A Proof of Prop. 1: SKSD closed form

Our proof will parallel that of Gorham and Mackey [22, Prop. 2] for non-stochastic KSDs. For each $j \in[d]$ and each σ_{i}, we define the coordinate operators

$$
\frac{L}{m}\left(\mathcal{T}_{\sigma_{i}}^{j} f\right)(x) \triangleq\left(\frac{L}{m} \nabla_{x_{j}} \log p_{\sigma_{i}}(x)+\nabla_{x_{j}}\right) f(x)
$$

for $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$. For each $g=\left(g_{1}, \ldots, g_{d}\right) \in \mathcal{G}_{k,\|\cdot\|}$ and $x \in \mathbb{R}^{d}$, our $C^{(1,1)}$ assumption on k and the proof of [47, Cor. 4.36] imply that

$$
\left(\mathcal{T}_{\sigma_{i}} g\right)(x)=\sum_{j=1}^{d}\left(\mathcal{T}_{\sigma_{i}}^{j} g_{j}\right)(x)=\sum_{j=1}^{d} \mathcal{T}_{\sigma_{i}}^{j}\left\langle g_{j}, k(x, \cdot)\right\rangle_{\mathcal{K}_{k}}=\sum_{j=1}^{d}\left\langle g_{j}, \mathcal{T}_{\sigma_{i}}^{j} k(x, \cdot)\right\rangle_{\mathcal{K}_{k}}
$$

Meanwhile, the result [47, Lem. 4.34] yields

$$
\left\langle\frac{L}{m} \mathcal{T}_{\sigma_{i}}^{j} k\left(x_{i}, \cdot\right), \frac{L}{m} \mathcal{T}_{\sigma_{i^{\prime}}}^{j} k\left(x_{i^{\prime}}, \cdot\right)\right\rangle=\left(\frac{L}{m} \nabla_{x_{i j}} \log p_{\sigma_{i}}\left(x_{i}\right)+\nabla_{x_{i j}}\right)\left(\frac{L}{m} \nabla_{x_{i^{\prime} j}} \log p_{\sigma_{i^{\prime}}}\left(x_{i^{\prime}}\right)+\nabla_{x_{i^{\prime} j}}\right) k\left(x_{i}, x_{i^{\prime}}\right)
$$

for all $i, i^{\prime} \in[n]$ and $j \in[d]$. Therefore, the advertised

$$
w_{j}^{2}=\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{i^{\prime}=1}^{n}\left\langle\frac{L}{m} \mathcal{T}_{\sigma_{i}}^{j} k\left(x_{i}, \cdot\right), \frac{L}{m} \mathcal{T}_{\sigma_{i^{\prime}}}^{j} k\left(x_{i^{\prime}}, \cdot\right)\right\rangle=\left\|\frac{1}{n} \sum_{i=1}^{n} \frac{L}{m} \mathcal{T}_{\sigma_{i}}^{j} k\left(x_{i}, \cdot\right)\right\|_{\mathcal{K}_{k}}^{2}
$$

Finally, our assembled results and norm duality give

$$
\begin{aligned}
\mathcal{S S}\left(Q_{n}, \mathcal{T}_{P}, \mathcal{G}_{k,\|\cdot\|}\right) & =\sup _{g \in \mathcal{G}_{k,\|\cdot\|}} \sum_{j=1}^{d} \frac{1}{n} \sum_{i=1}^{n} \frac{L}{m}\left(\mathcal{T}_{\sigma_{i}}^{j} g_{j}\right)\left(x_{i}\right) \\
& =\sup _{\left\|g_{j}\right\|_{\mathcal{K}_{k}}=v_{j},\|v\|^{*} \leq 1} \sum_{j=1}^{d}\left\langle g_{j}, \frac{1}{n} \sum_{i=1}^{n} \frac{L}{m} \mathcal{T}_{\sigma_{i}}^{j} k\left(x_{i}, \cdot\right)\right\rangle_{\mathcal{K}_{k}} \\
& =\sup _{\|v\|^{*} \leq 1} \sum_{j=1}^{d} v_{j} \| \frac{1}{n} \sum_{i=1}^{n} \frac{L}{m}\left[\mathcal{T}_{\sigma_{i}}^{j} k\left(x_{i}, \cdot\right) \|_{\mathcal{K}_{k}}\right. \\
& =\sup _{\|v\|^{*} \leq 1} \sum_{j=1}^{d} v_{j} w_{j}=\|w\|
\end{aligned}
$$

B Proof of Theorem 2: SSDS detect convergence

We will find it useful to write

$$
\begin{align*}
\mathcal{S S}\left(Q_{n}, \mathcal{T}, \mathcal{G}\right) & =\sup _{g \in \mathcal{G}}\left|\frac{1}{n} \sum_{i=1}^{n} \frac{L}{m} \sum_{\sigma \in\binom{[L]}{m}} B_{i \sigma}\left(\mathcal{T}_{\sigma} g\right)\left(x_{i}\right)\right| \quad \text { for } \quad B_{i \sigma} \triangleq \mathbb{I}\left[\sigma=\sigma_{i}\right] \tag{9}\\
& =\sup _{g \in \mathcal{G}}\left|\binom{L}{m}^{-1} \sum_{\sigma \in\binom{[L]}{m}} \mu_{n \sigma}\left(\mathcal{T}_{\sigma} g\right)\right| \quad \text { for } \quad \mu_{n \sigma} \triangleq\binom{L}{m} \frac{L}{m} \frac{1}{n} \sum_{i=1}^{n} B_{i \sigma} \delta_{x_{i}}
\end{align*}
$$

We will also write $B L_{\|\cdot\|} \triangleq\left\{h: \mathbb{R}^{d} \rightarrow \mathbb{R}:\|h\|_{\infty}+\operatorname{Lip}(h) \leq 1\right\}$ as the unit ball in the bounded Lipschitz metric, and for any $R>0, B_{R} \triangleq\left\{x \in \mathbb{R}^{d}:\|x\|_{2} \leq R\right\}$ as the radius R ball centered at the origin. For any set K, let $I_{K}(x)=\mathbb{I}[x \in K]$.
Our proof relies on a lemma, proved in App. B.1, that boosts almost sure convergence in distribution into almost sure uniform convergence for the expectations of all continuous functions dominated by a uniformly integrable, locally bounded $\left|f_{0}\right|$ with derivatives dominated by a locally bounded $\left|f_{1}\right|$.
Lemma 8 (Convergence of random measures). Consider two sequences of random measures $\left(\nu_{n}\right)_{n=1}^{\infty}$ and $\left(\tilde{\nu}_{n}\right)_{n=1}^{\infty}$ on \mathbb{R}^{d}, and suppose there exists an $R>0$ such that $\nu_{n}\left(h I_{B_{R}}\right)-\tilde{\nu}_{n}\left(h I_{B_{R}}\right) \xrightarrow{\text { a.s. }} 0$ for each bounded and continuous h. Then, for $\mathcal{H}=B L_{\|\cdot\|}$,

$$
\begin{equation*}
\sup _{h \in \mathcal{H}}\left|\nu_{n}\left(h I_{B_{R}}\right)-\tilde{\nu}_{n}\left(h I_{B_{R}}\right)\right| \xrightarrow{\text { a.s. }} 0 . \tag{10}
\end{equation*}
$$

Suppose, in addition, that for every $S>0$ there exists an $R \geq S$ such that (10) holds. Then if f_{0} is almost surely uniformly ν_{n}-integrable and uniformly $\tilde{\nu}_{n}$-integrable, and f_{0}, f_{1} are bounded on each compact set, we have

$$
\sup _{h \in \mathcal{H}_{f}}\left|\nu_{n}(h)-\tilde{\nu}_{n}(h)\right| \xrightarrow{\text { a.s. }} 0
$$

where $\mathcal{H}_{f} \triangleq\left\{h \in C\left(\mathbb{R}^{d}\right):|h(x)| \leq\left|f_{0}(x)\right|, \frac{|h(x)-h(y)|}{\|x-y\|_{2}} \leq\left|f_{1}(x)\right|+\left|f_{1}(y)\right|\right.$ for all $\left.x, y \in \mathbb{R}^{d}\right\}$.

Since $W_{a}\left(Q_{n}, P\right) \rightarrow 0$, [17, Proof of Cor. 1] implies that $Q_{n}(h) \rightarrow P(h)$ for all bounded continuous h and that $f_{0}(x)=c\left(1+\|x\|_{2}^{a}\right)$ is uniformly Q_{n}-integrable and P-integrable. Moreover, for each $\sigma \in\binom{[L]}{m}, \mu_{n \sigma}(h)-\frac{L}{m} Q_{n}(h) \xrightarrow{a . s .} 0$ for all bounded h by Lemma 10 , and thus $\mu_{n \sigma}\left(h I_{B_{R}}\right)-$ $Q_{n}\left(h I_{B_{R}}\right) \xrightarrow{\text { a.s. }} 0$ for all bounded $h \in C\left(\mathbb{R}^{d}\right)$ and any $R>0$. Since, for any compact set K, $\mu_{n \sigma}\left(\left|f_{0}\right| I_{K^{c}}\right) \leq\binom{ L}{m} \frac{L}{m} Q_{n}\left(\left|f_{0}\right| I_{K^{c}}\right), f_{0}$ is also uniformly $\mu_{n \sigma}$-integrable. By assumption $f_{1}(x)=$ $\omega\left(\|x\|_{2}\right)$ for $\omega(R) \triangleq \sup _{n} \sup _{g \in \mathcal{G}_{n}, x, y \in B_{2 R}} \frac{\left|\left(\mathcal{T}_{\sigma} g\right)(x)-\left(\mathcal{T}_{\sigma} g\right)(y)\right|}{\|x-y\|_{2}}$ is bounded on any compact set.
Moreover, since P is a finite measure, there are at most countably many values R for which $P\left(\left\{x:\|x\|_{2}=R\right\}\right)>0$. Hence, for any $S>0$ we can choose $R \geq S$ such that B_{R} is a continuity set under P. For any such $R, Q_{n}\left(h I_{B_{R}}\right)-P\left(h I_{B_{R}}\right) \rightarrow 0$ for any bounded $h \in C\left(\mathbb{R}^{d}\right)$ by the Portmanteau theorem [29, Thm. 13.16], since $W_{a}\left(Q_{n}, P\right) \rightarrow 0$ implies convergence in distribution.
Finally, the assumption $P(\mathcal{T} g)=0$ for all $g \in \mathcal{G}_{n}$, the triangle inequality, the continuity and polynomial growth of each function in $\mathcal{T}_{\sigma} \mathcal{G}_{n}$, and Lemma 8 applied first to $\mu_{n \sigma}$ and $\left(Q_{n}\right)_{n=1}^{\infty}$ for each σ and then to $\left(Q_{n}\right)_{n=1}^{\infty}$ and P together yield

$$
\begin{aligned}
& \mathcal{S S}\left(Q_{n}, \mathcal{T}, \mathcal{G}_{n}\right)=\sup _{g \in \mathcal{G}_{n}}\left|\binom{L}{m}^{-1} \sum_{\sigma \in\binom{[L]}{m}} \mu_{n \sigma}\left(\mathcal{T}_{\sigma} g\right)-\frac{L}{m} Q_{n}\left(\mathcal{T}_{\sigma} g\right)+\frac{L}{m} Q_{n}\left(\mathcal{T}_{\sigma} g\right)-\frac{L}{m} P\left(\mathcal{T}_{\sigma} g\right)\right| \\
& \leq\binom{ L}{m}^{-1} \sum_{\sigma \in\binom{[L]}{m}} \sup _{h \in \mathcal{H}_{f}}\left|\mu_{n \sigma}(h)-\frac{L}{m} Q_{n}(h)\right|+\frac{L}{m}\left|Q_{n}(h)-P(h)\right| \stackrel{\text { a.s. }}{\rightarrow} 0 .
\end{aligned}
$$

B. 1 Proof of Lemma 8: Convergence of random measures

Fix any $R, \epsilon>0$ and let $K=B_{R}$. By the Arzelà-Ascoli theorem [15, Thm. 8.10.6], there exists a finite $\epsilon / 2$-subcover of the set of K-restrictions $\left\{\left.h\right|_{K}: h \in \mathcal{H}\right\}$. Since any bounded continuous function on K can be extended to a bounded continuous function on \mathbb{R}^{d}, there therefore exists a sequence of bounded continuous functions $\left(h_{k}\right)_{k=1}^{m}$ on \mathbb{R}^{d} such that

$$
\begin{aligned}
\mathbb{P}\left(\sup _{h \in \mathcal{H}}\left|\nu_{n}\left(h I_{K}\right)-\tilde{\nu}_{n}\left(h I_{K}\right)\right|>\epsilon \text { i.o. }\right) & \leq \mathbb{P}\left(\max _{1 \leq k \leq m}\left|\nu_{n}\left(h_{k} I_{K}\right)-\tilde{\nu}_{n}\left(h_{k} I_{K}\right)\right|>\epsilon / 2 \text { i.o. }\right) \\
& \leq \sum_{k=1}^{m} \mathbb{P}\left(\left|\nu_{n}\left(h_{k}\right)-\tilde{\nu}_{n}\left(h_{k}\right)\right|>\epsilon / 2 \text { i.o. }\right)=0,
\end{aligned}
$$

where we have used the union bound and our almost sure convergence assumption for bounded continuous functions. The first result (10) now follows since ϵ was arbitrary.

We next assume that the event \mathcal{E} on which f_{0} is uniformly ν_{n} and $\tilde{\nu}_{n}$-integrable occurs with probability 1 , and fix any $\epsilon>0$. On \mathcal{E} there exists $R_{\epsilon}>0$ such that (10) holds and $\sup _{n} \max \left(\nu_{n}\left(\left|f_{0}\right| I_{K_{\epsilon}^{c}}\right), \tilde{\nu}_{n}\left(\left|f_{0}\right| I_{K_{\epsilon}^{c}}\right)\right) \leq \epsilon / 2$ for $K_{\epsilon} \triangleq B_{R_{\epsilon}}$. Furthermore, on \mathcal{E},

$$
\begin{aligned}
\sup _{h \in \mathcal{H}_{f}}\left|\nu_{n}(h)-\nu_{n}\left(h I_{K_{\epsilon}}\right)\right|+\left|\tilde{\nu}_{n}(h)-\tilde{\nu}_{n}\left(h I_{K_{\epsilon}}\right)\right| & \leq \sup _{h \in \mathcal{H}_{f}} \nu_{n}\left(|h| I_{K_{\epsilon}^{c}}\right)+\tilde{\nu}_{n}\left(|h| I_{K_{\epsilon}^{c}}\right) \\
& \leq \nu_{n}\left(\left|f_{0}\right| I_{K_{\epsilon}^{c}}\right)+\tilde{\nu}_{n}\left(\left|f_{0}\right| I_{K_{\epsilon}^{c}}\right) \leq \epsilon
\end{aligned}
$$

Therefore, the triangle inequality, fact that for each $R>0$ there is a constant $c_{R}>0$ such that $\left\{h I_{B_{R}}: h \in \mathcal{H}_{f}\right\} \subseteq\left\{c_{R} h I_{B_{R}}: h \in \mathcal{H}\right\}$, and our first result (10) give

$$
\begin{aligned}
\mathbb{P}\left(\sup _{h \in \mathcal{H}_{f}}\left|\nu_{n}(h)-\tilde{\nu}_{n}(h)\right|>2 \epsilon \text { i.o. }\right) & \leq \mathbb{P}\left(\mathcal{E}^{c}\right)+\mathbb{P}\left(\sup _{h \in \mathcal{H}_{f}}\left|\nu_{n}\left(h I_{K_{\epsilon}}\right)-\tilde{\nu}_{n}\left(h I_{K_{\epsilon}}\right)\right|>\epsilon \text { i.o. }\right) \\
& \leq \mathbb{P}\left(\mathcal{E}^{c}\right)+\mathbb{P}\left(c_{R_{\epsilon}} \sup _{h \in \mathcal{H}}\left|\nu_{n}\left(h I_{K_{\epsilon}}\right)-\tilde{\nu}_{n}\left(h I_{K_{\epsilon}}\right)\right|>\epsilon \text { i.o. }\right) \\
& =0 .
\end{aligned}
$$

The second result now follows since ϵ was arbitrary.

C Proof of Theorem 3: Bounded SDs detect tight non-convergence

We consider each Stein set candidate in turn.

C. 1 Kernel Stein set

Suppose \mathcal{G}_{n} satisfies (A.1). Since, for any vector norm $\|\cdot\|$ on \mathbb{R}^{d}, there exists c_{d} such that $\{g \in$ $\left.\mathcal{G}_{k,\|\cdot\|_{2}}: \max _{\sigma \in\binom{[L]}{m}}\left\|\mathcal{T}_{\sigma} g\right\|_{\infty} \leq 1\right\} \subseteq c_{d}\left\{g \in \mathcal{G}_{k,\|\cdot\|}: \max _{\sigma \in\binom{[L]}{m}}\left\|\mathcal{T}_{\sigma} g\right\|_{\infty} \leq 1\right\}$ [4], it suffices to assume $\|\cdot\|=\|\cdot\|_{2}$.

Choosing a convergence-determining IPM $d_{\mathcal{H}}$ Consider the test function set \mathcal{H} from [22, Sec E.1, Proof of Thm. 5] which satisfies

1. $\|h\|_{\infty} \leq 1$ and $\operatorname{Lip}(h) \leq 1+\sqrt{d-1}$ for all $h \in \mathcal{H}$ and
2. $Q_{n} \nRightarrow P$ implies $d_{\mathcal{H}}\left(Q_{n}, P\right) \nrightarrow 0$ for any sequence of probability measures $\left(Q_{n}\right)_{n \geq 1}$.

Solving the Stein equation $\mathcal{T}_{P} g_{h}=h-P(h) \quad$ Let us define $\Xi(x) \triangleq\left(1+\|x\|_{2}^{2}\right)^{1 / 2}$. By [22, Sec E.1, Proof of Thm. 5], for each $h \in \mathcal{H}$ there exists an accompanying function g_{h} such that $\mathcal{T}_{P} g_{h}=h-P(h)$ and $\left\|\Xi g_{h}\right\|_{\infty} \leq \mathcal{M}_{P}$ for a constant $\mathcal{M}_{P}>0$ independent of h.

Smoothing the Stein function g_{h} Fix any $\rho \in(0,1]$, and let $U \sim \mathcal{N}(0, I)$. Since $\nabla \log p$ is Lipschitz, the argument in [22, Proof of Thm. 13] constructs a smoothed approximation $g_{h, \rho}(x)=$ $\mathbb{E}\left[g_{h}(x-\rho U)\right]$ satisfying

$$
\begin{equation*}
\left\|\mathcal{T}_{P} g_{h, \rho}-\mathcal{T}_{P} g_{h}\right\|_{\infty} \leq C_{1} \rho \tag{11}
\end{equation*}
$$

for a constant C_{1} independent of h and ρ. Moreover, the following lemma shows that

$$
\left\|\Xi g_{h, \rho}\right\|_{\infty} \leq\left\|\Xi g_{h}\right\|_{\infty} \sqrt{2} \mathbb{E}\left[1+\|U\|_{2}\right] \leq \mathcal{M}_{P}^{\prime} \triangleq \sqrt{2} \mathcal{M}_{P}(1+\sqrt{d})
$$

where \mathcal{M}_{P} is notably independent of ρ and h.
Lemma 9 (Smoothing preserves decay). For each $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \epsilon \in[0,1]$, and absolutely integrable random vector $Y \in \mathbb{R}^{d}$,

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{d}} \mathbb{E}\left[A(x)\|g(x-\epsilon Y)\|_{2}\right] \leq \sqrt{2}\|\Xi g\|_{\infty} \mathbb{E}[A(Y)] \quad \text { for } \quad A(x) \triangleq 1+\|x\|_{2} \tag{12}
\end{equation*}
$$

Proof For $B(y) \triangleq \sup _{x, u \in(0,1]} A(x) / \Xi(x-u y)$, we have

$$
\begin{aligned}
\sup _{x \in \mathbb{R}^{d}} \mathbb{E}\left[\left(1+\|x\|_{2}\right)\|g(x-\epsilon Y)\|_{2}\right] & =\sup _{x \in \mathbb{R}^{d}} \mathbb{E}\left[\frac{\left(1+\|x\|_{2}\right)}{\Xi(x-\epsilon Y)} \Xi(x-\epsilon Y)\|g(x-\epsilon Y)\|_{2}\right] \\
& \leq \sup _{x \in \mathbb{R}^{d}}\|\Xi g\|_{\infty} \mathbb{E}\left[\frac{\left(1+\|x\|_{2}\right)}{\Xi(x-\epsilon Y)}\right] \leq\|\Xi g\|_{\infty} \mathbb{E}[B(Y)]
\end{aligned}
$$

Moreover, $\Xi(z) \geq 2^{-1 / 2}\left(1+\|z\|_{2}\right)$ for all z implies that, for any y,

$$
\begin{aligned}
B(y)=\sup _{x, u \in(0,1]} \frac{A(x)}{\Xi(x-u y)} & \leq \sup _{x, u \in(0,1]} \sqrt{2} \frac{A(x)}{1+\|x-u y\|_{2}}=\sup _{z, u \in(0,1]} \sqrt{2} \frac{A(z+u y)}{1+\|z\|_{2}} \\
& \leq \sup _{z, u \in(0,1]} \sqrt{2} \frac{A(z)+u\|y\|_{2}}{1+\|z\|_{2}} \leq \sqrt{2} A(y),
\end{aligned}
$$

where we used the triangle inequality in the penultimate inequality.

Truncating the smoothed Stein function $g_{h, \rho}$ Fix any $\epsilon \in(0,1)$, and, since $\left(Q_{n}\right)_{n=1}^{\infty}$ is tight, select a compact set K_{ϵ} satisfying $\sup _{n} Q_{n}\left(K_{\epsilon}^{c}\right) \leq \epsilon$. The argument in [22, Proof of Thm. 13] identifies a truncation $g_{h, \rho, \epsilon}$ and a constant C_{0} independent of h, ϵ, and $\rho \in(0,1]$ such that, for all $x \in \mathbb{R}^{d}$,

$$
\begin{align*}
& \left\|g_{h, \rho, \epsilon}(x)\right\|_{2} \leq\left\|g_{h, \rho}(x)\right\|_{2} \quad \text { and } \\
& \left|\left(\mathcal{T}_{P} g_{h, \rho, \epsilon}\right)(x)-\left(\mathcal{T}_{P} g_{h, \rho}\right)(x)\right| \leq C_{0} \mathbb{I}\left[x \in K_{\epsilon}^{c}\right] . \tag{13}
\end{align*}
$$

Hence, $\left\|\Xi g_{h, \rho, \epsilon}\right\|_{\infty} \leq\left\|\Xi g_{h, \rho}\right\|_{\infty} \leq \mathcal{M}_{P}^{\prime}$.
Smoothing the truncation $g_{h, \rho, \epsilon}$ By assumption, for all $\sigma \in\binom{[L]}{m}$, there is a constant $\beta>0$ such that $\left\|\nabla \log p_{\sigma}(x)\right\|_{2} \leq \beta\left(1+\|x\|_{2}\right)$ for all x. Defining $A_{\beta}(x) \triangleq \frac{L}{m} \beta\left(1+\|x\|_{2}\right)$, we note that, since $\nabla \log p=\frac{L}{m}\binom{L}{m}^{-1} \sum_{\sigma \in\binom{[L]}{m}} \nabla \log p_{\sigma}$, an application of the triangle inequality yields $\|\nabla \log p(x)\|_{2} \leq A_{\beta}(x)$ for all x. Moreover, since $L / m \geq 1$ we have $\left\|\nabla \log p_{\sigma}(x)\right\|_{2} \leq A_{\beta}(x)$ for all x and σ.
From the construction in [22, Proof of Lem. 12], there is a random variable Y with finite first moment such that the function $\tilde{g}_{h, \rho, \epsilon}(x) \triangleq \mathbb{E}\left[g_{h, \rho, \epsilon}(x-\epsilon Y)\right]$ satisfies

$$
\begin{equation*}
\left\|\mathcal{T}_{P} \tilde{g}_{h, \rho, \epsilon}-\mathcal{T}_{P} g_{h, \rho, \epsilon}\right\|_{\infty} \leq C_{\rho} \epsilon \tag{14}
\end{equation*}
$$

and $\tilde{g}_{h, \rho, \epsilon} \in C_{\epsilon, \rho} \mathcal{G}_{n}$ for constants C_{ρ} independent of ϵ and h and $C_{\epsilon, \rho}$ independent of h.

Showing the smoothed truncation $\tilde{g}_{h, \rho, \epsilon}$ is in a scaled copy of $\mathcal{G}_{b, n} \quad$ By Lemma 9, we have

$$
\left\|A_{\beta} \tilde{g}_{h, \rho, \epsilon}\right\|_{\infty} \leq\left\|\Xi g_{h, \rho, \epsilon}\right\|_{\infty} \sqrt{2} \mathbb{E}\left[A_{\beta}(Y)\right] \leq \widetilde{\mathcal{M}_{P}} \triangleq \mathcal{M}_{P}^{\prime} \sqrt{2} \mathbb{E}\left[A_{\beta}(Y)\right]
$$

where $\widetilde{\mathcal{M}_{P}}$ is independent of h, ϵ, and ρ. Thus for any σ, Cauchy-Schwarz, our bound (12), the triangle inequality, and the fact that $\left\|\nabla \log p_{\sigma} / A_{\beta}\right\|_{\infty} \leq 1$ and $\left\|\nabla \log p / A_{\beta}\right\|_{\infty} \leq 1$ imply

$$
\begin{aligned}
\| \frac{L}{m} \mathcal{T}_{\sigma} \tilde{g}_{h, \rho, \epsilon} & -\mathcal{T}_{P} \tilde{g}_{h, \rho, \epsilon}\left\|_{\infty}=\right\|\left\langle\frac{L}{m} \nabla \log p_{\sigma}-\nabla \log p, \tilde{g}_{h, \rho, \epsilon}\right\rangle \|_{\infty} \\
& \leq\left\|\left(\frac{L}{m} \nabla \log p_{\sigma}-\nabla \log p\right) / A_{\beta}\right\|_{\infty}\left\|A_{\beta} \tilde{g}_{h, \rho, \epsilon}\right\|_{\infty} \\
& \leq \widetilde{\mathcal{M}_{P}}\left(\frac{L}{m}\left\|\nabla \log p_{\sigma} / A_{\beta}\right\|_{\infty}+\left\|\nabla \log p / A_{\beta}\right\|_{\infty}\right) \leq\left(\frac{L}{m}+1\right) \widetilde{\mathcal{M}_{P}}
\end{aligned}
$$

Thus, the triangle inequality and our error bounds (11), (13) and (14) yield

$$
\begin{aligned}
\left\|\mathcal{T}_{P} \tilde{g}_{h, \rho, \epsilon}\right\|_{\infty} & \leq\left\|\mathcal{T}_{P} g_{h}-\mathcal{T}_{P} g_{h, \rho}\right\|_{\infty}+\left\|\mathcal{T}_{P} g_{h, \rho}-\mathcal{T}_{P} g_{h, \rho, \epsilon}\right\|_{\infty}+\left\|\mathcal{T}_{P} g_{h, \rho, \epsilon}-\mathcal{T}_{P} \tilde{g}_{h, \rho, \epsilon}\right\|_{\infty}+\left\|\mathcal{T}_{P} g_{h}\right\|_{\infty} \\
& \leq C_{1} \rho+C_{0}+C_{\rho} \epsilon+2 \quad \text { and } \\
\left\|\mathcal{T}_{\sigma} \tilde{g}_{h, \rho, \epsilon}\right\|_{\infty} & \leq\left\|\mathcal{T}_{\sigma} \tilde{g}_{h, \rho, \epsilon}-\frac{m}{L} \mathcal{T}_{P} \tilde{g}_{h, \rho, \epsilon}\right\|_{\infty}+\frac{m}{L}\left\|\mathcal{T}_{P} \tilde{g}_{h, \rho, \epsilon}\right\|_{\infty} \\
& \leq \tilde{C}_{\epsilon, \rho} \triangleq\left(1+\frac{m}{L}\right) \widetilde{\mathcal{M}_{P}}+\frac{m}{L}\left(C_{1} \rho+C_{0}+C_{\rho} \epsilon+2\right)
\end{aligned}
$$

for each σ. Therefore, $\tilde{g}_{h, \rho, \epsilon} \in \max \left(C_{\epsilon, \rho}, \tilde{C}_{\epsilon, \rho}\right) \mathcal{G}_{b, n}$.
Upper bounding the IPM $d_{\mathcal{H}} \quad$ Finally, we combine the triangle inequality and our approximation bounds (11), (13) and (14) once more to conclude

$$
\begin{aligned}
& d_{\mathcal{H}}\left(Q_{n}, P\right) \triangleq \sup _{h \in \mathcal{H}}\left|Q_{n}(h)-P(h)\right|=\sup _{h \in \mathcal{H}}\left|Q_{n}\left(\mathcal{T}_{P} g_{h}\right)\right| \\
& \leq \sup _{h \in \mathcal{H}}\left|Q_{n}\left(\mathcal{T}_{P} \tilde{g}_{h, \rho, \epsilon}\right)\right|+\left|Q_{n}\left(\mathcal{T}_{P} \tilde{g}_{h, \rho, \epsilon}-\mathcal{T}_{P} g_{h, \rho, \epsilon}\right)\right|+\left|Q_{n}\left(\mathcal{T}_{P} g_{h, \rho}-\mathcal{T}_{P} g_{h, \rho, \epsilon}\right)\right|+\left|Q_{n}\left(\mathcal{T}_{P} g_{h}-\mathcal{T}_{P} g_{h, \rho}\right)\right| \\
& \leq \sup _{h \in \mathcal{H}}\left|Q_{n}\left(\mathcal{T}_{P} \tilde{g}_{h, \rho, \epsilon}\right)\right|+C_{\rho} \epsilon+C_{0} Q_{n}\left(K_{\epsilon}^{c}\right)+C_{1} \rho \\
& \leq \max \left(C_{\epsilon, \rho}, \tilde{C}_{\epsilon, \rho}\right) \mathcal{S}\left(Q_{n}, \mathcal{T}_{P}, \mathcal{G}_{b, n}\right)+\left(C_{0}+C_{\rho}\right) \epsilon+C_{1} \rho .
\end{aligned}
$$

Since ϵ and ρ were arbitrary, whenever $\mathcal{S}\left(Q_{n}, \mathcal{T}_{P}, \mathcal{G}_{b, n}\right) \rightarrow 0$, we have $d_{\mathcal{H}}\left(Q_{n}, P\right) \rightarrow 0$ and hence $Q_{n} \Rightarrow P$.

C. 2 Classical Stein set

Suppose \mathcal{G}_{n} satisfies (A.2), and consider $\mathcal{G}_{k,\|\cdot\|_{2}}$ for $k(x, y)=\Phi(x-y) \triangleq\left(1+\|\Gamma(x-y)\|_{2}^{2}\right)^{\beta}$ with $\beta<0$ and $\Gamma \succ 0$. Since $\nabla^{s} \Phi(0)$ is bounded for $s \in\{0,2,4\}$, [47, Cor. 4.36] implies that $\mathcal{G}_{k,\|\cdot\|_{2}}^{\subseteq} c_{0} \mathcal{G}_{n}$ for some c_{0}. The result now follows since $\mathcal{G}_{k,\|\cdot\|_{2}}$ also satisfies (A.1).

C. 3 Graph Stein set

If \mathcal{G}_{n} satisfies (A.3), the result follows as \mathcal{G}_{n} contains the classical Stein set $\mathcal{G}_{\|\cdot\|}$.

D Proof of Theorem 4: SSDs detect bounded SD non-convergence

Since $\mathcal{S}\left(Q_{n}, \mathcal{T}, \mathcal{G}_{b, n}\right) \nrightarrow 0$, there exists $\epsilon>0$ such that $\mathcal{S}\left(Q_{n}, \mathcal{T}, \mathcal{G}_{b, n}\right)>\epsilon$ infinitely often (i.o.). Fix any such ϵ. For each n, choose $h_{n}=\mathcal{T}_{P} g_{n}$ for $g_{n} \in \mathcal{G}_{b, n}$ satisfying $Q_{n}\left(h_{n}\right) \geq \mathcal{S}\left(Q_{n}, \mathcal{T}, \mathcal{G}_{b, n}\right)-\epsilon / 2$. Then since $\mathcal{T}=\binom{L}{m}^{-1} \frac{L}{m} \sum_{\sigma \in\binom{(L]}{m}} \mathcal{T}_{\sigma}$,

$$
\begin{aligned}
\mathcal{S}\left(Q_{n}, \mathcal{T}, \mathcal{G}_{b, n}\right)-\epsilon / 2 & \leq Q_{n}\left(h_{n}\right)-\binom{L}{m}^{-1} \sum_{\sigma \in\binom{[L]}{m}} \mu_{n \sigma}\left(\mathcal{T}_{\sigma} g_{n}\right)+\binom{L}{m}^{-1} \sum_{\sigma \in\binom{[L]}{m}} \mu_{n \sigma}\left(\mathcal{T}_{\sigma} g_{n}\right) \\
& \leq\binom{ L}{m}^{-1} \sum_{\sigma \in\binom{[L]}{m}}\left(\frac{L}{m} Q_{n}\left(\mathcal{T}_{\sigma} g_{n}\right)-\mu_{n \sigma}\left(\mathcal{T}_{\sigma} g_{n}\right)\right)+\mathcal{S S}\left(Q_{n}, \mathcal{T}, \mathcal{G}\right) .
\end{aligned}
$$

Moreover, since $\left\|\mathcal{T}_{\sigma} g_{n}\right\|_{\infty} \leq 1$ for all $\sigma \in\binom{[L]}{m}$ and n, Lemma 10, proved in App. D.1, implies that $\frac{L}{m} Q_{n}\left(\mathcal{T}_{\sigma} g_{n}\right)-\mu_{n \sigma}\left(\mathcal{T}_{\sigma} g_{n}\right) \xrightarrow{\text { a.s. }} 0$ for each σ.

Lemma 10 (Bounded function convergence). Fix any triangular array of points $\left(x_{i}^{n}\right)_{i \in[n], n \geq 1}$ in \mathbb{R}^{d}, and, for each $n \geq 1$, define the measures

$$
\nu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}^{n}} \quad \text { and } \quad \tilde{\nu}_{n}=\frac{1}{n} \sum_{i=1}^{n} \frac{B_{i}}{\tau} \delta_{x_{i}^{n}}
$$

where $B_{i} \stackrel{i . i . d .}{\sim} \operatorname{Ber}(\tau)$ are independent Bernoulli random variables with $\mathbb{P}\left(B_{i}=1\right)=\tau$. If $\left\|h_{n}\right\|_{\infty} \leq 1$ for each n, then, with probability 1 ,

$$
\left|\tilde{\nu}_{n}\left(h_{n}\right)-\nu_{n}\left(h_{n}\right)\right| \leq \tau^{-1} \sqrt{\frac{\log (n)+2 \log (\log (n)))}{2 n}}
$$

for all n sufficiently large. Hence, $\tilde{\nu}_{n}\left(h_{n}\right)-\nu_{n}\left(h_{n}\right) \xrightarrow{\text { a.s. }} 0$.
Hence

$$
\begin{aligned}
\mathbb{P}\left(\mathcal{S S}\left(Q_{n}, \mathcal{T}, \mathcal{G}_{n}\right) \nrightarrow 0\right) & \geq \mathbb{P}\left(\mathcal{S S}\left(Q_{n}, \mathcal{T}, \mathcal{G}_{n}\right)>\epsilon / 2 \text { i.o. }\right) \\
& \geq \mathbb{P}\left(Q_{n}\left(\mathcal{T}_{\sigma} g_{n}\right)-\mu_{n \sigma}\left(\mathcal{T}_{\sigma} g_{n}\right)<\frac{\epsilon}{2} \text { eventually, } \forall \sigma\right)=1
\end{aligned}
$$

as advertised.

D. 1 Proof of Lemma 10: Bounded function convergence

The result will follow from the following lemma which establishes rates of convergence for subsampled measure expectations to their non-subsampled counterparts.
Lemma 11. Under the notation of Lemma 10, for any $a \in[1,2], \delta \in(0,1)$, and $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\begin{array}{ll}
\tilde{\nu}_{n}(h)-\nu_{n}(h) \leq \frac{\tau^{-1} \sqrt{\frac{1}{2} \log (1 / \delta)}}{n^{1-1 / a}}\left(\nu_{n}\left(|h|^{a}\right)\right)^{1 / a} & \text { with probability at least } 1-\delta \quad \text { and } \\
\nu_{n}(h)-\tilde{\nu}_{n}(h) \leq \frac{\tau^{-1} \sqrt{\frac{1}{2} \log (1 / \delta)}}{n^{1-1 / a}}\left(\nu_{n}\left(|h|^{a}\right)\right)^{1 / a} & \text { with probability at least } 1-\delta .
\end{array}
$$

Proof Fix any $a \in[1,2], \delta \in(0,1)$, and $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$. Since

$$
\tilde{\nu}_{n}(h)=\frac{1}{n} \sum_{i=1}^{n} \frac{B_{i}}{\tau} h\left(x_{i}^{n}\right)
$$

is an average of independent variables $\tau^{-1} B_{i} h\left(x_{i}^{n}\right) \in\left\{0, \tau^{-1} h\left(x_{i}^{n}\right)\right\}$ with $\mathbb{E}\left[\tilde{\nu}_{n}(h)\right]=\nu_{n}(h)$, Hoeffding's inequality [26, Thm. 2] implies

$$
\begin{aligned}
& \tilde{\nu}_{n}(h)-\nu_{n}(h) \leq \tau^{-1} \sqrt{\log (1 / \delta) \frac{1}{2 n^{2}} \sum_{i=1}^{n} h\left(x_{i}^{n}\right)^{2}} \quad \text { with probability at least } \quad 1-\delta \quad \text { and } \\
& \nu_{n}(h)-\tilde{\nu}_{n}(h) \leq \tau^{-1} \sqrt{\log (1 / \delta) \frac{1}{2 n^{2}} \sum_{i=1}^{n} h\left(x_{i}^{n}\right)^{2}} \quad \text { with probability at least } \quad 1-\delta
\end{aligned}
$$

Moreover, since $\|\cdot\|_{2} \leq\|\cdot\|_{a}$, we have $\sqrt{\sum_{i=1}^{n} h\left(x_{i}^{n}\right)^{2} / n^{2}} \leq\left(\sum_{i=1}^{n}\left|h\left(x_{i}^{n}\right)\right|^{a} / n^{a}\right)^{1 / a}$, and the advertised result follows.

By Lemma 11 with $a=2$,

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(\left|\nu_{n}\left(h_{n}\right)-\tilde{\nu}_{n}\left(h_{n}\right)\right| \geq \tau^{-1} \sqrt{\frac{\log \left(1 / \delta_{n}\right)}{2 n}}\right) \leq \sum_{n=1}^{\infty} \delta_{n}<\infty
$$

for $\delta_{n}=1 /\left(n \log ^{2}(n)\right)$. The result now follows from the Borel-Cantelli lemma.

E Proof of Prop. 5: Coercive SSDs enforce tightness

Let $f(x)=\min _{\sigma \in\binom{[L L}{m}} \frac{L}{m}\left(\mathcal{T}_{\sigma} g\right)(x)$. Since f is bounded below, $C=\inf _{x \in \mathbb{R}^{d}} f(x)$ is finite. Define

$$
\gamma(r) \triangleq \inf \left\{f(x)-C:\|x\|_{2} \geq r\right\}
$$

so that γ is nonnegative, coercive, and non-decreasing, as f is coercive. Since $\left(Q_{n}\right)_{n=1}^{\infty}$ is not tight, there exist $\epsilon>0$ and $R>0$ such that $\limsup _{n} Q_{n}\left(\|X\|_{2}>R\right) \geq \epsilon$ and $\gamma(R) \epsilon+C>0$. Moreover, since γ is non-decreasing and nonnegative, Markov's inequality gives

$$
Q_{n}\left(\|X\|_{2}>R\right) \leq Q_{n}\left(\gamma\left(\|X\|_{2}\right)>\gamma(R)\right) \leq \mathbb{E}_{Q_{n}}\left[\gamma\left(\|X\|_{2}\right)\right] / \gamma(R) \leq\left(Q_{n}(f)-C\right) / \gamma(R)
$$

Meanwhile, our assumption on g and the SSD subset representation (4) imply that, surely,

$$
Q_{n}(f)=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \leq \frac{1}{n} \sum_{i=1}^{n} \frac{L}{m}\left(\mathcal{T}_{\sigma_{i}} g\right)\left(x_{i}\right) \leq \mathcal{S} \mathcal{S}\left(Q_{n}, \mathcal{T}, \mathcal{G}_{n}\right)
$$

Hence, $\mathcal{S S}\left(Q_{n}, \mathcal{T}, \mathcal{G}_{n}\right)$ surely does not converge to zero, as

$$
\lim \sup _{n} \mathcal{S} \mathcal{S}\left(Q_{n}, \mathcal{T}, \mathcal{G}_{n}\right) \geq \gamma(R) \lim \sup _{n} Q_{n}\left(\|X\|_{2}>R\right)+C \geq \gamma(R) \epsilon+C>0
$$

F Proof of Theorem 6: Coercive SSDs detect non-convergence

We consider each Stein set candidate in turn.
Kernel Stein set \quad Suppose \mathcal{G}_{n} satisfies (A.1) for one of the specified kernels, $k_{1}(x, y)=\Phi_{1}(x-y)$ or $k_{2}(x, y)=\Phi_{2}(x-y)$, with $\Gamma=I_{d}$.
We have $\hat{\Phi}_{1}$ and $\hat{\Phi}_{2}$ are non-vanishing by [51, Thm. 8.15] and [9, Lem. 7], respectively. Moreover, we have for all $x, y \in \mathbb{R}^{d}$

$$
\begin{aligned}
\langle\nabla \log p(x)-\nabla \log p(y), x-y\rangle & =\frac{L}{m}\binom{L}{m}^{-1} \sum_{\sigma}\left\langle\nabla \log p_{\sigma}(x)-\nabla \log p_{\sigma}(y), x-y\right\rangle \\
& \leq-\kappa\|x-y\|_{2}^{2}+r .
\end{aligned}
$$

Hence if $Q_{n} \nRightarrow P$, then, by Theorem 3, either $\mathcal{S}\left(Q_{n}, \mathcal{T}_{P}, \mathcal{G}_{b, n}\right) \nrightarrow 0$ or $\left(Q_{n}\right)_{n=1}^{\infty}$ is not tight.
If $\mathcal{S}\left(Q_{n}, \mathcal{T}_{P}, \mathcal{G}_{b, n}\right) \nrightarrow 0$, then, with probability $1, \mathcal{S} \mathcal{S}\left(Q_{n}, \mathcal{T}_{P}, \mathcal{G}_{n}\right) \nrightarrow 0$ by Theorem 4.
Now suppose $\left(Q_{n}\right)_{n=1}^{\infty}$ is not tight, and fix any $\sigma \in\binom{[L]}{m}$. Consider first the kernel k_{1}. Since $\frac{L}{m} \nabla \log p_{\sigma}$ has at most linear growth and satisfies distant dissipativity, the proof of [22, Lem. 16] constructs a function $g \in \mathcal{G}_{n}$ that is independent of the choice of σ and satisfies $\frac{L}{m} \mathcal{T}_{\sigma} g \geq f_{\sigma}$ for some coercive bounded-below f_{σ}. Similarly, the same conclusion holds for the kernel k_{2} by the proof of [9, Thm. 3]. Since $\binom{[L]}{m}$ has finite cardinality, we have $\frac{L}{m} \mathcal{T}_{\sigma} g \geq f$ for a common coercive bounded-below function $f(x) \triangleq \min _{\sigma} f_{\sigma}(x)$. Therefore, surely, $\mathcal{S S}\left(Q_{n}, \mathcal{T}_{P}, \mathcal{G}_{n}\right) \nrightarrow 0$ by Prop. 5.
To extend this result to any $\Gamma \succ 0$, fix some $\Gamma \succ 0$. For any distribution P on \mathbb{R}^{d}, let us write $\Gamma^{-1} P$ to represent the distribution of $\Gamma^{-1} Z$ when $Z \sim P$. Let p_{Γ} be the density $\Gamma^{-1} P$. Then $p_{\Gamma}(x)=\operatorname{det}(\Gamma) \nabla \log p(\Gamma x)$ and $\nabla \log p_{\Gamma}(x)=\Gamma \nabla \log p(\Gamma x)$, and for any $\sigma \in\binom{[L]}{m}$, the analog $p_{\Gamma, \sigma}$ of p_{Γ} satisfies $p_{\Gamma, \sigma}(x)=\operatorname{det}(\Gamma) \nabla \log p_{\sigma}(\Gamma x)$ and $\nabla \log p_{\Gamma, \sigma}(x)=\Gamma \nabla \log p_{\sigma}(\Gamma x)$. By the same argument made in [10, Lem. 4], we have that $\nabla \log p_{\Gamma}$ is Lipschitz and $\nabla \log p_{\Gamma, \sigma}$ satisfies distant dissipativity. And since

$$
\frac{\left\|\nabla \log p_{\Gamma, \sigma}(x)\right\|_{2}}{1+\|x\|_{2}}=\frac{\left\|\Gamma \nabla \log p_{\sigma}(\Gamma x)\right\|_{2}}{1+\|\Gamma x\|_{2}} \frac{1+\|\Gamma x\|_{2}}{1+\|x\|_{2}} \leq\|\Gamma\|_{\mathrm{op}}\left(1+\|\Gamma\|_{\mathrm{op}}\right) \frac{\left\|\nabla \log p_{\sigma}(\Gamma x)\right\|_{2}}{1+\|\Gamma x\|_{2}}
$$

is uniformly bounded, we can apply the same argument discussed in [10, Lem. 4], i.e., make a global change of coordinates $x \mapsto \Gamma^{-1} x$ and then invoke Theorem 6 for $\Gamma^{-1} P$ and $\Gamma^{-1} Q_{n}$ with a non-preconditioned kernel, thereby concluding the proof.

Classical Stein set Suppose $\mathcal{G}_{n}=\mathcal{G}_{\|\cdot\|}$ satisfies (A.2). By the proof of Theorem 3, for $\Gamma=I$ and any $\beta \in(-1,0)$, there is a constant $c_{0}>0$ such that the kernel Stein set $\mathcal{G}_{k,\|\cdot\|_{2}}^{\subseteq} c_{0} \mathcal{G}_{n}$. Hence $\mathcal{S S}\left(Q_{n}, \mathcal{T}_{P}, \mathcal{G}_{k,\|\cdot\|_{2}}\right) \leq c_{0} \mathcal{S} \mathcal{S}\left(Q_{n}, \mathcal{T}_{P}, \mathcal{G}_{n}\right)$ for all n implying the result.

Graph Stein set Suppose \mathcal{G}_{n} satisfies (A.3). Then the result follows as \mathcal{G}_{n} contains the classical Stein set $\mathcal{G}_{\|\cdot\|}$.

G Proof of Theorem 7: Wasserstein convergence of SVGD and SSVGD

G. 1 Additional notation

For each $\epsilon>0$ and collection of n points $\left(x_{i}^{n}\right)_{i=1}^{n}$ with associated discrete measure $\nu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}^{n}}$, we define the random one-step SSVGD mapping

$$
T_{\nu_{n}, \epsilon, n}^{m}(x)=x+\epsilon \frac{1}{n} \sum_{j=1}^{n} \frac{L}{m} \nabla \log p_{\sigma_{j}}\left(x_{j}^{n}\right) k\left(x_{j}^{n}, x\right)+\nabla_{x_{j}^{n}} k\left(x_{j}^{n}, x\right)
$$

for $\left(\sigma_{j}\right)_{j=1}^{n}$ independent uniformly random size- m subsets of $[L]$. We also let $\Phi_{\epsilon, n}^{m}(\mu)$ denote the random distribution of $T_{\nu_{n}, \epsilon, n}^{m}(X)$ when $X \sim \mu$.

G. 2 Proof of Theorem 7

We will prove each convergence claim by induction on $r \geq 0$.

Inductive proof of $W_{1}\left(Q_{n, r}, Q_{\infty, r}\right) \rightarrow 0 \quad$ For our base case we have $W_{1}\left(Q_{n, 0}, Q_{\infty, 0}\right) \rightarrow 0$ by assumption.
Now, fix any $r \geq 0$ and assume $W_{1}\left(Q_{n, r}, Q_{\infty, r}\right) \rightarrow 0$, so that $c_{0}\left(1+\|\cdot\|_{2}\right)$ is uniformly $Q_{n, r^{-}}$ integrable and $Q_{n, \infty}$-integrable by [17, Proof of Cor. 1]. Therefore, there exists a constant $C^{\prime}>0$ such that

$$
\sup _{n \geq 1} 1+\epsilon_{r} c_{1}\left(1+Q_{n, r}\left(\|\cdot\|_{2}\right)\right)+\epsilon_{r} c_{2}\left(1+Q_{\infty, r}\left(\|\cdot\|_{2}\right)\right) \leq C^{\prime}
$$

Now, note that

$$
W_{1}\left(Q_{n, r+1}, Q_{\infty, r+1}\right)=W_{1}\left(\Phi_{\epsilon_{r}}\left(Q_{n, r}\right), \Phi_{\epsilon_{r}}\left(Q_{\infty, r}\right)\right)
$$

To control this expression, we provide a lemma, proved in App. G.3, which establishes the pseudoLipschitzness of the one-step SVGD mapping Φ_{ϵ}.
Lemma 12 (Wasserstein pseudo-Lipschitzness of SVGD). Suppose that, for some $c_{1}, c_{2}>0$,

$$
\begin{aligned}
& \sup _{z \in \mathbb{R}^{d}}\left\|\nabla_{z}\left(\nabla \log p(x) k(x, z)+\nabla_{x} k(x, z)\right)\right\|_{\mathrm{op}} \leq c_{1}\left(1+\|x\|_{2}\right) \quad \text { and } \\
& \sup _{x \in \mathbb{R}^{d}}\left\|\nabla_{x}\left(\nabla \log p(x) k(x, z)+\nabla_{x} k(x, z)\right)\right\|_{\mathrm{op}} \leq c_{2}\left(1+\|z\|_{2}\right) \text {. }
\end{aligned}
$$

Then, for any $\epsilon>0$ and probability measures μ, ν,

$$
W_{1}\left(\Phi_{\epsilon}(\mu), \Phi_{\epsilon}(\nu)\right) \leq W_{1}(\mu, \nu)\left(1+\epsilon c_{1}\left(1+\mu\left(\|\cdot\|_{2}\right)\right)+\epsilon c_{2}\left(1+\nu\left(\|\cdot\|_{2}\right)\right)\right)
$$

Our pseudo-Lipschitz assumptions (7) and Lemma 12 imply

$$
\begin{aligned}
W_{1}\left(\Phi_{\epsilon_{r}}\left(Q_{n, r}\right), \Phi_{\epsilon_{r}}\left(Q_{\infty, r}\right)\right) & \leq W_{1}\left(Q_{n, r}, Q_{\infty, r}\right)\left(1+\epsilon_{r} c_{1}\left(1+Q_{n, r}\left(\|\cdot\|_{2}\right)\right)+\epsilon_{r} c_{2}\left(1+Q_{\infty, r}\left(\|\cdot\|_{2}\right)\right)\right) \\
& \leq C^{\prime} W_{1}\left(Q_{n, r}, Q_{\infty, r}\right) \rightarrow 0
\end{aligned}
$$

proving our first claim.
Inductive proof of $W_{1}\left(Q_{n, r}^{m}, Q_{n, r}\right) \rightarrow 0 \quad$ For our base case we have, $W_{1}\left(Q_{n, 0}^{m}, Q_{n, 0}\right)=0$.
Now fix any $r \geq 0$, let \mathcal{E} be the event on which $W_{1}\left(Q_{n, r}^{m}, Q_{n, r}\right) \rightarrow 0$ as $n \rightarrow \infty$, and assume $\mathbb{P}(\mathcal{E})=1$. Since $W_{1}\left(Q_{n, r}, Q_{\infty, r}\right) \rightarrow 0$, on \mathcal{E} we find that $W_{1}\left(Q_{n, r}^{m}, Q_{\infty, r}\right) \rightarrow 0$ and hence $c_{0}\left(1+\|\cdot\|_{2}\right)$ is uniformly $Q_{n, r}^{m}$-integrable and uniformly $Q_{n, r}$-integrable by [17, Proof of Cor. 1]. Therefore, on \mathcal{E}, there exists a constant C such that

$$
\sup _{n \geq 1} 1+\epsilon_{r} c_{1}\left(1+Q_{n, r}^{m}\left(\|\cdot\|_{2}\right)\right)+\epsilon_{r} c_{2}\left(1+Q_{n, r}\left(\|\cdot\|_{2}\right)\right) \leq C
$$

By the triangle inequality,

$$
\begin{aligned}
W_{1}\left(Q_{n, r+1}^{m}, Q_{n, r+1}\right) & =W_{1}\left(\Phi_{\epsilon_{r}, n}^{m}\left(Q_{n, r}^{m}\right), \Phi_{\epsilon_{r}}\left(Q_{n, r}\right)\right) \\
& \leq W_{1}\left(\Phi_{\epsilon_{r}, n}^{m}\left(Q_{n, r}^{m}\right), \Phi_{\epsilon_{r}}\left(Q_{n, r}^{m}\right)\right)+W_{1}\left(\Phi_{\epsilon_{r}}\left(Q_{n, r}^{m}\right), \Phi_{\epsilon_{r}}\left(Q_{n, r}\right)\right) .
\end{aligned}
$$

On \mathcal{E}, our growth assumptions (8), the uniformly $Q_{n, r}^{m}$-integrability of $c_{0}\left(1+\|\cdot\|_{2}\right)$, and the following lemma, proved in App. G.4, establish that the Wasserstein distance $W_{1}\left(\Phi_{\epsilon_{r}, n}^{m}\left(Q_{n, r}^{m}\right), \Phi_{\epsilon_{r}}\left(Q_{n, r}^{m}\right)\right)$ between one step of SSVGD and one step of SVGD from a common starting point converges to 0 almost surely as n grows.
Lemma 13 (One-step convergence of SSVGD to SVGD). Fix any triangular array of points $\left(x_{i}^{n}\right)_{i \in[n], n \geq 1}$ in \mathbb{R}^{d}, and define the discrete probability measures $\nu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}^{n}}$. Suppose $\nabla \log p_{\sigma}(\cdot) k(\cdot, z)$ is continuous for each $z \in \mathbb{R}^{d}$ and $\sigma \in\binom{[L]}{m}$ and let

$$
\begin{aligned}
& f_{0}(x) \triangleq \sup _{z \in \mathbb{R}^{d}, \sigma \in\binom{[L]}{m}}\left\|\nabla \log p_{\sigma}(x)\right\|_{\infty}|k(x, z)| \\
& f_{1}(x) \triangleq \sup _{z \in \mathbb{R}^{d}, \sigma \in\binom{[L]}{m}}\left\|\nabla_{x}\left(\nabla \log p_{\sigma}(x) k(x, z)\right)\right\|_{\mathrm{op}}
\end{aligned}
$$

If f_{0} is ν_{n}-uniformly integrable and f_{0}, f_{1} are bounded on each compact set, then, for any $\epsilon>0$, $W_{1}\left(\Phi_{\epsilon, n}^{m}\left(\nu_{n}\right), \Phi_{\epsilon}\left(\nu_{n}\right)\right) \xrightarrow{\text { a.s. }} 0$ as $n \rightarrow \infty$.

In addition, on \mathcal{E}, our pseudo-Lipschitz assumptions (7) and Lemma 12 imply

$$
\begin{aligned}
W_{1}\left(\Phi_{\epsilon_{r}}\left(Q_{n, r}^{m}\right), \Phi_{\epsilon_{r}}\left(Q_{n, r}\right)\right) & \leq W_{1}\left(Q_{n, r}^{m}, Q_{n, r}\right)\left(1+\epsilon c_{1}\left(1+Q_{n, r}^{m}\left(\|\cdot\|_{2}\right)\right)+\epsilon c_{2}\left(1+Q_{n, r}\left(\|\cdot\|_{2}\right)\right)\right) \\
& \leq C W_{1}\left(Q_{n, r}^{m}, Q_{n, r}\right) \rightarrow 0
\end{aligned}
$$

Hence, on $\mathcal{E}, W_{1}\left(Q_{n, r+1}^{m}, Q_{n, r+1}\right) \xrightarrow{\text { a.s. }} 0$, proving our second claim.

G. 3 Proof of Lemma 12: Wasserstein pseudo-Lipschitzness of SVGD

Assume that μ and ν have integrable means (or else the advertised claim is vacuous), and select $\left(X^{\prime}, Z^{\prime}\right)$ to be an optimal 1-Wasserstein coupling of (μ, ν). The triangle inequality, Jensen's inequality, and our pseudo-Lipschitzness assumptions imply that

$$
\begin{aligned}
& \left\|T_{\mu, \epsilon}(x)-T_{\nu, \epsilon}(z)\right\|_{2} \\
& \leq\|x-z\|_{2} \\
& +\epsilon\left\|\mathbb{E}\left[\nabla \log p\left(X^{\prime}\right) k\left(X^{\prime}, x\right)+\nabla_{x^{\prime}} k\left(X^{\prime}, x\right)-\left(\nabla \log p\left(X^{\prime}\right) k\left(X^{\prime}, z\right)+\nabla k\left(X^{\prime}, z\right)\right)\right]\right\|_{2} \\
& +\epsilon\left\|\mathbb{E}\left[\nabla \log p\left(X^{\prime}\right) k\left(X^{\prime}, z\right)+\nabla_{x^{\prime}} k\left(X^{\prime}, z\right)-\left(\nabla \log p\left(Z^{\prime}\right) k\left(Z^{\prime}, z\right)+\nabla_{z^{\prime}} k\left(Z^{\prime}, z\right)\right)\right]\right\|_{2} \\
& \leq\|x-z\|_{2}\left(1+\epsilon c_{1}\left(1+\mathbb{E}\left[\left\|X^{\prime}\right\|_{2}\right]\right)\right)+\epsilon c_{2} \mathbb{E}\left[\left\|X^{\prime}-Z^{\prime}\right\|_{2}\right]\left(1+\|z\|_{2}\right) \\
& =\|x-z\|_{2}\left(1+\epsilon c_{1}\left(1+\mu\left(\|\cdot\|_{2}\right)\right)+\epsilon c_{2} W_{1}(\mu, \nu)\left(1+\|z\|_{2}\right) .\right.
\end{aligned}
$$

Since $T_{\mu, \epsilon}\left(X^{\prime}\right) \sim \Phi_{\epsilon}(\mu)$ and $T_{\nu, \epsilon}\left(Z^{\prime}\right) \sim \Phi_{\epsilon}(\nu)$, we conclude that

$$
\begin{aligned}
W_{1}\left(\Phi_{\epsilon}(\mu), \Phi_{\epsilon}(\nu)\right) & \leq \mathbb{E}\left[\left\|T_{\mu, \epsilon}\left(X^{\prime}\right)-T_{\nu, \epsilon}\left(Z^{\prime}\right)\right\|_{2}\right] \\
& \leq \mathbb{E}\left[\left\|X^{\prime}-Z^{\prime}\right\|_{2}\right]\left(1+\epsilon c_{1}\left(1+\mu\left(\|\cdot\|_{2}\right)\right)+\epsilon c_{2} W_{1}(\mu, \nu)\left(1+\mathbb{E}\left[\left\|Z^{\prime}\right\|_{2}\right]\right)\right. \\
& =W_{1}(\mu, \nu)\left(1+\epsilon c_{1}\left(1+\mu\left(\|\cdot\|_{2}\right)\right)+\epsilon c_{2}\left(1+\nu\left(\|\cdot\|_{2}\right)\right)\right)
\end{aligned}
$$

G. 4 Proof of Lemma 13: One-step convergence of SSVGD to SVGD

Note that the random one-step SSVGD mapping takes the form

$$
T_{\nu_{n}, \epsilon, n}^{m}(x)=x+\epsilon \nu_{n}\left(\nabla_{x_{j}^{n}} k(\cdot, x)\right)+\epsilon\binom{L}{m}^{-1} \sum_{\sigma \in\binom{[L]}{m}} \nu_{n \sigma}\left(\nabla \log p_{\sigma}(\cdot) k(\cdot, x)\right)
$$

for $\nu_{n \sigma}=\binom{L}{m} \frac{L}{m} \frac{1}{n} \sum_{j=1}^{n} B_{j \sigma} \delta_{x_{j}^{n}}$ and $B_{j \sigma}=\mathbb{I}\left[\sigma=\sigma_{j}\right]$. Moreover, by Kantorovich-Rubinstein duality, we may write the 1-Wasserstein distance as

$$
\begin{align*}
W_{1} & \left(\Phi_{\epsilon, n}^{m}\left(\nu_{n}\right), \Phi_{\epsilon}\left(\nu_{n}\right)\right) \\
\quad & =\sup _{f: M_{1}(f) \leq 1} \Phi_{\epsilon, n}^{m}\left(\nu_{n}\right)(f)-\Phi_{\epsilon}\left(\nu_{n}\right)(f) \\
& =\sup _{f: M_{1}(f) \leq 1} \frac{1}{n} \sum_{i=1}^{n} f\left(T_{\nu_{n}, \epsilon, n}^{m}\left(x_{i}^{n}\right)\right)-f\left(T_{\nu_{n}, \epsilon}\left(x_{i}^{n}\right)\right) \\
& \leq \frac{1}{n} \sum_{i=1}^{n}\left\|T_{\nu_{n}, \epsilon, n}^{m}\left(x_{i}^{n}\right)-T_{\nu_{n}, \epsilon}\left(x_{i}^{n}\right)\right\|_{2} \\
& =\binom{L}{m}^{-1} \frac{\epsilon}{n} \sum_{i=1}^{n}\left\|\sum_{\sigma} \frac{L}{m} \nu_{n}\left(\nabla \log p_{\sigma}(\cdot) k\left(\cdot, x_{i}^{n}\right)\right)-\nu_{n \sigma}\left(\nabla \log p_{\sigma}(\cdot) k\left(\cdot, x_{i}^{n}\right)\right)\right\|_{2} \\
& \leq\binom{ L}{m}^{-1} \sum_{\sigma} \frac{\epsilon \sqrt{d}}{n} \sum_{i=1}^{n}\left\|\frac{L}{m} \nu_{n}\left(\nabla \log p_{\sigma}(\cdot) k\left(\cdot, x_{i}^{n}\right)\right)-\nu_{n \sigma}\left(\nabla \log p_{\sigma}(\cdot) k\left(\cdot, x_{i}^{n}\right)\right)\right\|_{\infty} \\
& \leq \epsilon \sqrt{d}\binom{L}{m}^{-1} \sum_{\sigma} \sup _{h \in \mathcal{H}_{f}}\left|\nu_{n \sigma}(h)-\frac{L}{m} \nu_{n}(h)\right| . \tag{15}
\end{align*}
$$

where we have used the triangle inequality and norm relation $\|\cdot\|_{2} \leq \sqrt{d}\|\cdot\|_{\infty}$ in the penultimate display and \mathcal{H}_{f} is defined in the statement of Lemma 8.
For each $\sigma \in\binom{[L]}{m}$, since $\left|f_{0}\right|$ is uniformly ν_{n}-integrable, and $\nu_{n \sigma}\left(\left|f_{0}\right| I_{K}\right) \leq\binom{ L}{m} \frac{L}{m} \nu_{n}\left(\left|f_{0}\right| I_{K}\right)$ for every compact set K, we find that $\left|f_{0}\right|$ is uniformly $\nu_{n \sigma}$-integrable for each σ. Letting $I_{B_{R}}(x)=$ $\mathbb{I}\left[\|x\|_{2} \leq R\right]$, for each σ, since $\nu_{n \sigma}\left(h I_{B_{R}}\right)-\frac{L}{m} \nu_{n}\left(h I_{B_{R}}\right) \xrightarrow{\text { a.s. }} 0$ for any $R>0$ and any bounded h by Lemma 10, we have $\sup _{h \in \mathcal{H}_{f}}\left|\nu_{n \sigma}(h)-\frac{L}{m} \nu_{n}(h)\right| \xrightarrow{\text { a.s. }} 0$ by Lemma 8. The result now follows from the bound (15).

