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Abstract

Weakly-supervised vision-language grounding aims to localize a target moment
in a video or a specific region in an image according to the given sentence query,
where only video-level or image-level sentence annotations are provided during
training. Most existing approaches employ the MIL-based or reconstruction-based
paradigms for the WSVLG task, but the former heavily depends on the quality
of randomly-selected negative samples and the latter cannot directly optimize the
visual-textual alignment score. In this paper, we propose a novel Counterfactual
Contrastive Learning (CCL) to develop sufficient contrastive training between coun-
terfactual positive and negative results, which are based on robust and destructive
counterfactual transformations. Concretely, we design three counterfactual trans-
formation strategies from the feature-, interaction- and relation-level, where the
feature-level method damages the visual features of selected proposals, interaction-
level approach confuses the vision-language interaction and relation-level strategy
destroys the context clues in proposal relationships. Extensive experiments on five
vision-language grounding datasets verify the effectiveness of our CCL paradigm.

1 Introduction

Vision-language grounding is a fundamental and crucial problem in multi-modal understanding.
Video grounding [14, 17] aims to identify the temporal boundaries of the target moment according to
the given description. And image grounding [20, 28, 46] localizes a specific region described by a
referring expression. Recently, to avoid expensive manual annotations, researchers begin to explore
Weakly-Supervised Vision-Language Grounding (WSVLG), which only needs the video-sentence
or image-sentence pairs during training. Most existing approaches [33, 26, 11, 29, 15, 23, 8, 37]
employ the MIL-based or reconstruction-based paradigm to train weakly-supervised grounding
networks, but they both have some drawbacks. The MIL-based methods [11, 29, 15, 8] often define
the original vision-language pairs as positive samples, construct the unmatched vision-language pairs
as negative samples, and directly learn the latent visual-textual alignment by an inter-sample loss.
However, these approaches heavily depend on the quality of randomly-selected negative samples,
which are often easy to distinguish and cannot provide strong supervision signals. On the other hand,
reconstruction-based methods [33, 26, 23, 37] attempt to reconstruct the sentence query from visual
contents during training and utilize intermediate results, such as attention weights, to localize the
target proposal (i.e., region or moment) during inference. But these methods cannot directly optimize
the visual-textual alignment scores which are applied for inference. Considering the proposals with
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Image Grounding Video Grounding

Query: The	buffalo	standing	between	
two	other	buffalo.

Query: The	woman	then	dances	all	around	the	room	in	her	ballet	shoes, showing	off	
jumps	and	spins	she	can	do.

Figure 1: Examples of image grounding and video grounding.

higher weights are not necessarily more relevant to the sentence query [21], the indirect optimization
may restrict further performance improvement.

Recently, contrastive learning has greatly promoted unsupervised pretraining of visual representa-
tions [16, 7], which develops contrastive training between positive and negative samples to learn
expressive visual features. In this paper, we propose a novel Counterfactual Contrastive Learn-
ing (CCL) paradigm for the WSVLG task, which constructs fine-grained supervision signals from
counterfactual results to directly optimize the visual-textual alignment. Specifically, we first em-
ploy a MIL-based pre-trained grounding network to estimate the given vision-language pairs to
produce original results. By the gradient-based selection method, we then build a critical proposal
set and an inessential proposal set. Next, we design Robust Counterfactual Transformations (RCT)
based on the inessential set and devise Destructive Counterfactual Transformations (DCT) according
to the critical set. After it, we apply the grounding network with constructed RCT and DCT to
generate counterfactual results of the vision-language pairs, including positive and negative results
corresponding to RCT and DCT, respectively. Finally, we develop a ranking loss to focus on the
score-based difference between positive and negative results, and further devise the consistency
loss to consider the distribution-based discrepancy between them. To make the contrastive training
effective, the network with DCT needs to generate plausible negative results, where crucial visual
contents corresponding to the sentence query are destroyed while unnecessary contents are retained.
On the contrary, the network with RCT should damage visual contents of inessential proposals and
produce robust positive results. Thus, we design the counterfactual transformations from three levels:
(1) the feature-level strategy damages the features (i.e. endogenous clues) of selected proposals
by the memory-based replacement; (2) the interaction-level strategy confuses the vision-language
interaction by destroying the multi-modal fusion; and (3) the relation-level strategy perturbs the
context relations (i.e. exogenous clues) of chosen proposals by counterfactual relation construction.
The three strategies are applied to the intermediate process of network inference rather than the raw
inputs, and produce ambiguous results for sufficient contrastive learning.

The main contributions of this paper are summarized as follows:

• We propose a novel counterfactual contrastive learning for WSVLG, which develops suffi-
cient contrastive training between counterfactual positive and negative results.

• We design the feature-level, interaction-level and relation-level strategies for counterfactual
transformations, which are applied to the intermediate process of network inference.

• Our CCL not only focuses on the score-based difference between the positive and negative
results but also considers the distribution-based discrepancy between them.

• We conduct extensive experiments on five large-scale vision-language grounding datasets to
verify the effectiveness of our proposed CCL paradigm.

2 Related Work

Image Grounding. Image grounding aims to localize the object region corresponding to the given
referring expression. Early supervised approaches [20, 28, 47, 30, 48] directly learn the latent
visual-textual alignment. And further works explore the language expression decomposition [46, 19],
co-attention interaction [12, 55] and relation construction [44, 43]. Besides, Liu et al. [27] introduce
the adversarial erasing approaches [36, 40] into this field, which detect the crucial contents by the
Grad-CAM method [35] and hide these contents to make the network further focus on other relevant
contents. Under the weakly-supervised setting, researchers build the supervision signals by the
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reconstruction-based paradigm [33, 4, 54, 26] and MIL-based paradigm [51, 54, 11]. Rohrbach et
al. [33] learn the intermediate attention weights to localize the region by language reconstruction, and
Chen et al. [4] design knowledge-aided consistency in both visual and language modalities. Further,
Liu et al. [26] devise the collaborative training of language reconstruction and attribute classification.
From the MIL-based view, Zhang et al. [51] propose a variational Bayesian method to explore the
context modeling and Datta et al. [11] build caption-conditioned image encoding to infer the latent
region-phrase correspondences.

Video Grounding. Video grounding tries to determine the temporal boundaries of the video moment
corresponding to the given sentence. Existing supervised methods can be categorized into the
top-down and bottom-up frameworks. The top-down approaches pre-define a series of moment
proposals and select the target one by multi-modal estimation, including explicit proposals by sliding
windows [14, 17, 24, 25] and implicit proposals by multi-granularity anchors after visual-textual
interaction [2, 50, 53, 42, 52, 49]. And the bottom-up framework [3, 5, 41] does not pre-define
moment proposals and directly predict the probabilities of temporal boundaries across frames. Under
the weakly-supervised setting, the MIL-based methods [29, 15, 8] learn the visual-textual alignment
by the inter-sample loss. Among them, Mithun et al. [29] utilize text-guided attention to learn the
latent alignment between frames and texts. Gao et al. [15] apply an alignment module to learn the
visual-textual consistency and devise a detection module to rank moment proposals. And Chen et
al. [8] develop a coarse-to-fine manner to detect the accurate moment. Under the reconstruction-based
paradigm, Lin et al. [23] rank candidate moment proposals by a language reconstruction reward. And
Song et al. [37] further leverage attentional re-construction to rank the proposals.

3 Counterfactual Contrastive Learning

3.1 The Formulation of Weakly-Supervised Grounding Networks under CCL

Given the sentence query Q and the instance C (i.e. video V or image I), we aim to train a network
GNet(C,Q) to detect the most relevant proposal p without any (p,Q) alignment annotations during
training, where a proposal means a moment from the video or a region from the image. To illustrate
the CCL paradigm clearly, we first formulate the weakly-supervised grounding network GNet(C,Q)
under CCL. Specifically, we decompose GNet(C,Q) into three important modules:

• Encoder Module EM(·): It learns the sentence feature q and word features S = {sn}Nn=1
from the query Q, where N is the word number. It also extracts T proposal features
H = {ht}Tt=1 from the instance C, i.e. moment or region features.

• Interaction Module IM(·): It develops the vision-language interaction and output multi-
modal proposal features L = {lt}Tt=1. The interaction methods include feature fusion [52],
attention-based aggregation [43] and so on.

• Relation Module RM(·): It builds relation reasoning between proposals and outputs the
features P = {pt}Tt=1 and corresponding proposal scores K = {kt}Tt=1. Finally, we can
obtain the alignment score Agg(K) for the query-instance sample, where Agg(·) is an
aggregation function based on proposal scores, e.g., averaging the proposal scores, selecting
the maximum of these scores or averaging the top-n scores.

3.2 The CCL Architecture

In this section, we introduce our CCL paradigm in detail. As shown in Figure 2, we first use the
network GNet(C,Q) to estimate the given query-instance sample. We then apply the gradient-based
method to select the critical and inessential proposals. We then construct robust counterfactual
transformations (RCT) based on the inessential proposal set and design destructive counterfactual
transformations (DCT) according to the critical proposal set. After it, the network GNet(C,Q) with
RCT and DCT generates counterfactual results for the query-instance sample, including positive and
negative results corresponding to RCT and DCT, respectively. Finally, we can develop sufficient
counterfactual contrastive training with ranking and consistency losses.

Concretely, we first pre-train GNet(C,Q) with a conventional MIL-based paradigm. For a sample
(C,Q), we introduce the randomly-selected instance C and query Q to construct the negative samples
(C,Q) and (C,Q). We then calculate the alignment score Agg(K) for (C,Q), and compute Agg(Kc)
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Figure 2: The framework of counterfactual contrastive learning for WSVLG.

and Agg(Kq) for (C,Q) and (C,Q). The MIL-based triplet loss Ltri is given by
Ltri = max(0, ∆mil −Agg(K) + Agg(Kc)) + max(0, ∆mil −Agg(K) + Agg(Kq)), (1)

where ∆mil is a margin value which is set to 1.0. Besides it, we also add a diversity loss [9] Ldiv to
adjust the score distribution and stabilize the weakly-supervised training, give by

k̃t =
exp(kt)∑T
t=1 exp(kt)

, Ldiv = −
T∑

t=1

k̃tlog(k̃t), Lmil = Ltri + βLdiv, (2)

where Lmil is the pre-trained loss and β is set to 0.01 to balance two losses.

After MIL-based pretraining, we develop our CCL paradigm to train GNet(C,Q). The first step is to
build the critical proposal set P+ and inessential proposal set P−. Specifically, we apply GNet(C,Q)
to generate the proposal features H, proposal scores K and alignment score Agg(K) for (C,Q). A
simple method can directly select the proposals with higher scores as the critical proposals. But we
further employ the gradient-based selection method and apply the modified Grad-CAM [35] to derive
the contribution of t-th proposal features, given by

Contribution(ht) = (∇htAgg(K))T1, (3)

where ht is the t-th proposal features and 1 is an all-ones vector. Based on the contribution of each
proposal, we can select M most important proposals as P+. We then randomly choose M proposals
from the resting as P−. With P+/P−, we can construct robust and destructive counterfactual
transformations RCT/DCT and apply them to the intermediate process of network inference, which is
introduced in the next section. In brief, we apply GNet(C,Q) with DCT to generate proposal scores
Kdj = {kdjt }Tt=1 as a counterfactual negative result, where we construct J destructive transformations
and Kdj is the j-th negative result. Likewise, we generate J counterfactual positive results by
GNet(C,Q) with RCT, where Krj = {krjt }Tt=1 is the j-th positive result.

Based on the proposal scores K, {Krj}Jj=1 and {Kdj}Jj=1 of the original, positive and negative
results, we can devise the contrastive loss to learn the proposal-language alignment by the score-based
and distribution-based difference. On the one hand, the positive results should have higher alignment
score than negative results, thus we develop a margin-based ranking loss by

Lrank = max(0, ∆rank −
1

J

J∑
j=1

Agg(Krj) +
1

J

J∑
j=1

Agg(Kdj)), (4)

where ∆rank is a margin value which is set to 0.6. On the other hand, we consider the distribution-
based consistency loss to maintain the consistency of the score distributions on the original and
positive results, and pull the distributions of original and negative results. Concretely, we conduct the
softmax with a low temperature on score distributions and then develop the consistency loss by

k
∗
t =

exp(k∗t /τ)∑T
t=1 exp(k∗t /τ)

, Lcons =
1

J

J∑
j=1

(−
T∑

t=1

ktlog(k
rj
t ) +

T∑
t=1

ktlog(k
dj
t )), (5)

where τ is the softmax temperature, which is set to 0.5 and produces a sharper score distribution over
proposals [18]. Here we regard the original normalized results {kt}Tt=1 as the given pseudo labels.

Training. We finally combine the two losses to form the counterfactual contrastive loss by

Lccl = Lrank + λLcons, (6)
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where we set λ to 0.2 for the balance of two losses. During training, we update the network parameters
Θ at every step, so the network GNet(C,Q) for critical/inessential proposal selection also has the
latest parameters instead of retaining the pre-trained parameters.

Inference. Our CCL paradigm is only applied to the training process, thus it will not affect the speed
of inference. During inference, we can directly input the given sample into the network GNet(C,Q)
and select the proposal p with the highest proposal score kt as the grounding result.

3.3 Counterfactual Transformation

In this section, we introduce three counterfactual transformation strategies that applied to the inter-
mediate process of network inference. Note that because each strategy will affect the subsequent
inference, three strategies cannot be used together but can only be applied individually.

Feature-Level Strategy (FLS). Given the set P+ with M critical proposal features {ht}Mt=1, we
first design a feature-level DCT to generate counterfactual negative results. Concretely, we damage
the features of critical proposals by memory-based replacement. That is, we replace critical proposal
features from EM(·) and input them to IM(·). A simple method is to replace the features with the
all-zero mask vector, but it is easy to distinguish. Further, we maintain a proposal memory bank
with B untrainable vectors {mp

b}Bb=1 that have the same dimensionality with ht. After MIL-based
pre-training, we initialize these vectors by the proposal features from randomly-selected different
samples. Next, for each feature ht from P+, we calculate the L2-normalized dot-product with
{mp

b}Bb=1 and conduct the softmax over these scores as a probability distribution. We next sample a
memory vector mp

i according to this distribution and replace ht. After the replacement in a mini-
batch, we update these selected memory vectors by mp

i ← αmp
i + (1− α) 1

|Si|
∑

t∈Si ht, where Si
is the set of proposals that are replaced with mp

i in the mini-batch and α is the hyper-parameter to
control the momentum update. Likewise, the network GNet(C,Q) with RCT replaces the inessential
features in P− with the selected memory vectors to produce counterfactual positive results.

Interaction-Level Strategy (ILS). The interaction-level strategy is applied to the multi-modal
interaction unit MMI(ht,at) in EM(·), where at is language feature corresponding to the t-th
proposal feature ht. Existing grounding approaches [52, 8] often regard the sentence feature q as
at. Further, some works [44, 43, 53, 49] apply an attention-based aggregation to dynamically extract
language feature at for each proposal from word features {sn}Nn=1. Similar to FLS, we apply a
memory-based replacement method. Specifically, we maintain another query memory bank with B
untrainable vectors {mq

b}Bb=1, which are initialized by the language features from random samples.
For the proposal ht in P+, GNet(C,Q) with DCT replaces the language features at by one selected
mq

i and generate the counterfactual negative result. The selection and update method is the same as
in FLS. On the contrary, we destroy the language features corresponding to the proposal in P− while
producing counterfactual positive results.

Relation-Level Strategy (RLS). Recent grounding approaches [44, 43, 52, 50] often contain a
relation module to develop context relations between proposals and we design the RLS to perturb
the relation construction. Concretely, we first define the relation edge between proposals as eij =
(i, j, tpij , wij), which represents an edge from the proposal j to the proposal i with the type tpij and
weight wij . This definition of edges can be widely applied to the directed graph [44], undirected
graph [5], pre-built static graph with multi-type edges [43] and learning-based dynamic graph with
edge weights [50]. For negative result generation, GNet(C,Q) with DCT transforms crucial edges
{(i, j, tpij , wij) | i ∈ P+} related to proposals in P+ as following rules: 20% probability of no
change, 60% probability of replacing the j with another randomly proposal and 20% probability of
changing the edge type tpij to another randomly type. If the graph only has one-type edges, we set
the probability of replacing j to 80%. Note that if an edge eij is undirected, the transformation of eij
will also affect the reversed eji. Thus, during positive result generation, we only transform the edges
{(i, j, tpij , wij) | i ∈ P−and j /∈ P+} if the relation graph is undirected.

3.4 Concrete Grounding Networks Under CCL

In this section, we introduce concrete grounding networks to verify our CCL paradigm, where we
adopt the simple and mature components rather than complex designs as in [44, 43, 50, 5]. We briefly
describe these components and the details are introduced in Section 1 of the supplementary material.
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Video Grounding Network (VGN). In EM(·), we apply a Bi-GRU [10] to model the pre-extracted
visual features and obtain contextual features {fi}Fi=1. We define an anchor with the boundaries (s, e)
as a moment proposal, and its proposal feature is given by ht = MaxPooling({fi}ei=s). We then learn
the word features {sn}Nn=1 by another Bi-GRU. In IM(·), we employ an attention method [3, 49] to
aggregate word features for each proposal, and use the gate-based fusion [53] to generate multi-modal
features {lt}Tt=1. In RM(·), we define an undirected static graph G where an edge is built between
two proposals if their temporal IoU (i.e. Intersection-Over-Union) is larger than 0.3. Next, we apply
the two-layer GAT [39] to capture proposal-proposal relationships and produce the proposal scores
{kt}Tt=1 by a linear layer. Finally, we select a top-n aggregation function Agg(·) to compute the
alignment score by Agg({kt}Tt=1) = 1

|Stop|
∑

t∈Stop kt, where Stop is the set of top-n scores.

Image Grounding Network (IGN). In EM(·), we use the pre-trained Faster R-CNN [32] to extract
visual features ht and spatial features hs

t = [xst , y
s
t , w

s
t , h

s
t ] for each proposal, where (xst , y

s
t ) are

the normalized center coordinates of the proposal and (ws
t , h

s
t ) are the normalized width and height.

Likewise, we apply a Bi-GRU to learn the word features {sn}Nn=1. In IM(·), we adopt the proposal-
word attention [44, 43] to learn proposal-aware language feature ct for each ht, and simply fuse them
by lt = Wl[ht; ct] + bl. In RM(·), we define a directed spatial graph [45, 44, 43] with multi-type
edges, where tpij is based on the spatial features hs

i and hs
j . The details are introduced in Section 1.2

of the supplementary material. Next, we apply a GCN with edge-wise gates [22, 45, 43] to model
the proposal relations and learn the features {xt}Tt=1. Finally, we fuse them with spatial features
by pt = [xt;W

phs
t ] and calculate the proposal scores {kt}Tt=1 by a linear layer with the sigmoid

activation. The aggregation function Agg(·) is consistent with VGN.

4 Experiments

4.1 Datasets and Evaluation Metrics

We conduct experiments on two large-scale video grounding datasets ActivityCaption [1] and
Charades-STA [14], and three large-scale image grounding datasets RefCOCO [47], RefCOCO+ [47]
and RefCOCOg [28]. The dataset details are introduced in Section 2 of the supplementary material.

For a fair comparison, we follow previous works [14, 17] to employ the R@n,IoU=m as the evaluation
metrics for video grounding. Concretely, we first compute the IoU between the predicted moments
and ground truth, and R@n,IoU=m is the percentage of at least one of the top-n moments having the
IoU > m. As for image grounding, we calculate the Accuracy as the metric. If the IoU between the
selected region and ground truth is larger than 0.5, we regard it as a right grounding result.

4.2 Implementation Details

Following previous works [14, 53, 26], we extract C3D [38] features for videos in ActivityCaption and
Charades-STA, where the maximum length of feature sequences is 256 and longer sequences are down-
sampled. We pre-define moment proposals by sliding windows with widths [16,32,64,96,128,160]
and the stride is 1/4 of the window width, where we generate about 140 proposals for each video. For
image grounding, we extract 2,048-d visual features and 4-d spatial features for objects by ResNet-
101 based Faster R-CNN [32], where we obtain 36 proposals for each image. As for sentences, we
extract the 300-d embedding for each word by the pre-trained Glove embedding [31]. As for the
hyper-parameters in CCL, we set the proposal number M in P+/P− to 32 for video grounding and
12 for image grounding. In FLS and ILS, we set the number B of memory vectors to 100, where the
coefficient α of the momentum update is set to 0.9. To avoid time-consuming training, the number
J of RCT/DCT is set to 3, where each type of transformation strategies is only applied once and
produces a counterfactual result. That is, there are 3 counterfactual positive results corresponding to
the robust FLS, ILS and RLS, and 3 negative results corresponding to the destructive FLS, ILS and
RLS. During MIL-based pretraining, we use an Adam optimizer [13] with the initial learning rate
0.001. We then use another Adam optimizer with the initial learning rate 0.0005 for the CCL training.

4.3 Performance Evaluation on Video Grounding

Considering videos contain consecutive and intricate events, video grounding is relatively more
difficult than image grounding. So we conduct more experiments on video grounding.
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Table 1: Performance comparisons for video grounding on Charades-STA and ActivityCaption. The best results are bold
and the results with underlines are the best in baselines. †: MIL-based methods; *: reconstruction-based methods

Method Training
Charades-STA ActivityCaption

R@1 R@1 R@5 R@5 R@1 R@1 R@5 R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

CTRL [14] FS 23.63 8.89 58.92 29.52 - - - -
TGN [2] FS - - - - 43.81 27.93 54.56 44.20

2D-TAN [52] FS 39.81 23.25 79.33 52.15 59.45 44.51 85.53 77.13

WSLLN† [15] WS - - - - 42.80 22.70 - -
TGA† [29] WS 19.94 8.84 65.52 33.51 - - - -
CTF† [8] WS 27.30 12.90 - - 44.30 23.60 - -

SCN∗ [23] WS 23.58 9.97 71.80 38.87 47.23 29.22 71.45 55.69
MARN∗ [37] WS 31.94 14.81 70.00 37.40 47.01 29.95 72.02 57.49

VGN† WS 30.77 12.23 70.58 37.64 46.17 28.79 71.23 55.13
VGN+CCL WS 33.21 15.68 73.50 41.87 50.12 31.07 77.36 61.29

Table 2: Ablation results for video grounding about the counterfactual transformations and contrastive loss.

Setting
Charades-STA ActivityCaption

R@1 R@1 R@5 R@5 R@1 R@1 R@5 R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

VGN (Base) 30.77 12.23 70.58 37.64 46.17 28.79 71.23 55.13
VGN+CCL (Full) 33.21 15.68 73.50 41.87 50.12 31.07 77.36 61.29

VGN+FLS 32.06 14.66 72.28 39.65 50.53 30.78 75.66 59.35
VGN+ILS 31.60 13.78 71.76 39.15 47.68 29.32 74.37 58.16
VGN+RLS 31.28 13.46 71.94 38.70 48.42 29.45 73.38 57.38

w/o. rank loss 31.16 13.22 71.56 38.29 47.19 29.83 73.14 57.20
w/o. cons loss 32.55 14.71 72.49 40.37 48.87 29.28 76.09 59.27

Baseline. We compare our method with supervised and weakly-supervised methods. Supervised ap-
proaches include the early method CTRL [14], TGN with attention-based interaction [2] and 2D-TAN
with proposal relation modeling [52]. Weakly-supervised works contain the MIL-based approaches
WSLLN [15], TGA [29], CTF [8] and reconstruction-based methods SCN [23], MARN [37].

Evaluation Results. Table 1 reports the performance comparison between our method and existing
baselines on Charades-STA and ActivityCaption datasets, where VGN is the basic model with only
MIL-based training and VGN+CCL is under our CCL paradigm. Overall, VGN+CCL achieves
the best weakly-supervised performance on all criteria of two datasets, while VGN has a close
performance to the state-of-the-art baseline MARN. This fact suggests our CCL paradigm can
develop sufficient confrontment between counterfactual positive and negative results, and significantly
improve the weakly-supervised accuracy. More specifically, reconstruction-based methods SCN and
MARN outperform MIL-based approaches WSLLN, TGA, CTF and VGN, which indicates the MIL-
based training cannot construct strong supervision signals from randomly-selected negative samples.
But our CCL paradigm provides fine-grained contrastive training by counterfactual transformations
in the intermediate process of network inference. Moreover, VGN+CCL outperforms the supervised
approaches CTRL and TGN and its performance is further close to the state-of-the-art supervised
method 2D-TAN. This demonstrates our CCL framework can reduce the gap between supervised and
weakly-supervised video grounding methods.
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Figure 3: Effect of the number M in P+/P−.

Ablation Study. We next perform ablation
studies on three counterfactual transformations
and the contrastive loss. Concretely, we first
train VGN using the CCL paradigm with only
one transformation strategy and produce three
ablation model VGN+FLS, VGN+ILS and
VGN+RLS. For a fair comparison, we keep the
number J of positive and negative transforma-
tions unchanged, that is, repeat J times using
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Table 4: Performance comparisons and ablation results for image grounding on RefCOCO, RefCOCO+
and RefCOCOg. The best results are bold and the results with underlines are the best in baselines.

Method Settings RefCOCO RefCOCO+ RefCOCOg

Val TestA TestB Val TestA TestB Val

VC w/o. reg - 17.14 22.30 - 19.74 24.05 28.14
VC - - 20.91 21.77 - 25.79 25.54 33.66
VC w/o. α - 32.68 27.22 - 34.68 28.10 29.65

ARN Llan + Ladp 31.58 35.50 28.32 31.73 34.23 29.35 32.60
ARN Llan + Ladp + Latt 32.17 35.35 30.28 32.78 34.35 32.13 33.09

IGN Base 31.05 34.39 28.16 31.13 34.44 29.59 32.17
IGN CCL 34.78 37.64 32.59 34.29 36.91 33.56 34.92
IGN FLS 33.15 36.23 31.07 32.90 35.28 32.42 33.88
IGN ILS 32.28 35.27 30.50 32.13 35.74 31.74 33.23
IGN RLS 32.77 35.54 29.56 31.99 34.83 31.28 32.86

IGN w/o. rank loss 32.54 35.62 30.46 32.34 35.10 31.64 33.74
IGN w/o. cons loss 33.17 36.29 31.18 33.28 35.63 32.35 33.44

one strategy. As shown in Table 2, VGN+CCL outperforms three ablation models on almost all
metrics of two datasets, but three ablation models achieve the obvious performance improvement than
the basic VGN, which illustrates each counterfactual transformation is helpful for weakly-supervised
training and the collaboration of three strategies can further enhance the contrastive learning. Next,
we discard one loss from the contrastive loss at a time to generate the ablation models VGN (w/o.
rank loss) and VGN (w/o. cons loss). From the results in Table 2, two ablation models have perfor-
mance degradation than the full model, indicating each loss is necessary during CCL training. And
VGN (w/o. rank loss) achieves the worse accuracy than VGN (w/o. cons loss), demonstrating the
importance of the ranking loss.

Hyper-Parameters Analysis. We then explore the effect of two crucial hyper-parameter: the
proposal number M in P+/P− and the number J of positive/negative transformations. We first
set M to [8, 16, 32, 48, 64] and display the results in Figure 3. We note the model has the best
performance on both two datasets while M is set to 32. Because the counterfactual transformation
cannot sufficiently destroy crucial grounding clues when M is too small. And the negative results
may be easy to distinguish and lead to insufficient contrastive learning while M is too large.

Table 3: Effect of the number J of positive/negative coun-
terfactual transformations.

Number
Charades-STA ActivityCaption

R@1 R@1 R@1 R@1
IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5

3 33.21 15.68 50.12 31.07
6 33.65 15.52 49.32 31.16

Next, in order to verify whether the larger J
can improve model performance, we construct 6
positive/negative counterfactual transformations
during CCL training and report the results in
Table 3. We can find the model has close perfor-
mance on both datasets when J is set to 3 and
6, suggesting our CCL paradigm is insensitive
to the transformation number.

4.4 Performance Evaluation on Image Grounding

Baseline. We compare our method with the MIL-based method VC [51] and reconstruction-based
approach ARN [26]. Considering the weakly-supervised setting, we use the detected object features
from the pre-trained Faster R-CNN rather than the features from ground truth box annotations.

Evaluation Results. Table 4 show the evaluation results of our method and existing baselines
on three large-scale datasets. The fundamental results are similar to video grounding, that is, the
performance of the basic IGN is slightly worse than the existing state-of-the-art method ARN and
our CCL paradigm can significantly boost the model accuracy.

Ablation Study. We also conduct ablation studies for image grounding about the counterfactual
transformations and contrastive loss. From Table 4, we can find the IGN models with FLS, ILS
and RLS achieve better performance than the basic one, especially IGN+FLS. This verifies the
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Table 5: Performance comparisons with negative sample mining methods.

Method
Charades-STA ActivityCaption RefCOCO RefCOCO+

R@1 IoU=0.5 R@1 IoU=0.7 R@1 IoU=0.3 R@1 IoU=0.5 TestB TestB

Hard Negative Mining 31.19 13.38 46.92 29.41 28.77 30.72
Proposal Masking 31.54 14.15 47.29 29.33 30.22 31.95

CCL 33.21 15.68 50.12 31.07 32.59 33.56

Ground Truth

Query: Snowboarder	in	dark	green	jacket	holding	a	snowboard.

IGNARN IGN+CCL

(a) Image Grounding

Query:	The	person	immediately	opened	a	window.

GT

SCN

8.00s 15.20s

8.00s 15.78s

6.39 13.40

7.23s 16.33s

VGN

VGN+CCL

(b) Video Grounding

Figure 4: Typical examples of weakly-supervised image grounding and video grounding results.

effectiveness of three counterfactual transformations. And similar to video grounding, IGN+CCL
with hybrid counterfactual strategies still outperforms all ablation models. From ablation results of
the contrastive loss, we observe the performance of IGN (w/o. rank loss) and IGN (w/o. cons loss)
drops around 1%∼2% on each metric, and IGN (w/o. cons loss) outperforms IGN (w/o. rank loss)
on almost all metrics. This fact indicates our CCL training mainly depends on the ranking loss and
the consistency loss can further boost the contrastive learning.

4.5 Performance Comparison with Negative Sample Mining Approaches

Compared with previous MIL-based approaches [11, 29, 15, 8], our CCL paradigm develops sufficient
contrastive training between counterfactual positive and negative results to address the problem that
negative samples in MIL-based methods are often easy to distinguish. However, there are other
approaches [34, 6] to solve the problem from the perspective of negative sample mining. To further
validate the effectiveness of our CCL paradigm, we compare it with two negative sample mining
approaches. Concretely, the Hard Negative Mining method [34] selects those unmatched vision-
language pairs with high alignment scores during model inference as the negative samples for the
MIL-based training, which spends much time on negative sample selection. And the Proposal
Masking method [6] synthesizes hard negative samples by directly masking important proposals and
then trains the weakly-supervised model under the MIL-based paradigm. As shown in Table 5, our
CCL paradigm achieves better weakly-supervised performance than two stronger baselines from the
perspective of negative sample mining. This fact suggests our proposed counterfactual transformations
and contrastive training can provide more effective supervision signals for the WSVLG task.

4.6 Qualitative Analysis

As shown in Figure 4, we display two typical examples of weakly-supervised grounding results
to qualitatively verify the effectiveness of our CCL paradigm. By intuitive comparison, we can
find the CCL paradigm can improve the grounding accuracy of the basic IGN and VGN model
by distinguishing the target one from plausible proposals, which verifies the effectiveness of our
contrastive training between counterfactual results. More examples are shown in Section 3 of the
supplementary material.

5 Conclusions

In this paper, we propose a novel CCL paradigm for weakly-supervised vision-language grounding.
We design the feature-, interaction- and relation-level counterfactual transformations and develop
sufficient contrastive training between counterfactual positive and negative results. Extensive experi-
ments on five grounding datasets verify the effectiveness of our CCL paradigm. For future work, we
will further explore weakly-supervised contrastive learning and improve training efficiency.
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Broader Impact

This paper introduces a novel CCL paradigm for weakly-supervised vision-language grounding and
improves grounding performance. Vision-language grounding is a crucial technique in multi-modal
understanding and can be applied to the human-computer interaction field. So this research can
promote the development of a multi-modal interaction system and facilitate people’s daily lives.
And the exploration of weakly-supervised training in this paper can save the labor cost for data
annotations. The failure of this technique may lead to an inaccurate multi-modal understanding and
cause the mistake of the system based on the grounding results. Moreover, we validate our method
on large-scale public vision-language datasets and do not leverage biases in the data.
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