
A Proof of Theorem 7371

Before proceeding with the proof, we introduce a convenient way to think about a node’s decision372

rule. Recall that a node is associated with a rule described by a feature i ∈ [`], a threshold θ ∈ R,373

and a sign s ∈ {±1}. The sample S = {x1, . . . ,xm} may be represented by a collection Σ of `374

permutations of [m] representing the ordering of its data points according to their values for each375

feature, since that relative ordering encapsulates all pertinent information on the sample, from the376

perspective of decision trees. To be more precise, for each i = 1, . . . , `, let σi be a permutation of377

[m] satisfying378

xiσi
1
≤ xiσi

2
≤ · · · ≤ xiσi

m
.

In general, unless the data points all have different values for a given feature, there may be many such379

permutations; just pick one arbitrarily.380

Any node in a decision tree splits the data points in two according to a rule of the form381

t(x) =

{
tl(x) if sign(xi − θ) = s

tr(x) otherwise.

This corresponds to splitting the permutation382

σi =
[
σi1 σi2 · · · σim

]
in two parts, sending examples xσi

j
to one subtree for j ≤ J , and sending the rest of the examples to383

the other subtree, where J is determined by θ and s. In fact, as long as the inequalities384

xiσi
1
< xiσi

2
< · · · < xiσi

m

are strict (all data points have different values for each feature), then all the different ways of splitting385

the (now unique) permutation σi induce a split on the sample S according to which it was defined.386

This situation could be called the worst-case scenario, because it allows for more distinct 2-partitions387

to be realized on the sample.388

We split the proof in 4 parts: 1) the bound itself, 2) the equality for 2` ≤ m, 3) the equality for389

2` ≥
(
m
bm

2 c
)
, and 4) the equality for 1 ≤ m ≤ 7.390

A.1 Proof of part 1 of Theorem 7391

We want to show that392

π2
T (m) ≤ 1

2

m−1∑
k=1

min

{
2`,

(
m

k

)}
.

where T is the class of decision stumps on ` real-valued features.393

Proof. First, let R(S) be the set of 2-partitions of S realizable by a single node, and notice that394

bounding the cardinality of R(S) directly gives a bound on π2
T (m) if the bound does not depend395

directly on S.396

Let Rk(S) ⊂ R(S) be the subset of 2-partitions with a part of size k, and notice Rk(S) = Rm−k(S).397

Therefore, we can decompose R(S) into the disjoint union398

R(S) =

bm
2 c⋃

k=1

Rk(S). (9)

To bound |Rk(S)|, first consider k < m
2 . Every partition in Rk(S) is determined by a set of k data399

points, so that |Rk(S)| ≤
(
m
k

)
, the number of k-subsets of S. On the other hand, given a feature400

i ∈ [`], in the worst-case scenario, we can split the permutation σi after the k first points or before401

the k last points to induce 2 distinct elements of Rk(S). Since there are ` features, this makes a total402

of at most 2` realizable 2-partitions with a part of size k. We conclude that, for k < m
2 , we have403

|Rk(S)| ≤ min
{

2`,
(
m
k

)}
.404

10

Now let k = m
2 . Then the same arguments apply, except that the number of 2-partitions with a part of405

size k is 1
2

(
m
k

)
because each such partition contains two subsets of the same size k. Moreover, for the406

same reason, the node can produce at most only one 2-partition with a part of size k for each feature.407

Thus, |Rk(S)| ≤ min
{
`, 1

2

(
m
k

)}
.408

Combining our results, we have409

|Rk(S)| ≤
{

min
{
`, 1

2

(
m
k

)}
if k = m

2

min
{

2`,
(
m
k

)}
otherwise.

(10)

Using Inequality (10), the symmetry Rk(S) = Rm−k(S) yields410

|R(S)| =
bm

2 c∑
k=1

|Rk(S)| ≤
m−1∑
k=1

min

{
2`,

(
m

k

)}
which concludes the proof, since |R(S)| depends only on m and not on S.411

A.2 Proof of part 2 of Theorem 7412

Proof. We want to show that the bound of Theorem 7 is an equality for 2` ≤ m. To this end, we413

want to show the existence of a sample S such that414

|Rk(S)| =
{
` if k = m

2

2` otherwise.

Since 2` ≤ m implies 2` ≤
(
m
k

)
for all k, we will have415

|R(S)| =
bm

2 c∑
k=1

|Rk(S)| = `(m− 1) =
1

2

m−1∑
k=1

2` =
1

2

m−1∑
k=1

min

{
2`,

(
m

k

)}
which establishes that the bound of Theorem 7 is an equality.416

Let us construct a suitable sample S. Consider the permutations σ1, . . . , σ` given by the rows of the417

following permutation representation of S:418

Σ =

1 2 . . . l 2l + 1 2l + 2 . . . m 2l 2l − 1 . . . l + 1
2 3 . . . l + 1 2l + 1 2l + 2 . . . m 1 2l . . . l + 2
3 4 . . . l + 2 2l + 1 2l + 2 . . . m 2 1 . . . l + 3
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
l l + 1 . . . 2l − 1 2l + 1 2l + 2 . . . m l − 1 l − 2 . . . 2l

 .
Σ is built up from an ` × ` matrix on the left, an ` × (m − 2`) matrix in the middle, and an ` × `419

matrix on the right. In the remainder of this paragraph, a shift is a shift in the sequence 1, 2, . . . , 2`.420

The first row of the left matrix is 1, 2, . . . , `; subsequent rows are obtained by shifting one position to421

the right. The middle matrix has identical rows running from 2`+ 1 to m. The first row of the right422

matrix is 2`, 2`− 1, . . . , `+ 1; subsequent rows are obtained by shifting one position to the left. For423

example, if ` = 3 and m = 9, we have424

Σ =

[
1 2 3 7 8 9 6 5 4
2 3 4 7 8 9 1 6 5
3 4 5 7 8 9 2 1 6

]
.

It is clear that, for k = 1, . . . ,
⌊
m
2

⌋
, splitting any of these permutations after the first k points or425

before the last k points always induces different 2-partitions with a part of size k on the sample, as426

long as the sample is chosen so that the strict inequalities427

xiσi
1
< xiσi

2
< · · · < xiσi

m

hold; it suffices to choose xi
σi
j

= j for i = 1, . . . , ` and j = 1, . . . ,m. This gives us a total of `428

distinct 2-partitions if k = m
2 (with even m), and a total of 2` distinct permutations if k < m

2 , as429

required.430

11

A.3 Proof of part 3 of Theorem 7431

We prove part 3 of Theorem 7 by showing that for 2` ≥
(
m
bm

2 c
) (

so that 2` ≥
(
m
k

)
for all k

)
, there432

exists a sample S such that433

|R(S)| =
m−1∑
k=1

(
m

k

)
=

m−1∑
k=1

min

{
2`,

(
m

k

)}
.

We proceed in two steps. First, we show that there exists a sample S of m examples on which434

every 2-partition with a part of size
⌊
m
2

⌋
is realized by a stump, when 2` ≥

(
m
bm

2 c
)
. Second, we435

use induction from this base case to establish the proof for all part sizes. More precisely, we show436

that if there exists a sample Sk such that a stump can realize every 2-partition with a part of size437

2 ≤ k ≤ m
2 , then there also exists a sample Sk−1 of the same size such that a stump can realize every438

2-partition with a part of size k and every 2-partition with a part of size k − 1.439

Let Σ be the permutation representation of S, as explained at the beginning of Appendix A. Further-440

more, assume we are in the worst-case scenario where441

xiσi
1
< xiσi

2
< · · · < xiσi

m

for all i ∈ [`]. In this case, showing that every 2-partition of S is realizable by a decision stump442

is equivalent to showing that every k-subset of [m] is attainable by splitting a permutation of Σ in443

two, either by splitting after the first k elements or before the last k elements for every possible k.444

Moreover, we only need to consider k-subsets for 1 ≤ k ≤ m
2 since Rk(S) = Rm−k(S).445

Step 1. We want to show that there exists a sample Sbm
2 c of m examples on which every 2-partition446

with a part of size
⌊
m
2

⌋
is realized by a stump when 2` ≥

(
m
bm

2 c
)
, i.e. when ` ≥

⌈
1
2

(
m
bm

2 c
)⌉

. Let447

Σbm
2 c be its permutation representation. Our problem is then equivalent to finding a matrix Σbm

2 c448

whose rows are permutations of [m] such that each
⌊
m
2

⌋
-subset of [m] may be found as the first

⌊
m
2

⌋
449

elements or the last
⌊
m
2

⌋
elements of a row of Σbm

2 c.450

This is easy for even m. Given that ` ≥ 1
2

(
m
m
2

)
and that there are exactly 1

2

(
m
m
2

)
different 2-partitions451

of [m] with a part of size m
2 , we can fit them all the first ` rows of the matrix Σm

2
with the first m2452

elements of each row being the elements of the first part of each 2-partition. Then, Σm
2

induces a453

sample Sm
2

on which every 2-partition is realizable by a stump. If Sm
2

= {x1, . . . ,xm}, choosing454

xi
ρij

= j, where the ρij are the elements of the matrix Σm
2

, suffices.455

Now, let’s see what happens when m is odd. Consider the minimal case ` =
⌈

1
2

(
m
bm

2 c
)⌉

. We rephrase456

our problem as a graph problem. Let the vertices of the graph G = (V,E) be the
⌊
m
2

⌋
-subsets of457

[m] and only place edges between disjoint
⌊
m
2

⌋
-subsets. Now, pairs of

⌊
m
2

⌋
-subsets with an edge458

connecting them are exactly the pairs of
⌊
m
2

⌋
-subsets of [m] whose elements can occur in the same459

row of Σbm
2 c (since each row is a permutation and therefore contains each element of [m] exactly460

once). The problem of constructing a suitable matrix Σbm
2 c becomes equivalent to showing that there461

exists a subset of edges M ⊆ E such that no two edges e1, e2 ∈M are incident to the same vertex,462

with cardinality |M | = ` if
(
m
bm

2 c
)

is even and |M | = `− 1 if
(
m
bm

2 c
)

is odd (since in this case, one463 ⌊
m
2

⌋
-subset of [m] will have its own row in the matrix Σbm

2 c). Such problems are called matching464

problems in the field of graph theory.465

As it turns out, the graph G is known as the Odd Graph On with n =
⌊
m
2

⌋
(since m = 2

⌊
m
2

⌋
+ 1466

when m is odd). According to Mütze et al. [2018], On has at least one Hamiltonian cycle for n = 1467

and for every n ≥ 3, a Hamiltonian cycle being a cycle which goes through every vertex exactly once.468

In particular, it has a Hamiltonian path as long as n 6= 2. This implies that for n 6= 2, there exists469

a matching of size
⌊

1
2

(
m
bm

2 c
)⌋

. Indeed, it suffices to take one such Hamiltonian path, add the first470

edge to M , skip the next one, and continue adding every other edge to M as we follow along the471

path. This ensures that every vertex is incident to exactly one of the selected edges, except when the472

12

12

45

23 15

34
35

13

14 24

25

Figure 1: The odd graph O2, also commonly known as the Petersen Graph. One matching of size 5 is
shown in bold red.

number of vertices is odd, in which case one vertex is left out (thus accounting for the floor function).473

The case n = 2 (which only occurs when m = 5) is exceptional and O2 corresponds to the Petersen474

Graph, which has no Hamiltonian cycle. However, from Figure 1, we can see that there still exists a475

matching of size ` = 1
2

(
5
b 5

2c
)

= 5.476

We can easily construct a set of ` permutations which separates all
⌊
m
2

⌋
-subsets from such a matching.477

Pair off the
⌊
m
2

⌋
-subsets which are joined by an edge in the chosen matching M . Since m is odd,478

choosing a pair of disjoint
⌊
m
2

⌋
-subsets of [m] fixes m− 1 elements of a permutation, leaving exactly479

one possible element to complete it. Hence, sandwich the missing elements between each pair of480 ⌊
m
2

⌋
-subsets to construct the rows of Σbm

2 c. If
(
m
bm

2 c
)

is even, we are done. Otherwise, put the481

last
⌊
m
2

⌋
-subset at the beginning of the `-th row of Σbm

2 c. Lastly, if ` >
⌈

1
2

(
m
m
2

)⌉
, then build the482

first ` rows of Σbm
2 c as described above and fill in the rest with arbitrary permutations. With this483

configuration, just like in the even case, Σbm
2 c induces a sample Sm

2
on which every 2-partition is484

realizable by a stump.485

Step 2. We want to prove that given a sample Sbm
2 c on which every 2-partition with a part of size486 ⌊

m
2

⌋
is realizable by a stump, we can construct a sample S1 on which every 2-partition is realizable487

by a stump. We proceed inductively, showing that given a sample Sk with 1 < k ≤
⌊
m
2

⌋
on which488

every 2-partition with a part of size k, k + 1, . . . ,
⌊
m
2

⌋
is realizable by a stump, there exists a sample489

Sk−1 of the same size as Sk on which every 2-partition with a part of size k − 1, k, k + 1, . . . ,
⌊
m
2

⌋
490

is realizable by a stump.491

Let Sk be a sample such that no two of its instances have the same value for any feature, and let Σk492

be its permutation representation.493

Then, Lemma 11, proved below, assures us that there exists an injective map φ from the set
(

[m]
k−1

)
of494

all (k − 1)-subsets of [m] to the set
(

[m]
k

)
of all k-subsets of [m] such that for every (k − 1)-subset a,495

we have a ⊂ φ(a).496

By assumption, Σk separates all k-subsets of [m], that is all k-subsets of [m] appear either as the497

first k elements or the last k elements of a row of Σk. For some a ∈
(

[m]
k−1

)
, reorder the elements of498

φ(a) appearing at the beginning or the end of a row of Σk so that the elements of a are either at the499

beginning or at the end of this row (according to whether the elements of φ(a) are at the beginning500

or at the end of the row). Notice that after this procedure, the new matrix Σ′k that is obtained still501

separates φ(a); moreover, it also separates a. Since the map φ is injective, we can continue this502

process without ever needing to reorder the same half-row twice, applying the same steps for each503

a ∈
(

[m]
k−1

)
. This yields a final matrix Σk−1 which induces the desired sample Sk−1.504

13

Now, since Lemma 11 is valid for 2 ≤ k ≤
⌊
m
2

⌋
, and because Sbm

2 c is a set on which every505

2-partition with a part of size
⌊
m
2

⌋
can be realized by a stump, one can repeat the process above until506

k = 2 so that R(S1) contains every 2-partition. Thus, S1 is the set needed to conclude the proof.507

Lemma 11. Let
(

[m]
k

) def
= {a ⊆ [m] : |a| = k} be the set of all k-subsets of [m]. Then, for 1 ≤ k < m

2508

there exists an injective mapping φ :
(

[m]
k

)
→
(

[m]
k+1

)
such that a ⊂ φ(a) for all a ∈

(
[m]
k

)
.509

Proof. Let k be such that 1 ≤ k < m
2 . Consider the bipartite graph G = (V,E) whose set of vertices510

is V =
(

[m]
k

)
∪
(

[m]
k+1

)
, with an edge connecting a ∈

(
[m]
k

)
and b ∈

(
[m]
k+1

)
if and only if a ⊂ b, and no511

other edges. The lemma is equivalent to finding a matching of G which covers
(

[m]
k

)
in the sense that512

each vertex in
(

[m]
k

)
is incident to an edge of the matching. We show the existence of such a matching513

using Hall’s marriage theorem (see Hall [1935]).514

Let W ⊆
(

[m]
k

)
and consider the set N(W) containing all the vertices in

(
[m]
k+1

)
which are adjacent to515

a vertex in W , that is all (k + 1)-subsets of [m] which contain a k-subset of [m] from W .516

Given a ∈W , we can make m− k different (k + 1)-subsets containing a by adding one the m− k517

elements of [m] not present in a to it. Since we can do this for each a ∈W , we obtain (m− k) |W |518

(not necessarily all distinct) (k + 1)-subsets. In fact, in the worst case, when all
(
k+1
k

)
= k + 1519

different k-subsets of some b ∈
(

[m]
k+1

)
are present in W , b will be counted k + 1 times. Therefore520

(k+ 1) |N(W)| ≥ (m− k) |W |. Moreover, since 1 ≤ k < m
2 , we have m− k ≥ k+ 1. This means521

|N(W)| ≥ m− k
k + 1

|W | ≥ |W | .

Since this inequality holds for all W ⊆
(

[m]
k

)
, a straightforward application of Hall’s marriage522

theorem yields a matching of G which covers
(

[m]
k

)
and proves the lemma.523

A.4 Proof of part 4 of Theorem 7524

We now prove that525

π2
T (m) =

1

2

m−1∑
k=1

min

{
2`,

(
m

k

)}
(11)

when 1 ≤ m ≤ 7. To do so, consider the permutation representation Σ of a sample S as described526

at the beginning of the Appendix. We explicitly define Σ which induces a sample S that shows527

Equation (11) is satisfied.528

One must understand the following matrices as follows. If ` is less than or equal to the total number529

of rows of the matrix, build Σ from the first ` rows. If ` is greater than the number of rows of the530

matrix, add arbitrary permutations to fill out the rest of the rows of Σ; these do not matter because Σ531

already separates all subsets of [m] with its first ` rows.532

• m = 1:533

[1]

• m = 2:534

[1 2]

• m = 3:535 [
1 2 3
1 3 2

]
• m = 4:536 [

1 2 4 3
2 3 1 4
1 3 2 4

]

14

• m = 5:537

1 2 3 5 4
2 3 4 1 5
3 4 1 2 5
1 3 5 2 4
1 4 2 3 5

• m = 6:538

1 2 3 6 5 4
2 3 4 1 6 5
3 4 5 2 1 6
1 3 6 5 4 2
3 5 2 1 6 4
5 1 4 3 2 6
1 4 3 6 2 5
3 6 5 1 2 4
1 2 5 3 4 6
1 3 5 2 4 6

• m = 7:539

1 2 3 4 5 6 7
2 3 4 7 1 5 6
3 4 7 6 2 1 5
4 7 6 2 5 1 3
1 4 3 7 6 2 5
5 7 4 3 2 1 6
3 7 5 6 1 2 4
2 7 4 1 6 3 5
2 6 3 7 1 4 5
1 7 3 5 2 4 6
3 6 7 1 2 4 5
1 4 7 6 2 3 5
1 2 7 3 4 5 6
1 5 7 2 3 4 6
1 6 7 2 3 4 5
2 3 7 5 1 4 6
2 5 7 4 3 6 1
2 6 7 1 3 4 5

B Proof of Theorem 9540

Theorem 9 relies on a proposition we expose in the following section, and we proceed with the proof541

thereafter.542

B.1 Formalizing decision trees as partitioning machines543

In Section 4, we introduce the notion of trees as partitioning machines. We here formalize this idea544

by providing a recursive construction of partitions realizable by a tree class T .545

Given a tree class T and a sample S, let γ̄ def
= {γ1, . . . , γc} ∈ Pc

T (S) be some c-partition realizable546

by T and let λ̄ def
= {λ, S\λ} ∈ R(S) be a 2-partition realized by the root node which led to γ̄.547

According to our definition 1 of a binary tree, we have that λ is forwarded to the left subtree class Tl,548

which produces an a-partition ᾱ(λ) while S\λ is sent to the right subtree class Tr which produces a549

b-partition β̄(S\λ), as pictured in Figure 2. As explained in Section 4, γ̄ arises from the union of550

some of the leaves, therefore it also arises from the union of some of the parts in ᾱ and β̄. Moreover,551

this implies that a+ b must be greater or equal to c.552

15

root

Tl Tr

λ S\λ

ᾱ β̄

Figure 2: The root node splits the set S into two parts, λ and S\λ, which are forwarded to the left
subtree class Tl and the right subtree class Tr respectively. The subtrees produces partitions ᾱ and β̄,
which can be combined to yield a c-partition γ̄.

Note that, generally, there exists multiple partitions ᾱ, β̄, and λ̄ that yield the same partition γ̄. As553

a consequence, we can also assume without loss of generality that a ≤ c and b ≤ c. Indeed, by554

construction, any part γj ∈ γ̄ is the result of the union of some subset of parts ᾱj ⊆ ᾱ and some555

other subset of parts β̄j ⊆ β̄. Note that ᾱj and β̄j can be empty, but not both at the same time.556

Using this notation, we have that γj =
⋃
α∈ᾱj α ∪

⋃
β∈β̄j β for every γj . Consider the following557

partition ᾱ′ def
=
{
α′j : α′j

def
=
⋃
α∈ᾱj α, α′j 6= ∅

}
and define β̄′ similarly. In this formulation, γj is558

equal to α′j , β
′
j , or α′j ∪ β′j . Moreover, the way ᾱ′ and β̄′ are defined implies that ᾱ′ ∈ Pa′

Tl
(λ) and559

β̄′ ∈ Pb′

Tr
(S\λ) for a′ def

= |ᾱ′| and b′ def
=
∣∣β̄′∣∣. Finally, this also implies that a′, b′ ≤ c, as wanted.560

Having now described how a realizable partition γ̄ ∈ Pc
T (S) of a tree class T is related to the561

realizable partitions ᾱ and β̄ of its left and right subtrees, it is relevant to ask instead what partitions562

γ̄ can be made given the partitions ᾱ and β̄. To do so, we define the following quantity.563

Definition 12 (c-partitions-set of pairwise unions of two partitions). Let ᾱ be an a-partition of564

some set A and β̄ be a b-partition of some other set B, disjoint from A. Define the set Qc(ᾱ, β̄) of565

c-partitions that can be constructed from pairwise unions of ᾱ and β̄ as follows:566

Qc(ᾱ, β̄)
def
= { γ̄ : γ̄ is a c-partition of A ∪B s.t. ∀ γ ∈ γ̄,∃α ∈ ᾱ, β ∈ β̄

s.t. γ = α or γ = β or γ = α ∪ β } . (12)

From this definition, it follows that Qc(ᾱ, β̄) = ∅ if a+ b < c, a > c, or b > c. Moreover, if Aa(A)567

is some set of a-partitions of A and Bb(B) is some set of b-partitions of B, we denote by568

Qc(Aa(A),Bb(B))
def
=

⋃
ᾱ∈Aa(A),

β̄∈Bb(B)

Qc(ᾱ, β̄)

the union set of the Qc.569

We are now equipped to write a recursive relation of the set of partitions a tree T can realize knowing570

the set of partitions its subtrees can realize.571

Proposition 13 (c-partitions-set decomposition of decision trees). Let Pc
T (S) be the set of c-partitions572

that a binary decision tree class T can realize on a sample S of m > LT examples, and let Tl and573

Tr be the hypothesis classes of its left and right subtrees. Then, the following decomposition holds.574

Pc
T (S) =

⋃
{λ,S\λ}∈R(S)

⋃
1≤a,b≤c

Qc
(
Pa
Tl

(λ),Pb
Tr

(S\λ)
)
∪ Qc

(
Pa
Tl

(S\λ),Pb
Tr

(λ)
)
, (13)

where R(S) denotes the set of 2-partitions the root node can realize on S.575

Proof. Let γ̄ ∈ Pc
T (S). Then, our explanations in the paragraphs above Definition 12 imply that if λ576

is forwarded to Tl, then γ̄ ∈ Qc(Pa
Tl

(λ),Pb
Tr

(S\λ)). Alternatively, if λ is forwarded to Tr, then a577

similar reasoning shows that Qc(Pa
Tl

(S\λ),Pb
Tr

(λ)). On the other hand, we also have discussed that578

Qc(ᾱ, β̄) is the quantity that contains all c-partitions realizable from ᾱ and β̄. Therefore, taking the579

union over all the partitions realizable by Tl and Tr indeed gives Pc
T (S).580

16

B.2 Proof of the theore581

We are now ready to prove Theorem 9.582

Proof. We consider first the case where the number of examples m is less than or equal to the number583

of leaves LT of the tree T . We want to show that there exists a sample S such that T can realize584

every c-partitions of S.585

Let S be a sample such that one feature takes distinct values for each of the m examples. Then, one586

can choose for the root of T the appropriate threshold on that feature such that ml ≤ LTl
examples587

will be redirected to the left and mr ≤ LTr examples will be redirected to the right (where we have588

LTl
+ LTr = LT and ml + mr = m). Then each of the subtrees can do the required split on the589

same feature, with the required constraints on the number of examples that need to be redirected on590

each children, until that we have eventually at most one example per leaf. In that case, by choosing591

any labeling in [c] for the leaves, the tree class T can perform any c-partition of the m examples out592

of the {mc } possible ones. Consequently, we have πcT (m) = {mc } for any tree class with LT ≥ m.593

We now consider the case when m > LT . We want to show the following inequality:594

πcT (m) ≤
(

1

2

)δlr m−LTr∑
k=LTl

min
{

2`,
(
m
k

)}∑
1≤a,b≤c
a+b≥c

(
a
c−b
)(

b
c−a
)
(a+ b− c)! πaTl

(k)πbTr
(m− k) , (14)

where δlr = 1 if Tl = Tr, and 0 otherwise.595

In the following, we assume every examples of S have distinct feature values, i.e. it is always possible596

to distinguish two examples using any feature. Indeed, assuming otherwise can only reduce the597

number of partitions that can be made on a sample, and therefore we have, for such a sample S of m598

examples, that |P cT (S)| ≤ πcT (m).599

We start from Proposition 13, which states600

Pc
T (S) =

⋃
{λ,S\λ}∈R(S)

⋃
1≤a,b≤c

Qc
(
Pa
Tl

(λ),Pb
Tr

(S\λ)
)
∪ Qc

(
Pa
Tl

(S\λ),Pb
Tr

(λ)
)
. (15)

Because Qc is symmetric in its arguments and because the union over a and b is invariant under the601

exchange of a and b, we have that602 ⋃
a,b

Qc
(
Pa
Tl

(S\λ),Pb
Tr

(λ)
)

=
⋃
a,b

Qc
(
Pa
Tr

(λ),Pb
Tl

(S\λ)
)
, (16)

which is equivalent to say that one can exchange the subtrees instead of sending λ to the left and to603

the right. Therefore, we have604

Pc
T (S) = Alr ∪Arl with Alr

def
=

⋃
{λ,S\λ}∈R(S)

⋃
1≤a,b≤c

Qc
(
Pa
Tl

(λ),Pb
Tr

(S\λ)
)
, (17)

where we mute the other dependencies of A to alleviate the notation.605

By the union bound, we have |Pc
T (S)| ≤ |Alr| + |Arl|. Let us upper bound |Alr|. Observe that606

a single node is very similar to a decision stump. Indeed, the root partitions decomposition of607

Equation (9) also applies here, so that we have608

Alr =

bm
2 c⋃

k=1

⋃
{λ,S\λ}∈Rk(S)

⋃
1≤a,b≤c

Qc
(
Pa
Tl

(λ),Pb
Tr

(S\λ)
)
. (18)

Then, we show that the union over k can be changed to go from LTl
to min

{⌊
m
2

⌋
,m− LTr

}
without609

changing Alr. To do so, we need to show that for any partition γ̄ ∈ Alr, there exists at least one610

2-partition λ̄ = {λ, S\λ} realized by the root node with LTl
≤ |λ| ≤ min

{⌊
m
2

⌋
,m− LTr

}
that611

leads to γ̄. Indeed, assume |λ| < LTl
. Because of our assumption below Equation 14, one can always612

modify the threshold of the root node to send LTl
examples in the subtree Tl and modify the subtree613

so that every example ends up alone in a leaf (as we have shown in the first part of the present proof).614

17

These examples can then be united into the part they belonged in γ̄ to give the same partition as615

before. An analogous argument also holds for |S\λ| ≥ LTr , which implies |λ| ≤ m− LTr (since616

m > LT by assumption).617

Letting Mr
def
= min

{⌊
m
2

⌋
,m− LTr

}
and taking the union bound over k and over Rk(S), one ends618

up with619

|Alr| ≤
Mr∑

k=LTl

|Rk(S)| max
{λ,S\λ}∈Rk(S)

∣∣∣∣∣∣
⋃

1≤a,b≤c

Qc
(
Pa
Tl

(λ),Pb
Tr

(S\λ)
)∣∣∣∣∣∣ . (19)

Let us evaluate the cardinality of Qc
(
Pa
Tl

(λ),Pb
Tr

(S\λ)
)

when 1 ≤ a, b ≤ c and a+ b ≥ c. Using620

the union bound over disjoint events, we have621 ∣∣Qc (Pa
Tl

(λ),Pb
Tr

(S\λ)
)∣∣ =

∑
ᾱ∈Pa

Tl
(λ)

∑
β̄∈Pb

Tr
(S\λ)

∣∣Qc (ᾱ, β̄) ∣∣. (20)

Pick any ᾱ ∈ Pa
Tl

(λ) and β̄ ∈ Pb
Tr

(S\λ). According to Definition 12, we must take the unions of622

some parts of ᾱ and β̄ to end up with a c-partition, with the constraint that the joined parts belongs to623

different partitions. We start with a total of a+ b parts and we must take the union of some pairs to624

end up with only c parts. Taking the union of such a pair effectively reduces the total number of parts625

by one, therefore we must make a+ b− c unions. To make these unions, choose a+ b− c parts from626

ᾱ and choose a+ b− c parts from β̄ and join them. Since there is (a+ b− c)! ways to join those627

parts, we have that
∣∣Qc(ᾱ, β̄)

∣∣ =
(
a
c−b
)(

b
c−a
)
(a+ b− c)!. Since the cardinality of Qc(ᾱ, β̄) depends628

only on a and b and not the partitions themselves, Equation (20) becomes629 ∣∣Qc (Pa
Tl

(λ),Pb
Tr

(S\λ)
)∣∣ =

(
a
c−b
)(

b
c−a
)
(a+ b− c)!

∣∣Pa
Tl

(λ)
∣∣∣∣Pb

Tr
(S\λ)

∣∣. (21)

Going back to Equation (19), one has630

|Alr| ≤
Mr∑

k=LTl

|Rk(S)|
∑

1≤a,b,≤c
a+b≥c

(
a
c−b
)(

b
c−a
)
(a+ b− c)! max

{λ,S\λ}∈Rk(S)

∣∣Pa
Tl

(λ)
∣∣∣∣Pb

Tr
(S\λ)

∣∣. (22)

Then, using Definition 6 for πcT (m) yields631

|Alr| ≤
Mr∑

k=LTl

|Rk(S)|
∑

1≤a,b,≤c
a+b≥c

(
a
c−b
)(

b
c−a
)
(a+ b− c)! πaTl

(k)πbTr
(m− k). (23)

This expression also applies to Arl by exchanging indices l and r. Apply this exchange to Equa-632

tion (23). Then let k → m− k, and rename a to b and b to a, so that we have633

|Arl| ≤
m−LTr∑
k=Ml

|Rk(S)|
∑

1≤a,b,≤c
a+b≥c

(
a
c−b
)(

b
c−a
)
(a+ b− c)! πaTl

(k)πbTr
(m− k), (24)

where Ml
def
= max

{⌈
m
2

⌉
, LTl

}
. Notice that the coefficients inside the sum over k are the same in634

Equations (23) and (24). For convenience, let635

Ck
def
=

∑
1≤a,b,≤c
a+b≥c

(
a
c−b
)(

b
c−a
)
(a+ b− c)! πaTl

(k)πbTr
(m− k), (25)

so that |Alr| and |Arl| can written in the form
∑
k |Rk(S)|Ck, with the only difference being the636

values that k takes. We can now show that the sum over k in Equations (23) and (24) can be put637

together to yield the theorem.638

There are 4 cases to consider according to the values of Mr = min
{⌊

m
2

⌋
,m− LTr

}
and Ml =639

max
{⌈

m
2

⌉
, LTl

}
. First, let Mr =

⌊
m
2

⌋
and Ml =

⌈
m
2

⌉
. The sum over k then goes from LTl

to640

18

⌊
m
2

⌋
for |Alr| and from

⌈
m
2

⌉
to m − LTr for |Arl|. Then, if m is odd, both sums can be joined641

directly to go from LTl
to m− LTr . If m is even, one has an extra term for k = m

2 . Thus642

|Alr|+ |Arl| ≤

m−LTr∑
k=LTl

|Rk(S)|Ck if m is odd

∣∣Rm
2

(S)
∣∣Cm

2
+

m−LTr∑
k=LTl

|Rk(S)|Ck if m is even.

(26)

Using the upper bound on |Rk(S)| in Equation (10), the above expression simplifies to643

|Alr|+ |Arl| ≤
m−LTr∑
k=LTl

min
{

2`,
(
m
k

)}
Ck, (27)

valid for both cases.644

Second, let Mr = min
{⌊

m
2

⌋
,m− LTr

}
=
⌊
m
2

⌋
and Ml = max

{⌈
m
2

⌉
, LTl

}
= LTl

. This implies645

that LTl
≥
⌈
m
2

⌉
. The sum over k then goes from LTl

to
⌊
m
2

⌋
for |Alr|, which consists in exactly646

one term if LTl
= m

2 and none otherwise. For |Arl|, the sum over k goes from LTl
to m − LTr .647

Therefore, we have648

|Alr|+ |Arl| ≤

∣∣Rm
2

(S)
∣∣Cm

2
+

m−LTr∑
k=LTl

|Rk(S)|Ck if LTl
= m

2 .

m−LTr∑
k=LTl

|Rk(S)|Ck otherwise

(28)

Again, using the upper bound on |Rk(S)| in Equation (10), the above expression simplifies to649

|Alr|+ |Arl| ≤
m−LTr∑
k=LTl

min
{

2`,
(
m
k

)}
Ck, (29)

valid for both cases.650

Third, let Mr = min
{⌊

m
2

⌋
,m− LTr

}
= m−LTr

and Ml = max
{⌈

m
2

⌉
, LTl

}
=
⌈
m
2

⌉
. This case651

is very similar to the second case, where |Arl| consists in one or zero term instead of |Alr|. Thus,652

the same conclusion applies.653

Fourth, let Mr = min
{⌊

m
2

⌋
,m− LTr

}
= m − LTr

and Ml = max
{⌈

m
2

⌉
, LTl

}
= LTl

. This654

case violates our starting assumption that m is greater than LT . Hence, we can simply ignore this655

case.656

Collecting our results, one concludes that for all m > LTl
+ LTr , we have657

|Pc
T (S)| ≤ |Alr|+ |Arl| ≤

m−LTr∑
k=LTl

min
{

2`,
(
m
k

)}
Ck. (30)

Observe that the right-hand-side of this inequality is independent of S. Therefore, by taking the658

maximum value over all sample S of size m, we have a bound for πcT (m).659

One can improve this result when the left and the right subtrees are the same. Indeed, in this case660

Alr = Arl so that Pc
T (S) is simply equal to Alr according to Equation (17). Moreover, the condition661

that m > LTl
+ LTr implies LTr <

m
2 , so that Mr is always equal to

⌊
m
2

⌋
. Equation (23) then662

becomes663

|Alr| ≤
bm

2 c∑
k=LTl

|Rk(S)|
∑

1≤a,b,≤c
a+b≥c

(
a
c−b
)(

b
c−a
)
(a+ b− c)! πaTl

(k)πbTr
(m− k). (31)

19

Using the fact that Rk(S) = Rm−k(S), that Tl = Tr, and that the summation over a and b is664

symmetric, along with the bound of Equation (10) on |Rk(S)|, one can show that665

|Pc
T (S)| ≤ |Alr| ≤

1

2

m−LTr∑
k=LTl

min
{

2`,
(
m
k

)} ∑
1≤a,b,≤c
a+b≥c

(
a
c−b
)(

b
c−a
)
(a+ b− c)! πaTl

(k)πbTr
(m− k),

(32)

which is different from Equation (30) by a factor of 1/2 only.666

We finally obtain the statement of the theorem if we use the indicator function 1[·] to handle into a667

single expression the cases when Tl and Tr are the same or not.668

20

C Proof of Corollary 10669

We here give the proof of Corollary 10, which states that the asymptotic behavior of the VC dimension670

of a class T of a binary decision tree with N internal nodes on examples of ` real-valued features is671

given by VCdimT ∈ O (N log(N`)).672

Proof. Letting c = 2 in Theorem 9, using the fact that 2−δlr ≤ 1, min
{

2`,
(
m
k

)}
≤ 2` and673

πcT (k) ≤ πcT (m) for k ≤ m, we have674

π2
T (m) ≤ 2`(m− LT)

(
1 + 2π2

Tl
(m) + 2π2

Tr
(m) + 2π2

Tl
(m)π2

Tr
(m)

)
.

We show by induction that π2
T (m) ∈ O((m`)N). Assume π2

T (m) ≤ (Cm`)N for some constant675

C ≥ 1, and let Nl and Nr be the number of nodes in the left and right subtrees respectively, so that676

Nl +Nr + 1 = N . The previous equation becomes (with m− LT < m)677

πcT (m) ≤ 2m`
(
1 + 2(Cm`)Nl + 2(Cm`)Nr + 2(Cm`)Nl(Cm`)Nr

)
≤ 14m`(Cm`)Nl+Nr ,

which proves our claim for C ≥ 14. Then, Equation (5) implies678

VCdimT ≤ max
{
m : (Cm`)N ≥ 2m−1 − 1

}
.

One can solve for the inequality (Cm`)N ≥ 2m instead, since this implies (Cm`)N ≥ 2m−1 − 1 is679

true too. The Lambert W function [Corless et al., 1996] can give us an exact solution, which is m ≤680

− N
ln 2W−1

(
− ln 2
CN`

)
. Since −W−1(−z−1) ∈ O (log z), we have that VCdimT ∈ O (N log(N`)).681

682

21

D Algorithms to upper bound the VC dimension of decision tree classes683

In this Appendix, we present the algorithms for obtaining an upper bound on the VC dimension of a684

tree class T . Algorithm 1 uses Theorem 9 to upper bound the c-partitioning function of a tree class.685

Algorithm 2 uses Algorithm 1 and Equation (5) to compute an upper bound on the VC dimension of686

a tree class.687

Algorithm 1: PartitionFuncUpperBound(T, c,m, `)

Input: A tree class T , the number c of parts in the partitions, the number m of elements, the number
` of features.

Let LT be the number of leaves of T .
if c > m or c > LT then

Let N ← 0.
else if c = m or c = 1 or m = 1 then

Let N ← 1.
else if m ≤ LT then

Let N ← {mc }.
else

Let Tl and Tr be the left and right subtree classes of T .
Let N ← 0.
for k = LTl

to m− LTr do

Let N ← N + min
{

2`,
(
m
k

)} c∑
a=1

c∑
b=max{1,c−a}

(
a
c−b
)(

b
c−a
)
(a+ b− c)!

× PartitionFuncUpperBound(Tl, a, k, `)
× PartitionFuncUpperBound(Tr, b,m− k, `).

if TL = TR then
Let N ← N

2 .

Output: min (N, {mc }).

Algorithm 2: VCdimUpperBound(T, `)

Input: A tree class T , the number ` of features.
if T is a leaf then

Output: 1
Let m← LT + 1.
while PartitionFuncUpperBound(T, 2,m, `) ≥ 2m−1 − 1 do

Let m← m+ 1.

Output: m− 1

Algorithm 2 can become quite inefficient because one has to compute the values of PartitionFuncUp-688

perBound for increasing values of m, which may already have been computed for smaller values of689

m. It is thus suggested to store the values of PartitionFuncUpperBound computed for each T and690

each m to be more efficient.691

We applied these algorithms to the first 11 non-equivalent binary decision trees when the number of692

features is ` = 10. The bounds are presented in Figure 3. The lower bounds were obtained by the693

algorithm of Figure 7 of Yıldız [2015] in conjunction with our exact value for the VC dimension of a694

decision stump. Using our base case improves considerably the lower bound found by Yıldız [2015].695

22

VCdimT = 1 VCdimT = 6 7 ≤ VCdimT ≤ 16 12 ≤ VCdimT ≤ 21 8 ≤ VCdimT ≤ 25

13 ≤ VCdimT ≤ 31 13 ≤ VCdimT ≤ 32 14 ≤ VCdimT ≤ 40 18 ≤ VCdimT ≤ 38

19 ≤ VCdimT ≤ 47 24 ≤ VCdimT ≤ 52

Figure 3: Lower and upper bounds on the VC dimension of the first 11 non-equivalent trees for
` = 10 real-valued features. Diamond shaped nodes are leaves while circles denote internal nodes.

23

E Supplementary materials about the experiments696

In this Appendix, we provide more details about the experiments that were done.697

E.1 The pruning algorithm698

The full formal pruning algorithm is given in Algorithm 3.699

Algorithm 3: PruneTreeWithBound(t, ε, δ,m)

Input: A fully grown tree t, a bound funtion ε on the true risk, a confidence internal δ, the number of
examples m.

Let Td be the tree class of the tree t with complexity index d.
Let kt be the number of errors made by t.
Let b← ε(m, kt, d, δ) according to Equation (8).
Let B ← b be the final bound.
while t is not a leaf do

for every internal node n of the tree t do
Let tn be the tree t with node n replaced by a leaf.
Let Tdn be the tree class of the tree tn with complexity index dn.
Let ktn be the number of errors made by tn.
if ε(m, ktn , dn, δ) ≤ b then

Let b← ε(m, ktn , dn, δ) be the new best bound.
Let t′ ← tn be the new best tree.

if b ≤ B then
Let t← t′.

else
break

Output: The pruned tree t, the associated bound B.

E.2 More statistics about model performances700

We here give more statics on the performances of the model tested, such as the training accuracy, the701

number of leaves and the height of the final tree, the time it took to prune the original tree, and the702

computed bound in the case of our pruning algorithm. For each table, the caption gives the dataset703

name, the total number of examples it contains, the number of features each example has as well704

as the number of classes to predict. For more details about the table columns, see the methodology705

section 6.2.706

All experiments were run on a Intel Core i5-750 CPU running Windows 10, with 12 Go of RAM.707

Table 2: Breast Cancer Wisconsin Diagnostic Dataset (569 examples, 30 features, 2 classes)

Original CART M-CART Ours

Train acc. 1.000± 0.000 0.962± 0.024 0.965± 0.020 0.983± 0.005
Test acc. 0.928± 0.024 0.923± 0.027 0.930± 0.017 0.942± 0.022
Leaves 18.0± 2.6 5.9± 3.3 5.8± 3.4 8.3± 1.4
Height 7.0± 1.0 3.4± 1.6 3.2± 1.4 4.4± 0.6

Time [s] N/A 5.3± 0.5 5.3± 0.5 0.1± 0.0
Bound N/A N/A N/A 1.5± 0.2

24

Table 3: Cardiotocography 10 Dataset (2126 examples, 21 features, 10 classes)

Original CART M-CART Ours

Train acc. 0.604± 0.008 0.582± 0.014 0.586± 0.014 0.591± 0.008
Test acc. 0.566± 0.023 0.562± 0.023 0.566± 0.024 0.567± 0.022
Leaves 40.0± 0.0 9.0± 6.2 11.2± 7.0 11.6± 2.7
Height 15.6± 2.4 5.1± 2.6 5.9± 2.7 6.8± 1.3

Time [s] N/A 25.4± 1.5 25.6± 1.6 48.3± 22.0
Bound N/A N/A N/A 16.8± 0.3

Table 4: Climate Model Simulation Crashes Dataset (540 examples, 18 features, 2 classes)

Original CART M-CART Ours

Train acc. 1.000± 0.000 0.918± 0.019 0.941± 0.022 0.977± 0.008
Test acc. 0.903± 0.024 0.920± 0.021 0.922± 0.017 0.921± 0.014
Leaves 21.2± 3.2 1.7± 2.7 3.8± 2.9 9.6± 2.2
Height 7.2± 1.3 0.5± 1.7 2.4± 1.9 5.2± 0.8

Time [s] N/A 4.5± 0.8 4.5± 0.8 0.2± 0.1
Bound N/A N/A N/A 1.9± 0.2

Table 5: Connectionist Bench Sonar Dataset (208 examples, 60 features, 2 classes)

Original CART M-CART Ours

Train acc. 1.000± 0.000 0.853± 0.117 0.877± 0.120 0.963± 0.012
Test acc. 0.727± 0.061 0.702± 0.054 0.695± 0.084 0.724± 0.053
Leaves 16.4± 1.7 6.0± 3.3 7.3± 4.4 10.4± 1.6
Height 6.4± 0.9 3.3± 1.7 3.6± 1.9 5.0± 0.6

Time [s] N/A 2.8± 0.3 2.7± 0.2 0.1± 0.1
Bound N/A N/A N/A 4.5± 0.4

Table 6: Diabetic Retinopathy Debrecen Dataset (1151 examples, 19 features, 2 classes)

Original CART M-CART Ours

Train acc. 0.717± 0.021 0.598± 0.062 0.625± 0.058 0.696± 0.023
Test acc. 0.613± 0.027 0.576± 0.044 0.602± 0.040 0.622± 0.023
Leaves 40.0± 0.0 2.6± 1.9 4.3± 4.4 16.5± 4.3
Height 10.7± 1.1 1.5± 1.6 2.4± 2.4 7.8± 1.5

Time [s] N/A 10.6± 0.7 10.7± 0.6 2.6± 0.8
Bound N/A N/A N/A 13.1± 0.8

Table 7: Fertility Dataset (100 examples, 9 features, 2 classes)

Original CART M-CART Ours

Train acc. 0.992± 0.007 0.886± 0.025 0.881± 0.017 0.888± 0.027
Test acc. 0.790± 0.060 0.878± 0.051 0.878± 0.051 0.866± 0.056
Leaves 14.6± 2.2 1.4± 1.4 1.3± 0.5 1.6± 1.4
Height 6.9± 1.1 0.4± 1.4 0.3± 0.5 0.5± 1.3

Time [s] N/A 0.7± 0.1 0.6± 0.1 0.1± 0.1
Bound N/A N/A N/A 5.0± 0.7

25

Table 8: Habermans Survival Dataset (306 examples, 3 features, 2 classes)

Original CART M-CART Ours

Train acc. 0.832± 0.024 0.732± 0.015 0.750± 0.021 0.760± 0.025
Test acc. 0.660± 0.062 0.746± 0.043 0.721± 0.043 0.719± 0.043
Leaves 40.0± 0.0 1.0± 0.0 3.1± 1.9 3.4± 1.8
Height 12.4± 1.5 0.0± 0.0 2.0± 1.7 2.1± 1.4

Time [s] N/A 4.4± 0.3 4.4± 0.3 1.6± 0.2
Bound N/A N/A N/A 10.1± 0.8

Table 9: Image Segmentation Dataset (210 examples, 19 features, 7 classes)

Original CART M-CART Ours

Train acc. 1.000± 0.000 0.936± 0.126 0.960± 0.035 0.964± 0.010
Test acc. 0.862± 0.048 0.814± 0.144 0.844± 0.050 0.858± 0.050
Leaves 17.0± 1.4 10.8± 3.3 11.2± 2.7 10.6± 1.1
Height 9.8± 1.3 7.0± 1.6 7.4± 1.3 7.4± 1.0

Time [s] N/A 2.0± 0.1 2.0± 0.1 8.0± 4.6
Bound N/A N/A N/A 4.6± 0.3

Table 10: Ionosphere Dataset (351 examples, 34 features, 2 classes)

Original CART M-CART Ours

Train acc. 1.000± 0.000 0.809± 0.132 0.916± 0.051 0.968± 0.009
Test acc. 0.891± 0.035 0.772± 0.108 0.867± 0.057 0.892± 0.032
Leaves 19.6± 2.0 3.4± 3.6 5.2± 3.7 9.3± 1.6
Height 9.6± 2.0 1.9± 2.3 3.2± 2.1 5.4± 0.8

Time [s] N/A 4.6± 0.5 4.6± 0.5 0.4± 0.2
Bound N/A N/A N/A 2.8± 0.2

Table 11: Iris Dataset (150 examples, 4 features, 3 classes)

Original CART M-CART Ours

Train acc. 1.000± 0.000 0.923± 0.116 0.901± 0.130 0.986± 0.009
Test acc. 0.933± 0.030 0.860± 0.139 0.838± 0.158 0.937± 0.028
Leaves 7.6± 1.3 3.9± 1.5 3.8± 1.4 4.8± 1.0
Height 4.8± 0.8 2.8± 1.4 2.8± 1.4 3.6± 0.8

Time [s] N/A 0.5± 0.1 0.6± 0.1 0.0± 0.0
Bound N/A N/A N/A 2.0± 0.3

Table 12: Parkinson Dataset (195 examples, 22 features, 2 classes)

Original CART M-CART Ours

Train acc. 1.000± 0.000 0.908± 0.098 0.944± 0.060 0.976± 0.013
Test acc. 0.859± 0.062 0.848± 0.064 0.858± 0.065 0.863± 0.065
Leaves 12.7± 1.8 5.6± 3.5 6.8± 3.4 8.2± 1.3
Height 5.7± 1.1 3.0± 2.0 3.6± 1.6 4.0± 0.7

Time [s] N/A 1.4± 0.1 1.4± 0.1 0.0± 0.0
Bound N/A N/A N/A 3.1± 0.4

26

Table 13: Planning Relax Dataset (182 examples, 12 features, 2 classes)

Original CART M-CART Ours

Train acc. 1.000± 0.000 0.720± 0.038 0.709± 0.016 1.000± 0.000
Test acc. 0.595± 0.075 0.725± 0.049 0.729± 0.048 0.595± 0.075
Leaves 29.1± 2.2 1.7± 2.6 1.0± 0.0 29.1± 2.2
Height 11.4± 2.1 0.6± 2.3 0.0± 0.0 11.4± 2.1

Time [s] N/A 2.7± 0.3 2.0± 0.2 1.0± 0.3
Bound N/A N/A N/A 6.5± 0.1

Table 14: Qsar Biodegradation Dataset (1055 examples, 41 features, 2 classes)

Original CART M-CART Ours

Train acc. 0.834± 0.022 0.758± 0.042 0.791± 0.026 0.804± 0.025
Test acc. 0.752± 0.031 0.741± 0.033 0.757± 0.026 0.761± 0.028
Leaves 40.0± 0.0 3.1± 2.9 7.0± 4.8 10.3± 4.0
Height 12.8± 1.7 1.8± 1.9 4.3± 2.2 5.7± 1.8

Time [s] N/A 16.7± 1.9 16.2± 1.0 2.9± 0.8
Bound N/A N/A N/A 8.5± 0.8

Table 15: Seeds Dataset (210 examples, 7 features, 3 classes)

Original CART M-CART Ours

Train acc. 1.000± 0.000 0.967± 0.019 0.964± 0.057 0.981± 0.007
Test acc. 0.918± 0.034 0.914± 0.040 0.905± 0.081 0.925± 0.033
Leaves 12.0± 1.8 5.7± 1.8 6.4± 2.1 7.0± 0.9
Height 6.0± 0.9 3.9± 1.1 4.1± 1.1 4.3± 0.5

Time [s] N/A 1.1± 0.1 1.2± 0.1 0.1± 0.1
Bound N/A N/A N/A 2.4± 0.4

Table 16: Spambase Dataset (4601 examples, 57 features, 2 classes)

Original CART M-CART Ours

Train acc. 0.861± 0.026 0.846± 0.026 0.850± 0.028 0.855± 0.026
Test acc. 0.844± 0.027 0.839± 0.028 0.842± 0.029 0.846± 0.026
Leaves 40.0± 0.0 7.0± 5.6 8.1± 5.6 9.6± 4.0
Height 19.8± 2.4 3.8± 2.5 4.4± 2.8 5.5± 2.0

Time [s] N/A 82.4± 10.1 81.6± 10.6 3.4± 0.4
Bound N/A N/A N/A 6.0± 1.0

Table 17: Vertebral Column 3C Dataset (310 examples, 6 features, 3 classes)

Original CART M-CART Ours

Train acc. 1.000± 0.000 0.784± 0.181 0.881± 0.044 0.952± 0.019
Test acc. 0.800± 0.050 0.725± 0.139 0.804± 0.046 0.819± 0.044
Leaves 31.8± 3.4 6.5± 7.0 6.4± 4.2 15.6± 3.2
Height 9.8± 1.3 3.5± 3.5 4.3± 2.2 7.7± 1.7

Time [s] N/A 3.0± 0.3 2.9± 0.3 12.5± 3.4
Bound N/A N/A N/A 4.6± 0.4

27

Table 18: Wall Following Robot 24 Dataset (5456 examples, 24 features, 4 classes)

Original CART M-CART Ours

Train acc. 1.000± 0.000 0.999± 0.001 0.999± 0.001 0.998± 0.001
Test acc. 0.995± 0.002 0.994± 0.002 0.994± 0.002 0.994± 0.001
Leaves 28.5± 3.3 22.3± 4.8 22.8± 4.5 17.8± 1.5
Height 9.6± 1.0 9.3± 1.3 9.3± 1.3 8.6± 1.0

Time [s] N/A 59.4± 3.0 57.6± 3.1 32.9± 20.5
Bound N/A N/A N/A 0.3± 0.0

Table 19: Wine Dataset (178 examples, 13 features, 3 classes)

Original CART M-CART Ours

Train acc. 1.000± 0.000 0.981± 0.015 0.984± 0.012 0.989± 0.010
Test acc. 0.908± 0.041 0.902± 0.045 0.903± 0.043 0.904± 0.046
Leaves 8.0± 2.3 5.6± 1.6 5.9± 1.8 6.3± 1.2
Height 4.2± 1.2 3.2± 0.6 3.4± 0.8 3.2± 0.4

Time [s] N/A 0.8± 0.1 0.8± 0.1 0.0± 0.0
Bound N/A N/A N/A 2.2± 0.6

Table 20: Yeast Dataset (1484 examples, 8 features, 10 classes)

Original CART M-CART Ours

Train acc. 0.470± 0.007 0.370± 0.057 0.386± 0.058 0.449± 0.008
Test acc. 0.429± 0.019 0.368± 0.059 0.384± 0.058 0.442± 0.019
Leaves 40.0± 0.0 2.0± 1.1 2.7± 2.0 6.2± 1.3
Height 14.2± 2.0 1.0± 1.1 1.6± 1.7 4.1± 0.9

Time [s] N/A 8.5± 0.4 8.4± 0.3 418.9± 74.5
Bound N/A N/A N/A 22.3± 0.3

28

	Proof of Theorem 7
	Proof of part 1 of Theorem 7
	Proof of part 2 of Theorem 7
	Proof of part 3 of Theorem 7
	Proof of part 4 of Theorem 7

	Proof of Theorem 9
	Formalizing decision trees as partitioning machines
	Proof of the theore

	Proof of Corollary 10
	Algorithms to upper bound the VC dimension of decision tree classes
	Supplementary materials about the experiments
	The pruning algorithm
	More statistics about model performances

