Appendix: Inverse Learning of Symmetries

1 Model

1.1 TImplementation

In this section, we describe how to implement the mutual information terms of our model in practice.
To do so, we describe the encoder term I(Z; X), which is calculated as the Kullback-Leibler
divergence (D 1) between py(z|x) and p(z). We implement py(z|z) as a Gaussian distribution with
parameters p and o that are learned by a neural network with parameters ¢. Subsequently, we define
the second part of the KL divergence p(z) to be a simple Gaussian prior A/(0, 1). Due to the fact that
we have defined both parts as Gaussian distributions, it is thus possible to calculate the KL divergence
analytically.

I(Z; X) = Ep(a) D1 (po(2]7) [|p(2)) (1)

With the first mutual information term (Eq. [T, we learn a compressed representation Z of the input
X. In a next step, we partition Z into two latent spaces Z, and Z;. Here, we assume that Z consists
of k latent dimensions where Z contains h = 0. . . d dimensions of Z where d < k. Z; thus includes
the remaining m = d + 1... k& dimensions. However upon this point, we have only learned the
parameters of the Gaussian distribution. In order to sample from the latent space Z, we make use
of the reparametrisation trick introduced in [5 [13]. To do so, a sample from Z can be drawn by
reformulating the Gaussian distribution. Therefore, we apply the following formulation: ;1 4+ o ® €
where € is drawn from N'(0, 1) and 1 and o are the learned parameters.

In the last step, we describe how the decoders for X, Y have been implemented by our model. The
decoders employ the following form:

I(Zy, Z1; X) = EpyEconvo,1)

Z log pr; (2|2 = p(2) + diag(ok (), ©e),

I(ZU Y) = ]Ep(m,y)EeNN(O,I)
> logpe, (yilz1 = pa(x) + diag(on(z)), Oe),
J

I(Z0;Y) = Ep(e ) Eennr(o,1)
> logps(y;lz0 = pa(z) + diag(oa()) @ e),
J

where j denotes the j data sample. The distributions p. (|z), pg(y|z1) and ps (y|zo) are implemented
as neural networks with parameters ¢, 7, 6. In contrast to the encoder, these distributions may be
arbitrarily chosen as we do not make any assumption about their form.
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1.2 Training Procedure

Our learning procedure is described in Algorithm [I] For every epoch, we sample ¢ minibatches,
where the number of 7 is determined by the batchsize. In the first part of our training algorithm (see
Minimisation Step), we try to minimise the mutual information between Zj and Y. Therefore, we
first encode X in our latent Z (line 6). Subsequently, we split Z in Zy and Z;. After, we decode Z to
X and 71, Zp to Y in lines 6-10, respectively. Consequently, we update the parameters in line 12
by employing the loss function in Eq. 6 (main paper). Having fixed the parameters § we update the
latent representation Z; such that it encodes minimal mutual information about Y.

The second step (see Maximisation Step) denotes the adversarial part of our model. Again we encode
X into Z and partition the space to Zj and Z;. In contrast to the minimisation step, we try to predict
Y from Z; by updating parameters § while fixing the remaining neural network parameters ¢, # and
7 (see Eq. 7 in main paper). In order to relax the Gaussian assumption, we extend our model by two
additional neural networks A and h~! and add their parameters to the existing parameters 4 in line 20.

As a last step, we increase the compression parameter A by a predefined factor [ (line 24) after every
epoch. Finally, we can train the described adversarial algorithm by any gradient descent method until
convergence.

Algorithm 1 Symmetry-Transformation Information Bottleneck

Input: input z, target y
1: for each epoch do

2:  sample ¢ minibatches of x and y
3:  for each minibatch i do
4:
5: Minimisation Step
6 encode x; into py(2; | ;)
7 split z; in 2y and 2;
8: decode zg and z; to obtain p,(x; | 20, 21)
9: decode z; to obtain pg(y; | z1)
10 decode 2z to obtain p;s(y; | z0)
11:
12: update ¢, 0, T by taking a gradient step
13:
14: Maximisation Step
15: encode x; into py(2; | ;)
16: split z; in 2y and 2
17: decode zq to obtain ps(y; | zo)
18:
19: Relaxing Gaussian Assumption
20: decode y from hé_l (hs(y))
21:
22: update § by taking a gradient step
23:  end for
24:  increase A by factor [
25: end for

1.3 Other Methods for MI Estimation

Quantifying mutual information is essential in information bottleneck methods. The naive approach
requires estimating the joint distribution of the variables. One way to overcome this requirement
are non-parametric k-nearest-neighbours-based estimators [6} [12], but they require an exponential
number of samples when the true mutual information is large [2]. A number of methods estimating
lower bounds of mutual information exist [1} [11]. Such bounds, however, suffer from inherent
statistical limitations [8]]. In this paper, we make use of the analytic form of the Gaussian mutual
information based on the correlation matrix and subsequently relax the Gaussian assumption with
neural networks.



2 Experiments

2.1 Artificial Experiments
2.1.1 Experimental Setup:

STIB For our setup, our encoding network consists of two fully connected layers with 256 neurons
without bias. This is followed by a latent layer with three nodes that models the means of our three
dimensional latent space where the variances are modeled as free parameters. Here, we split Z in a
one-dimensional space Z; and two-dimensional space Zy which contain no information about Y. The
decoder uses two neural networks with fully connected layers with 256 neurons for reconstructing
the input and predicting the target. In addition, we model an adversarial network with two fully
connected layers each with 256 neurons to predict the target from our latent space Zj. Since we use
adversarial training, we define two Adam optimisers [4] with a learning rate of 0.0001 and a batch
size of 60 that optimise our objective on an alternating basis. For better visualisation, we discretise
X and Y into 10 bins to colour-code to show the invariant parts of the data. We set 3 to 1 such that
we have approximately the same weight on the loss terms. To obtain the optimal number of latent
dimension, we used the same procedure as in Additional Experiment 2.

STIB without adversary For the STIB without adversary setup, we use exactly the same configura-
tion as in the STIB setup. The only difference is that we remove the adversarial mutual information
regulariser. Thus, we define only one Adam optimiser with a learning rate of 0.0001 and a batch size
of 60 which optimises our loss function.

VAE This VAE setup uses also the same configuration as STIB. Similar to STIB without adversary,
we skip the mutual information regulariser. In addition, we only define a shared latent space Z to
reconstruct X and Y in contrast to STIB. As an optimiser, we employ Adam with a learning rate of
0.0001 and a batch size of 60.

CVAE For CVAE, we use the same setup for encoder and decoder as in STIB. In contrast, we
model the latent space Z with two dimensions by estimating the parameters 1 and o. We employ a
two-dimensional latent space as we concatenate the one-dimensional part in traditional CVAE fashion.
In order to train our model, we use Adam with a learning rate of 0.0001 and a batch size of 60.

CVIB For the last model, we use the equivalent model as in CVAE. In addition, we employ the
mutual information regulariser which is described in [9]].

2.1.2 Additional Experiment 1:

In the additional experiment, we qualitatively inspect the ability of the latent space to approximately
reconstruct X and Y from our latent representation. The reconstruction of X is depicted in Figure/[T]
and the reconstruction of Y in Figure 2] The color coded lines in the Figures[T] and [2] indicate the
invariant parts in the dataset. Note in our artificial examples the invariances are continuous. However,
we discretised the invariances into 10 colour-coded bins for visualisation proposes. In the first part,
we compare our input X in Fig. with the reconstruction ability of the models, namely STIB
(Fig. [Ib), VAE (Fig. [Ic), STIB without adversary (Fig. [[d), CVAE (Fig. and CVIB (Fig. [Tf).
First, we inspect the ability to reconstruct the input X . From a visual perspective STIB, VAE, STIB
without adversary, CVAE are approximately able to reconstruct the input X. Except CVIB can only
partially reconstruct X. These qualitative support the quantitative findings which we have obtained
in Experiment 2 in the main paper. In this experiment, we investigated the reconstruction of X by
quantitatively evaluating the MAE.

In the second part, we examine the reconstruction capability of Y™ (Fig. [2). Here, we do not compare
to CVAE and CVIB because in these particular models Y is used as an input and not reconstructed by
the model. In comparison to the ground truth (Fig. [2a), STIB in Figure 2b]is able to reconstruct the
backbone of the spiral. We cannot reconstruct the Y in detail, because we draw noisy data points
of Y (for more details see Dataset). In contrast, VAE (see Fig uses three latent dimensions Z
instead of one. Therefore, VAE not only tries to reconstruct the spiral but also tries to learn the noise
of the data. This is clearly indicated by the noisy reconstruction of the Y. Last, we compare to STIB
without adversary in Figure 2d} Similarly to STIB, we are able to reconstruct Y which also confirms
the quantitative findings from Experiment 2 in the main paper.
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Figure 1: The first image denotes the input X (Fig. [la)) whereas the second image (Fig. illustrates
the reconstruction of STIB. Images three (Fig[Ic) and four (Fig. [Id) denotes the reconstruction
results of VAE and STIB without adversary, respectively. In Figure e show the reconstruction of
CVAE and in Figure @ the results of CVIB. For better visualisation, we discretise X into 10 bins to
colour-code to show which part of the data is invariant.
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Figure 2: The first image illustrates the output Y (Fig. . The second image (Fig. , illustrates
the reconstruction results of STIB whereas the third column shows the VAE reconstruction of Y (Fig.
[2c). The last column (Fig. 2d) shows the results for STIB without mutual information regulariser.
We have not included results for CVAE and CVIB because Y is not reconstructed but used as an
additional input. To better showcase which parts of the data is invariant, we discretise Y into 10
colour-coded bins.

2.2 Real Experiment: QM9
2.2.1 Experimental Setup:

STIB As input X we use the SMILES representation of a molecule, which encodes molecular
connectivity in a string based graph and chemical properties as target Y. In doing so, we are
converting the SMILES in a one-hot grammar representation based on the Grammar VAE introduced
by Kusner et al. [7l]. As proposed in Kusner et al. [7], our encoder network consists of three
1D convolutional layers with 12 convolutional filters and a filter length of 3, followed by a 256
dimensional fully connected layer. In addition, we have two decoders that try to reconstruct both
the chemical properties and the SMILES. The SMILES decoder consists of a 36 dimensional fully
connected layer followed by three 256 dimensional Gated Recurrent Unit (GRU) layers. The
properties decoder has four fully connected layers with 56, 256, 128, 2 nodes, respectively which is
similar to [3]]. Last, we define the adversarial network to minimize the mutual information between
Zy and Y with the same configuration as the property decoder. Our model is trained using two Adam
optimisers [4] with an initial learning rate of 0.01 and a batch size of 36. Subsequently, we set our
latent dimension Z to 16 because the reconstruction accuracy saturates (see Fig. 5 main paper). We
split Z to Zy with 14 and Z; with 2 dimensions because we predict two target properties. To speedup
the training procedure, we pretrained the encoder and decoder on approximately 100k molecules
from the QM9 dataset and subsequently fine-tuned the latent representation on the fixed stoichiometry
(C7O2H;jp). We set 3 to 1 such that we have approximately the same weight on the loss terms.

STIB without adversary Here, we use the same configuration as in the STIB setup. However, we
omit the adversary with the mutual information regulariser. As we do not have an adversary, our
model uses only one Adam optimiser with an initial learning rate of 0.01 and a batch size of 36.

VAE In the VAE setup, we employ the equivalent architecture as in STIB without adversary. However,
we do not partition Z into two separate latent spaces. Instead, we reconstruct X and Y from the Z
directly. In this case, we devote Adam with an initial learning rate of 0.01 and a batch size of 36.

CVAE For the CVAE setup, we take the both encoder and decoder architecture of VAE. However, we
do no reconstruct Y but concatenate Y with the latent representation Z in order to reconstruct X.



Thus, our latent space has only a latent dimensionality of 14 instead of 16 in the VAE architecture.
Similar to the models described before, we train CVAE using the Adam optimiser with an initial
learning rate of 0.01 and a batch size of 36.

CVIB For CVIB, we use exactly the same setup as for CVAE. The only difference is that we add the
mutual information regulariser, developed in [9]] to the CVAE loss function.

Additional Experiment 2. We inspect the molecule reconstruction ability of the input X given a
varying number of latent dimensions (Fig. . To do so, we train our model on 95% of our dataset and
subsequently evaluate on the remaining 5%. The model selection is hence performed by inspecting
the reconstruction accuracy to select the optimal number of latent dimensions. In our case, the optimal
model converges at 16 latent dimensions. Reconstructing molecules from lower dimensions is in
general more challenging because there is a large number of molecules with similar bandgap energies
and polarisability. This results in collisions which makes it difficult to resolve the many-to-one
mapping in the latent space. In addition, we calculated the mutual information between Zy and Y
using the Kraskov estimator. It is important to note that our model does not come with a trade-off
between the reconstruction accuracy and being invariant against Y in Zjy. This property is clearly
indicated in Figure 3| (blue line). Here, it can be observed that the mutual information constantly
stays between 0.03 and 0.1 for all numbers of latent dimensions considered.
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Figure 3: Illustration of the model selection process of STIB on the testset defined in Experiment
4. Therefore, the SMILES reconstruction accuracy (green dot) is considered. The x-axis denotes
the number of latent dimensions whereas the left y-axis depicts the reconstruction accuracy of the
molecules. The plot indicates that our reconstruction rate saturates at a level of 99% even when
varying the number of latent dimensions. In addition, we plotted the mutual information (blue cross)
between Zy and Y for all models which is depicted by the right y-axis.

2.3 Real Experiment: Zinc Dataset

Dataset. In the third experiment, we use the 250K drug-like molecules from the ZINC database [3].
In contrast to QM9, this dataset consists of up to 23 heavy-atoms (C, O, N and F), not including
hydrogens and offers a larger variety of molecule structures. The dataset is a randomly picked subset
of the larger ZINC database [[14] which contains over 17 million molecules. Here, every molecule
has calculated drug-specific properties such as synthetic accessibility score(SAS) or the Qualitative
Estimate of Drug-likeness (QED).

2.3.1 Experimental Setup:

STIB As input X we use the SMILES representation of a molecule as in the QM9 experiment. In
contrast to the previous experiment, we are converting the SMILES in a one-hot representation based
on DeepSMILES [10]] instead of the grammar representation by Kusner et al. [7]. DeepSMILES
preprocesses a given SMILES string to a simpler representation which can be easier learned by
recurrent neural networks. For our encoder network, we use one GRU layer with hidden 12 dimensions
followed by two fully connected layers with 1356 and 128 dimensions, respectively. Subsequently,
we set our latent dimension Z to 20 and split it to Zy with 19 and Z; with 1 dimension because we
predict only the drug-likeliness of the molecules. Last, we define the decoder networks. Therefore,
we have a SMILES decoder which consists of a 36 dimensional fully connected layer followed
by three 501 dimensional Gated Recurrent Unit (GRU) layers. In addition, we define a property



decoder which consists of four fully connected layers with 36, 36 and 1 nodes, respectively. The
adversary decoder, which is responsible to minimise the mutual information between Zj and Y has
got three layers with 36, 36 and 1 nodes, respectively. At the end, the model is trained using the
Adam optimizer with an initial learning rate of 0.001 and a batch size of 500. We set 3 to 1 such that
we have approximately the same weight on the loss terms.

STIB without adversary As stated in the two experiments before, we use the same architecture as
in STIB. However, we leave out its adversarial part. Thus, we employ only one Adam optimiser with
an initial learning rate of 0.001 and a batch size of 500.

VAE Here, we make use of the same encoder/decoder architecture as in STIB without adversary.
However, instead of splitting Z into two separate latent spaces Z and Z1, we reconstruct X and Y
from ~Z.

CVAE We employ the the same setup as for the VAE. However, we do predict Y from Z but
concatenate Y with the latent representation Z. For this reason, we set the dimensionality of Z 14
dimensions in contrast to 16 dimensions in the VAE architecture. Again, we use Adam to train our
model with an initial learning rate of 0.01 and a batch size of 36.

CVIB Here, we use the identical setup as for CVAE. The merely distinction is the mutual information
regulariser introduced in [9] which is added to the CVAE loss function.

Additional Experiment 3. In this experiment, we perform an additional quantitative study on Zinc
dataset (Table[I). Here, we also obain competitive reconstruction results in terms of SMILES accuracy
and druglikeliness. For all models, we received a SMILES reconstruction accuracy of 98% for VAE,
98%, for STIB without adversarial training scheme, 98% for CVAE, 94% for CVIB and 98% for STIB.
Furthermore, we investigated the druglikeliness MAE where all models received 0.05. This shows
that our approach receives competitive results in both reconstruction tasks in comparison the baseline.
Last, we estimated the mutual information with a Kraskov estimator between the target-invariant
space Z; and the target Y. The VAE baseline contains 0.80 bits mutual information whereas STIB
without adversary contains 0.24 bits. Moreover, we received a mutual information on 0.28 bits and
0.29 bits for CVAE and CVIB, respectively. That implies that all considered models contain mutual
information in Zy about Y whereas if we employ STIB the mutual information is approximately
eliminated (0.07 bits). These results confirm the findings of Experiment 2 and 5 that only STIB is
able learn symmetry transformations from data while archiving competitive reconstruction results.

Additional Experiment 4. Lastly, we investigate the generative nature and investigate the property
consistency of our model. To do so, we fix three different points in property-latent space Z;. The
points in property-latent spaces represent a druglikeliness of 0.5, 0.7, 0.9, for rows one to three in
Figure fa] respectively. After, we randomly sample points in the invariant latent space Z, which are
subsequently generated to SMILES strings.
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Figure 4: Tllustration of the generative process of our model. Figure 4af shows samples drawn by
our model. The labels represent the predicted druglikeliness properties which were estimated by out
model. Each row in Figure 4al denotes molecules generated with a predefined druglikeliness. We
further estimate the properties of the generated molecules and show the result in Figure [fb] The blue
shaded background is the error confidence interval of our model and the x-axis denotes the MAE of
all samples in the boxplot.

Having generated novel SMILES with potentially identical druglikeliness, we now perform a self-
consistency check. That is, we feed the generated SMILES into our model and predict the properties.



If our model has learned an invariant representation the predicted druglikeliness should be identical
to the fixed druglikeliness within the model error. We summarised the results of the model-consitency
check in Figure #b] Here, we plot the predicted druglikeliness averaged over all generated molecules
from the three reference points using a boxplot. Every boxplot contains between 108 and 193 sampled
molecules. The x-axis denotes the druglikeliness MAE whereas the blue box denotes the model error.
The predicted properties averaged over all generated molecules from the three reference points posses
a MAE between 0.04 and 0.05 which lies within calculated the model error range in Table[I] This
observation is additionally supported by investigating the boxplots. Here, the predominant proportion
of molecules lie within the model error range (blue box). Hence, this experiment demonstrates the
generative capabilities of STIB by generating chemically correct novel molecules within the model’s
error range.

Table 1: Summary of quantitative results for Zinc experiment. Here, we consider VAE, STIB without
regularization, CVAE, CVIB and STIB. The accuracy for SMILES and MAE reconstruction error
for druglikeliness (probability) are computed, as well as the mutual information (bits) between the
invariant space Zy and Y based on a Kraskov estimator (MIg (Z,Y) ). Higher SMILES accuracy and
lower MAE and MI are better. STIB outperforms the other baselines.

ZINC
MODEL SMILES DRUGLIKELINESS MIx(Zo,Y)
VAE 0.98 0.05 0.80
STIB w/0 ADV. 0.98 0.05 0.24
CONDVAE 0.98 - 0.28
CVIB 0.94 - 0.29
STIB 0.98 0.05 0.07
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