterations

Batch (Iteration)

Tr
ai

ni
ng

 L
os

s

= 0.1, = 0.9
= 0.5, = 0.9
= 1.0, = 0.9

= 2.0, = 0.9
= 2.5, = 0.9
= 5.0, = 0.9

Figure 1: Logistic Regression on the MNIST Dataset using SGDM with fixed (α, β)

Multistage SGDM. We take 3 stages for Multistage SGDM. The parameters are chosen according to
(7): T1 = 3, T2 = 6, T3 = 21, αi = A2/Ti, βi = A1/(c2 + αi), where A2 = 2.0 and A1 = 1.0.1
We compare Multistage SGDM with SGDM with (α, β) = (0.66, 0.9) and (α, β) = (0.095, 0.9),
where 0.66, 0.095 are the stepsizes of the first and last stage of Multistage SGDM, respectively. The
training losses of initial and later iterations are shown in Figure 2.

We can see that SGDM with (α, β) = (0.66, 0.9) converges faster initially, but has a higher final
loss; while SGDM with (α, β) = (0.095, 0.9) behaves the other way. Multistage SGDM takes the
advantage of both, as predicted by Theorem 3. The performances of SGDM and Vanilla SGD with
the same stepsize are similar.

6.2 Image classification

For the task of training ResNet-18 on the CIFAR-10 dataset, we compare Multistage SGDM, a
baseline SGDM, and YellowFin [28], an automatic momentum tuner based on heuristics from

1https://github.com/gao-yuan-hangzhou/improved-analysis-sgdm
1Here, A1 is not set by its theoretical value 1

24L
, since the dataset is very large and the gradient Lipschitz

constant L cannot be computed easily.

8

https://github.com/gao-yuan-hangzhou/improved-analysis-sgdm

0 200 400

0.5

1.0

1.5

2.0

2.5

Initial Iterations

10000 20000

0.28

0.30

0.32

0.34

0.36

Later Iterations

Batch (Iteration)

Tr
ai

ni
ng

 L
os

s

Multistage SGDM
= 0.66, = 0.9
= 0.095, = 0.9

Vanilla SGD = 0.66
Vanilla SGD = 0.095

Figure 2: Logistic Regression on the MNIST using Multistage SGDM and SGDM with fixed β

optimizing strongly convex quadratics. The initial learning rate of YellowFin is set to 0.1,1 and other
parameters are set as their default values. All algorithms are run for T = 50 epochs and the batch
size is fixed as s = 128.

For Multistage SGDM, the parameters choices are governed by (7): the stage lengths are T1 = 5,
T2 = 10, and T3 = 35. Take A1 = 1.0, A2 = 2.0, set the per-stage stepsizes and momentum weights
as αi = A2/Ti and βi = A1/(A1 + αi), for stages i = 1, 2, 3. For the baseline SGDM, the stepsize
schedule of Multistage SGDM is applied, but with a fixed momentum β = 0.9.

In Figure 3, we present training losses and end-of-epoch validation accuracy of the tested algorithms.
We can see that Multistage SGDM performs the best. Baseline SGDM is slightly worse, possibly
because of its fixed momentum weight. Finally, Multistage SGDM can reach a test accuracy of 93%
around 200 epochs.

0 5000 10000 15000 20000
Batch (Iteration)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

Training Loss

0 20 40
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Validation Accuracy

Multistage SGDM
YellowFin
Baseline

Figure 3: Training ResNet-18 on CIFAR-10

7 Summary and Future Directions

In this work, we provide new theoretical insights into the convergence behavior of SGDM and
Multistage SGDM. For SGDM, we show that it is as fast as plain SGD in both nonconvex and
strongly convex settings. For the widely adopted multistage SGDM, we establish its convergence and
show the advantage of stagewise training.

There are still open problems to be addressed. For example, (a) Is it possible to show that SGDM
converges faster than SGD for special objectives such as quadratic ones? (b) Are there more efficient
parameter choices than (7) that guarantee even faster convergence?

1We have experimented with initial learning rates 0.001 (default), 0.01, 0.1 and 0.5, each repeated 3 times;
we found that the choice 0.1 is the best in terms of the final training loss.

9

Broader Impact

The results of this paper improves the performance of stochastic gradient descent with momentum as
well as its multistage version. Our study will also benefit the machine learning community. We do
not believe that the results in this work will cause any ethical issue, or put anyone at a disadvantage
in our society.

Acknowledgements

Yanli Liu and Wotao Yin were partially supported by ONR Grant N000141712162. Yanli Liu was also
supported by UCLA Dissertation Year Fellowship. Yuan Gao was supported by Columbia University
School of Engineering and Applied Science.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In 12th {USENIX} symposium on operating systems design and
implementation ({OSDI} 16), pages 265–283, 2016.

[2] Wangpeng An, Haoqian Wang, Qingyun Sun, Jun Xu, Qionghai Dai, and Lei Zhang. A pid
controller approach for stochastic optimization of deep networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 8522–8531, 2018.

[3] Necdet Serhat Aybat, Alireza Fallah, Mert Gurbuzbalaban, and Asuman Ozdaglar. A universally
optimal multistage accelerated stochastic gradient method. In Advances in Neural Information
Processing Systems, pages 8523–8534, 2019.

[4] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

[5] Damek Davis, Dmitriy Drusvyatskiy, and Vasileios Charisopoulos. Stochastic algorithms with
geometric step decay converge linearly on sharp functions. arXiv preprint arXiv:1907.09547,
2019.

[6] Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule:
A near optimal, geometrically decaying learning rate procedure for least squares. In Advances
in Neural Information Processing Systems, pages 14951–14962, 2019.

[7] Euhanna Ghadimi, Hamid Reza Feyzmahdavian, and Mikael Johansson. Global convergence of
the heavy-ball method for convex optimization. In 2015 European Control Conference (ECC),
pages 310–315. IEEE, 2015.

[8] Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly
convex stochastic composite optimization, ii: shrinking procedures and optimal algorithms.
SIAM Journal on Optimization, 23(4):2061–2089, 2013.

[9] Igor Gitman, Hunter Lang, Pengchuan Zhang, and Lin Xiao. Understanding the role of
momentum in stochastic gradient methods. In Advances in Neural Information Processing
Systems, pages 9630–9640, 2019.

[10] Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: optimal algorithms
for stochastic strongly-convex optimization. The Journal of Machine Learning Research,
15(1):2489–2512, 2014.

[11] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural
networks for acoustic modeling in speech recognition: The shared views of four research groups.
IEEE Signal processing magazine, 29(6):82–97, 2012.

10

[12] Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham Kakade. On the insufficiency
of existing momentum schemes for stochastic optimization. In 2018 Information Theory and
Applications Workshop (ITA), pages 1–9. IEEE, 2018.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[14] Andrei Kulunchakov and Julien Mairal. A generic acceleration framework for stochastic
composite optimization. In Advances in Neural Information Processing Systems, pages 12556–
12567, 2019.

[15] Nicolas Loizou and Peter Richtárik. Linearly convergent stochastic heavy ball method for
minimizing generalization error. arXiv preprint arXiv:1710.10737, 2017.

[16] Nicolas Loizou and Peter Richtárik. Momentum and stochastic momentum for stochastic gradi-
ent, newton, proximal point and subspace descent methods. arXiv preprint arXiv:1712.09677,
2017.

[17] Jerry Ma and Denis Yarats. Quasi-hyperbolic momentum and adam for deep learning. In
International Conference on Learning Representations, 2019.

[18] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Advances in neural information processing
systems, pages 8026–8037, 2019.

[20] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[21] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

[22] Othmane Sebbouh, Robert M Gower, and Aaron Defazio. On the convergence of the stochastic
heavy ball method. arXiv preprint arXiv:2006.07867, 2020.

[23] Ruoyu Sun. Optimization for deep learning: theory and algorithms. arXiv preprint
arXiv:1912.08957, 2019.

[24] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In International conference on machine learning,
pages 1139–1147, 2013.

[25] Y Yan, T Yang, Z Li, Q Lin, and Y Yang. A unified analysis of stochastic momentum methods
for deep learning. In IJCAI International Joint Conference on Artificial Intelligence, 2018.

[26] Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient
momentum sgd for distributed non-convex optimization. In International Conference on
Machine Learning, pages 7184–7193, 2019.

[27] Zhuoning Yuan, Yan Yan, Rong Jin, and Tianbao Yang. Stagewise training accelerates conver-
gence of testing error over sgd. In Advances in Neural Information Processing Systems, pages
2604–2614, 2019.

[28] Jian Zhang and Ioannis Mitliagkas. Yellowfin and the art of momentum tuning. arXiv preprint
arXiv:1706.03471, 2017.

11

