
A Proof of Prop. 1: SKSD closed form

Our proof will parallel that of Gorham and Mackey [22, Prop. 2] for non-stochastic KSDs. For each
j ∈ [d] and each σi, we define the coordinate operators

L
m (T j

σi
f)(x) , ( L

m∇xj
log pσi

(x) +∇xj
)f(x)

for f : Rd → R. For each g = (g1, . . . , gd) ∈ Gk,‖·‖ and x ∈ R
d, our C(1,1) assumption on k and

the proof of [47, Cor. 4.36] imply that

(Tσig)(x) =
∑d

j=1(T j
σi
gj)(x) =

∑d
j=1 T j

σi
〈gj , k(x, ·)〉Kk

=
∑d

j=1〈gj , T j
σi
k(x, ·)〉Kk

.

Meanwhile, the result [47, Lem. 4.34] yields

〈 L
mT j

σi
k(xi, ·), L

mT j
σi′

k(xi′ , ·)〉 = ( L
m∇xij

log pσi
(xi) +∇xij

)( L
m∇xi′j

log pσi′
(xi′) +∇xi′j

)k(xi, xi′)

for all i, i′ ∈ [n] and j ∈ [d]. Therefore, the advertised

w2
j = 1

n2

∑n
i=1

∑n
i′=1〈 L

mT j
σi
k(xi, ·), L

mT j
σi′

k(xi′ , ·)〉 = ‖ 1
n

∑n
i=1

L
mT j

σi
k(xi, ·)‖2Kk

.

Finally, our assembled results and norm duality give

SS(Qn, TP ,Gk,‖·‖) = supg∈Gk,‖·‖

∑d
j=1

1
n

∑n
i=1

L
m (T j

σi
gj)(xi)

= sup‖gj‖Kk
=vj ,‖v‖∗≤1

∑d
j=1〈gj , 1

n

∑n
i=1

L
mT j

σi
k(xi, ·)〉Kk

= sup‖v‖∗≤1

∑d
j=1vj‖ 1

n

∑n
i=1

L
m [T j

σi
k(xi, ·)‖Kk

= sup‖v‖∗≤1

∑d
j=1vjwj = ‖w‖.

B Proof of Theorem 2: SSDs detect convergence

We will find it useful to write

SS(Qn, T ,G) = supg∈G

∣∣∣ 1n
∑n

i=1
L
m

∑
σ∈([L]

m )Biσ(Tσg)(xi)
∣∣∣ for Biσ , I[σ = σi] (9)

= supg∈G

∣∣∣
(
L
m

)−1 ∑
σ∈([L]

m ) µnσ(Tσg)
∣∣∣ for µnσ ,

(
L
m

)
L
m

1
n

∑n
i=1 Biσδxi

.

We will also write BL‖·‖ , {h : Rd → R : ‖h‖∞ + Lip(h) ≤ 1} as the unit ball in the bounded

Lipschitz metric, and for any R > 0, BR , {x ∈ R
d : ‖x‖2 ≤ R} as the radius R ball centered at

the origin. For any set K, let IK(x) = I[x ∈ K].

Our proof relies on a lemma, proved in App. B.1, that boosts almost sure convergence in distribution
into almost sure uniform convergence for the expectations of all continuous functions dominated by a
uniformly integrable, locally bounded |f0| with derivatives dominated by a locally bounded |f1|.
Lemma 8 (Convergence of random measures). Consider two sequences of random measures (νn)

∞
n=1

and (ν̃n)
∞
n=1 on R

d, and suppose there exists an R > 0 such that νn(hIBR
)− ν̃n(hIBR

)
a.s.→ 0 for

each bounded and continuous h. Then, for H = BL‖·‖,

sup
h∈H

|νn(hIBR
)− ν̃n(hIBR

)| a.s.→ 0. (10)

Suppose, in addition, that for every S > 0 there exists an R ≥ S such that (10) holds. Then if f0 is
almost surely uniformly νn-integrable and uniformly ν̃n-integrable, and f0, f1 are bounded on each
compact set, we have

sup
h∈Hf

|νn(h)− ν̃n(h)| a.s.→ 0,

where Hf , {h ∈ C(Rd) : |h(x)| ≤ |f0(x)|, |h(x)−h(y)|
‖x−y‖2

≤ |f1(x)|+ |f1(y)| for all x, y ∈ R
d}.
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Since Wa(Qn, P ) → 0, [17, Proof of Cor. 1] implies that Qn(h) → P (h) for all bounded continuous
h and that f0(x) = c(1 + ‖x‖a2) is uniformly Qn-integrable and P -integrable. Moreover, for each

σ ∈
(
[L]
m

)
, µnσ(h) − L

mQn(h)
a.s.→ 0 for all bounded h by Lemma 10, and thus µnσ(hIBR

) −
Qn(hIBR

)
a.s.→ 0 for all bounded h ∈ C(Rd) and any R > 0. Since, for any compact set K,

µnσ(|f0|IKc) ≤
(
L
m

)
L
mQn(|f0|IKc), f0 is also uniformly µnσ-integrable. By assumption f1(x) =

ω(‖x‖2) for ω(R) , supn supg∈Gn,x,y∈B2R

|(Tσg)(x)−(Tσg)(y)|
‖x−y‖2

is bounded on any compact set.

Moreover, since P is a finite measure, there are at most countably many values R for which
P ({x : ‖x‖2 = R}) > 0. Hence, for any S > 0 we can choose R ≥ S such that BR is a continuity

set under P . For any such R, Qn(hIBR
) − P (hIBR

) → 0 for any bounded h ∈ C(Rd) by the
Portmanteau theorem [29, Thm. 13.16], since Wa(Qn, P ) → 0 implies convergence in distribution.

Finally, the assumption P (T g) = 0 for all g ∈ Gn, the triangle inequality, the continuity and
polynomial growth of each function in TσGn, and Lemma 8 applied first to µnσ and (Qn)

∞
n=1 for

each σ and then to (Qn)
∞
n=1 and P together yield

SS(Qn, T ,Gn) = supg∈Gn
|
(
L
m

)−1 ∑
σ∈([L]

m ) µnσ(Tσg)− L
mQn(Tσg) + L

mQn(Tσg)− L
mP (Tσg)|

≤
(
L
m

)−1 ∑
σ∈([L]

m ) suph∈Hf
|µnσ(h)− L

mQn(h)|+ L
m |Qn(h)− P (h)| a.s.→ 0.

B.1 Proof of Lemma 8: Convergence of random measures

Fix any R, ǫ > 0 and let K = BR. By the Arzelà–Ascoli theorem [15, Thm. 8.10.6], there exists
a finite ǫ/2-subcover of the set of K-restrictions {h|K : h ∈ H}. Since any bounded continuous

function on K can be extended to a bounded continuous function on R
d, there therefore exists a

sequence of bounded continuous functions (hk)
m
k=1 on R

d such that

P(suph∈H |νn(hIK)− ν̃n(hIK)| > ǫ i.o.) ≤ P(max1≤k≤m |νn(hkIK)− ν̃n(hkIK)| > ǫ/2 i.o.)

≤ ∑m
k=1 P(|νn(hk)− ν̃n(hk)| > ǫ/2 i.o.) = 0,

where we have used the union bound and our almost sure convergence assumption for bounded
continuous functions. The first result (10) now follows since ǫ was arbitrary.

We next assume that the event E on which f0 is uniformly νn and ν̃n-integrable occurs with
probability 1, and fix any ǫ > 0. On E there exists Rǫ > 0 such that (10) holds and

supn max(νn(|f0|IKc
ǫ
), ν̃n(|f0|IKc

ǫ
)) ≤ ǫ/2 for Kǫ , BRǫ

. Furthermore, on E ,

suph∈Hf
|νn(h)− νn(hIKǫ

)|+ |ν̃n(h)− ν̃n(hIKǫ
)| ≤ suph∈Hf

νn(|h|IKc
ǫ
) + ν̃n(|h|IKc

ǫ
)

≤ νn(|f0|IKc
ǫ
) + ν̃n(|f0|IKc

ǫ
) ≤ ǫ.

Therefore, the triangle inequality, fact that for each R > 0 there is a constant cR > 0 such that
{hIBR

: h ∈ Hf} ⊆ {cRhIBR
: h ∈ H}, and our first result (10) give

P(suph∈Hf
|νn(h)− ν̃n(h)| > 2ǫ i.o.) ≤ P(Ec) + P(suph∈Hf

|νn(hIKǫ)− ν̃n(hIKǫ)| > ǫ i.o.)

≤ P(Ec) + P(cRǫ
suph∈H |νn(hIKǫ

)− ν̃n(hIKǫ
)| > ǫ i.o.)

= 0.

The second result now follows since ǫ was arbitrary.

C Proof of Theorem 3: Bounded SDs detect tight non-convergence

We consider each Stein set candidate in turn.

C.1 Kernel Stein set

Suppose Gn satisfies (A.1). Since, for any vector norm ‖·‖ on R
d, there exists cd such that {g ∈

Gk,‖·‖2
: max

σ∈([L]
m ) ‖Tσg‖∞ ≤ 1} ⊆ cd{g ∈ Gk,‖·‖ : max

σ∈([L]
m ) ‖Tσg‖∞ ≤ 1} [4], it suffices to

assume ‖·‖ = ‖·‖2.
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Choosing a convergence-determining IPM dH Consider the test function set H from [22, Sec
E.1, Proof of Thm. 5] which satisfies

1. ‖h‖∞ ≤ 1 and Lip(h) ≤ 1 +
√
d− 1 for all h ∈ H and

2. Qn 6⇒ P implies dH(Qn, P ) 6→ 0 for any sequence of probability measures (Qn)n≥1.

Solving the Stein equation TP gh = h − P (h) Let us define Ξ(x) , (1 + ‖x‖22)1/2. By [22,
Sec E.1, Proof of Thm. 5], for each h ∈ H there exists an accompanying function gh such that
TP gh = h− P (h) and ‖Ξgh‖∞ ≤ MP for a constant MP > 0 independent of h.

Smoothing the Stein function gh Fix any ρ ∈ (0, 1], and let U ∼ N (0, I). Since ∇ log p is
Lipschitz, the argument in [22, Proof of Thm. 13] constructs a smoothed approximation gh,ρ(x) =
E[gh(x− ρU)] satisfying

‖TP gh,ρ − TP gh‖∞ ≤ C1ρ (11)

for a constant C1 independent of h and ρ. Moreover, the following lemma shows that

‖Ξgh,ρ‖∞ ≤ ‖Ξgh‖∞
√
2E[1 + ‖U‖2] ≤ M′

P ,
√
2MP (1 +

√
d),

where MP is notably independent of ρ and h.

Lemma 9 (Smoothing preserves decay). For each g : Rd → R
d, ǫ ∈ [0, 1], and absolutely integrable

random vector Y ∈ R
d,

supx∈Rd E[A(x)‖g(x− ǫY )‖2] ≤
√
2‖Ξg‖∞E[A(Y )] for A(x) , 1 + ‖x‖2. (12)

Proof For B(y) , supx,u∈(0,1] A(x)/Ξ(x− uy), we have

supx∈Rd E[(1 + ‖x‖2)‖g(x− ǫY )‖2] = supx∈Rd E

[
(1+‖x‖2)
Ξ(x−ǫY )Ξ(x− ǫY )‖g(x− ǫY )‖2

]

≤ supx∈Rd ‖Ξg‖∞E

[
(1+‖x‖2)
Ξ(x−ǫY )

]
≤ ‖Ξg‖∞E[B(Y )].

Moreover, Ξ(z) ≥ 2−1/2(1 + ‖z‖2) for all z implies that, for any y,

B(y) = supx,u∈(0,1]
A(x)

Ξ(x−uy) ≤ supx,u∈(0,1]

√
2 A(x)
1+‖x−uy‖2

= supz,u∈(0,1]

√
2A(z+uy)

1+‖z‖2

≤ supz,u∈(0,1]

√
2A(z)+u‖y‖2

1+‖z‖2
≤

√
2A(y),

where we used the triangle inequality in the penultimate inequality.

Truncating the smoothed Stein function gh,ρ Fix any ǫ ∈ (0, 1), and, since (Qn)
∞
n=1 is tight,

select a compact set Kǫ satisfying supn Qn(K
c
ǫ ) ≤ ǫ. The argument in [22, Proof of Thm. 13]

identifies a truncation gh,ρ,ǫ and a constant C0 independent of h, ǫ, and ρ ∈ (0, 1] such that, for all

x ∈ R
d,

‖gh,ρ,ǫ(x)‖2 ≤ ‖gh,ρ(x)‖2 and

|(TP gh,ρ,ǫ)(x)− (TP gh,ρ)(x)| ≤ C0I[x ∈ Kc
ǫ ]. (13)

Hence, ‖Ξgh,ρ,ǫ‖∞ ≤ ‖Ξgh,ρ‖∞ ≤ M′
P .

Smoothing the truncation gh,ρ,ǫ By assumption, for all σ ∈
(
[L]
m

)
, there is a constant β > 0

such that ‖∇ log pσ(x)‖2 ≤ β(1 + ‖x‖2) for all x. Defining Aβ(x) , L
mβ(1 + ‖x‖2), we note

that, since ∇ log p = L
m

(
L
m

)−1 ∑
σ∈([L]

m )∇ log pσ, an application of the triangle inequality yields

‖∇ log p(x)‖2 ≤ Aβ(x) for all x. Moreover, since L/m ≥ 1 we have ‖∇ log pσ(x)‖2 ≤ Aβ(x) for
all x and σ.

From the construction in [22, Proof of Lem. 12], there is a random variable Y with finite first moment
such that the function g̃h,ρ,ǫ(x) , E[gh,ρ,ǫ(x− ǫY )] satisfies

‖TP g̃h,ρ,ǫ − TP gh,ρ,ǫ‖∞ ≤ Cρǫ (14)

and g̃h,ρ,ǫ ∈ Cǫ,ρGn for constants Cρ independent of ǫ and h and Cǫ,ρ independent of h.
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Showing the smoothed truncation g̃h,ρ,ǫ is in a scaled copy of Gb,n By Lemma 9, we have

‖Aβ g̃h,ρ,ǫ‖∞ ≤ ‖Ξgh,ρ,ǫ‖∞
√
2E[Aβ(Y )] ≤ M̃P , M′

P

√
2E[Aβ(Y )],

where M̃P is independent of h, ǫ, and ρ. Thus for any σ, Cauchy-Schwarz, our bound (12), the
triangle inequality, and the fact that ‖∇ log pσ/Aβ‖∞ ≤ 1 and ‖∇ log p/Aβ‖∞ ≤ 1 imply

‖ L
mTσ g̃h,ρ,ǫ − TP g̃h,ρ,ǫ‖∞ = ‖〈 L

m∇ log pσ −∇ log p, g̃h,ρ,ǫ〉‖∞
≤ ‖( L

m∇ log pσ −∇ log p)/Aβ‖∞‖Aβ g̃h,ρ,ǫ‖∞
≤ M̃P (

L
m‖∇ log pσ/Aβ‖∞ + ‖∇ log p/Aβ‖∞) ≤ ( L

m + 1)M̃P .

Thus, the triangle inequality and our error bounds (11), (13) and (14) yield

‖TP g̃h,ρ,ǫ‖∞ ≤ ‖TP gh − TP gh,ρ‖∞ + ‖TP gh,ρ − TP gh,ρ,ǫ‖∞ + ‖TP gh,ρ,ǫ − TP g̃h,ρ,ǫ‖∞ + ‖TP gh‖∞
≤ C1ρ+ C0 + Cρǫ+ 2 and

‖Tσ g̃h,ρ,ǫ‖∞ ≤ ‖Tσ g̃h,ρ,ǫ − m
L TP g̃h,ρ,ǫ‖∞ + m

L ‖TP g̃h,ρ,ǫ‖∞
≤ C̃ǫ,ρ , (1 + m

L )M̃P + m
L (C1ρ+ C0 + Cρǫ+ 2)

for each σ. Therefore, g̃h,ρ,ǫ ∈ max(Cǫ,ρ, C̃ǫ,ρ)Gb,n.

Upper bounding the IPM dH Finally, we combine the triangle inequality and our approximation
bounds (11), (13) and (14) once more to conclude

dH(Qn, P ) , sup
h∈H

|Qn(h)− P (h)| = sup
h∈H

|Qn(TP gh)|

≤ sup
h∈H

|Qn(TP g̃h,ρ,ǫ)|+ |Qn(TP g̃h,ρ,ǫ − TP gh,ρ,ǫ)|+ |Qn(TP gh,ρ − TP gh,ρ,ǫ)|+ |Qn(TP gh − TP gh,ρ)|

≤ sup
h∈H

|Qn(TP g̃h,ρ,ǫ)|+ Cρǫ+ C0Qn(K
c
ǫ ) + C1ρ

≤ max(Cǫ,ρ, C̃ǫ,ρ)S(Qn, TP ,Gb,n) + (C0 + Cρ)ǫ+ C1ρ.

Since ǫ and ρ were arbitrary, whenever S(Qn, TP ,Gb,n) → 0, we have dH(Qn, P ) → 0 and hence
Qn ⇒ P .

C.2 Classical Stein set

Suppose Gn satisfies (A.2), and consider Gk,‖·‖2
for k(x, y) = Φ(x − y) , (1 + ‖Γ(x− y)‖22)β

with β < 0 and Γ ≻ 0. Since ∇sΦ(0) is bounded for s ∈ {0, 2, 4}, [47, Cor. 4.36] implies that
Gk,‖·‖2

⊆ c0Gn for some c0. The result now follows since Gk,‖·‖2
also satisfies (A.1).

C.3 Graph Stein set

If Gn satisfies (A.3), the result follows as Gn contains the classical Stein set G‖·‖ .

D Proof of Theorem 4: SSDs detect bounded SD non-convergence

Since S(Qn, T ,Gb,n) 6→ 0, there exists ǫ > 0 such that S(Qn, T ,Gb,n) > ǫ infinitely often (i.o.). Fix
any such ǫ. For each n, choose hn = TP gn for gn ∈ Gb,n satisfying Qn(hn) ≥ S(Qn, T ,Gb,n)−ǫ/2.

Then since T =
(
L
m

)−1 L
m

∑
σ∈([L]

m ) Tσ ,

S(Qn, T ,Gb,n)− ǫ/2 ≤ Qn(hn)−
(
L
m

)−1 ∑
σ∈([L]

m ) µnσ(Tσgn) +
(
L
m

)−1 ∑
σ∈([L]

m ) µnσ(Tσgn)

≤
(
L
m

)−1 ∑
σ∈([L]

m )(
L
mQn(Tσgn)− µnσ(Tσgn)) + SS(Qn, T ,G).

Moreover, since ‖Tσgn‖∞ ≤ 1 for all σ ∈
(
[L]
m

)
and n, Lemma 10, proved in App. D.1, implies that

L
mQn(Tσgn)− µnσ(Tσgn) a.s.→ 0 for each σ.
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Lemma 10 (Bounded function convergence). Fix any triangular array of points (xn
i )i∈[n],n≥1 in R

d,
and, for each n ≥ 1, define the measures

νn = 1
n

∑n
i=1 δxn

i
and ν̃n = 1

n

∑n
i=1

Bi

τ δxn
i

where Bi
i.i.d.∼ Ber(τ) are independent Bernoulli random variables with P(Bi = 1) = τ . If ‖hn‖∞ ≤ 1

for each n, then, with probability 1,

|ν̃n(hn)− νn(hn)| ≤ τ−1
√

log(n)+2 log(log(n)))
2n

for all n sufficiently large. Hence, ν̃n(hn)− νn(hn)
a.s.→ 0.

Hence

P(SS(Qn, T ,Gn) 6→ 0) ≥ P(SS(Qn, T ,Gn) > ǫ/2 i.o.)

≥ P(Qn(Tσgn)− µnσ(Tσgn) < ǫ
2 eventually, ∀σ) = 1

as advertised.

D.1 Proof of Lemma 10: Bounded function convergence

The result will follow from the following lemma which establishes rates of convergence for subsam-
pled measure expectations to their non-subsampled counterparts.

Lemma 11. Under the notation of Lemma 10, for any a ∈ [1, 2], δ ∈ (0, 1), and h : Rd → R,

ν̃n(h)− νn(h) ≤ τ−1
√

1
2 log(1/δ)

n1−1/a (νn(|h|a))1/a with probability at least 1− δ and

νn(h)− ν̃n(h) ≤ τ−1
√

1
2 log(1/δ)

n1−1/a (νn(|h|a))1/a with probability at least 1− δ.

Proof Fix any a ∈ [1, 2], δ ∈ (0, 1), and h : Rd → R. Since

ν̃n(h) =
1
n

∑n
i=1

Bi

τ h(xn
i )

is an average of independent variables τ−1Bih(x
n
i ) ∈ {0, τ−1h(xn

i )} with E[ν̃n(h)] = νn(h),
Hoeffding’s inequality [26, Thm. 2] implies

ν̃n(h)− νn(h) ≤ τ−1
√
log(1/δ) 1

2n2

∑n
i=1 h(x

n
i )

2 with probability at least 1− δ and

νn(h)− ν̃n(h) ≤ τ−1
√
log(1/δ) 1

2n2

∑n
i=1 h(x

n
i )

2 with probability at least 1− δ.

Moreover, since ‖·‖2 ≤ ‖·‖a, we have
√∑n

i=1 h(x
n
i )

2/n2 ≤ (
∑n

i=1 |h(xn
i )|a/na)1/a, and the

advertised result follows.

By Lemma 11 with a = 2,

∑∞
n=1 P(|νn(hn)− ν̃n(hn)| ≥ τ−1

√
log(1/δn)

2n ) ≤ ∑∞
n=1 δn < ∞

for δn = 1/(n log2(n)). The result now follows from the Borel-Cantelli lemma.

E Proof of Prop. 5: Coercive SSDs enforce tightness

Let f(x) = min
σ∈([L]

m )
L
m (Tσg)(x). Since f is bounded below, C = infx∈Rd f(x) is finite. Define

γ(r) , inf{f(x)− C : ‖x‖2 ≥ r},
so that γ is nonnegative, coercive, and non-decreasing, as f is coercive. Since (Qn)

∞
n=1 is not tight,

there exist ǫ > 0 and R > 0 such that lim supn Qn(‖X‖2 > R) ≥ ǫ and γ(R)ǫ+C > 0. Moreover,
since γ is non-decreasing and nonnegative, Markov’s inequality gives

Qn(‖X‖2 > R) ≤ Qn(γ(‖X‖2) > γ(R)) ≤ EQn [γ(‖X‖2)]/γ(R) ≤ (Qn(f)− C)/γ(R).

Meanwhile, our assumption on g and the SSD subset representation (4) imply that, surely,

Qn(f) =
1
n

∑n
i=1 f(xi) ≤ 1

n

∑n
i=1

L
m (Tσi

g)(xi) ≤ SS(Qn, T ,Gn).

Hence, SS(Qn, T ,Gn) surely does not converge to zero, as

lim supn SS(Qn, T ,Gn) ≥ γ(R) lim supn Qn(‖X‖2 > R) + C ≥ γ(R)ǫ+ C > 0.

17



F Proof of Theorem 6: Coercive SSDs detect non-convergence

We consider each Stein set candidate in turn.

Kernel Stein set Suppose Gn satisfies (A.1) for one of the specified kernels, k1(x, y) = Φ1(x− y)
or k2(x, y) = Φ2(x− y), with Γ = Id.

We have Φ̂1 and Φ̂2 are non-vanishing by [51, Thm. 8.15] and [9, Lem. 7], respectively. Moreover,
we have for all x, y ∈ R

d

〈∇ log p(x)−∇ log p(y), x− y〉 = L
m

(
L
m

)−1 ∑
σ〈∇ log pσ(x)−∇ log pσ(y), x− y〉

≤ −κ‖x− y‖22 + r.

Hence if Qn 6⇒ P , then, by Theorem 3, either S(Qn, TP ,Gb,n) 6→ 0 or (Qn)
∞
n=1 is not tight.

If S(Qn, TP ,Gb,n) 6→ 0, then, with probability 1, SS(Qn, TP ,Gn) 6→ 0 by Theorem 4.

Now suppose (Qn)
∞
n=1 is not tight, and fix any σ ∈

(
[L]
m

)
. Consider first the kernel k1. Since

L
m∇ log pσ has at most linear growth and satisfies distant dissipativity, the proof of [22, Lem. 16]

constructs a function g ∈ Gn that is independent of the choice of σ and satisfies L
mTσg ≥ fσ for

some coercive bounded-below fσ. Similarly, the same conclusion holds for the kernel k2 by the

proof of [9, Thm. 3]. Since
(
[L]
m

)
has finite cardinality, we have L

mTσg ≥ f for a common coercive

bounded-below function f(x) , minσ fσ(x). Therefore, surely, SS(Qn, TP ,Gn) 6→ 0 by Prop. 5.

To extend this result to any Γ ≻ 0, fix some Γ ≻ 0. For any distribution P on R
d, let us write

Γ−1P to represent the distribution of Γ−1Z when Z ∼ P . Let pΓ be the density Γ−1P . Then

pΓ(x) = det(Γ)∇ log p(Γx) and ∇ log pΓ(x) = Γ∇ log p(Γx), and for any σ ∈
(
[L]
m

)
, the analog

pΓ,σ of pΓ satisfies pΓ,σ(x) = det(Γ)∇ log pσ(Γx) and ∇ log pΓ,σ(x) = Γ∇ log pσ(Γx). By the
same argument made in [10, Lem. 4], we have that ∇ log pΓ is Lipschitz and ∇ log pΓ,σ satisfies
distant dissipativity. And since

‖∇ log pΓ,σ(x)‖2
1 + ‖x‖2

=
‖Γ∇ log pσ(Γx)‖2

1 + ‖Γx‖2
1 + ‖Γx‖2
1 + ‖x‖2

≤ ‖Γ‖op(1 + ‖Γ‖op)
‖∇ log pσ(Γx)‖2

1 + ‖Γx‖2
is uniformly bounded, we can apply the same argument discussed in [10, Lem. 4], i.e., make a
global change of coordinates x 7→ Γ−1x and then invoke Theorem 6 for Γ−1P and Γ−1Qn with a
non-preconditioned kernel, thereby concluding the proof.

Classical Stein set Suppose Gn = G‖·‖ satisfies (A.2). By the proof of Theorem 3, for Γ = I and

any β ∈ (−1, 0), there is a constant c0 > 0 such that the kernel Stein set Gk,‖·‖2
⊆ c0Gn. Hence

SS(Qn, TP ,Gk,‖·‖2
) ≤ c0SS(Qn, TP ,Gn) for all n implying the result.

Graph Stein set Suppose Gn satisfies (A.3). Then the result follows as Gn contains the classical
Stein set G‖·‖ .

G Proof of Theorem 7: Wasserstein convergence of SVGD and SSVGD

G.1 Additional notation

For each ǫ > 0 and collection of n points (xn
i )

n
i=1 with associated discrete measure νn = 1

n

∑n
i=1 δxn

i
,

we define the random one-step SSVGD mapping

Tm
νn,ǫ,n(x) = x+ ǫ 1

n

∑n
j=1

L
m∇ log pσj (x

n
j )k(x

n
j , x) +∇xn

j
k(xn

j , x)

for (σj)
n
j=1 independent uniformly random size-m subsets of [L]. We also let Φm

ǫ,n(µ) denote the

random distribution of Tm
νn,ǫ,n(X) when X ∼ µ.

G.2 Proof of Theorem 7

We will prove each convergence claim by induction on r ≥ 0.
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Inductive proof of W1(Qn,r, Q∞,r) → 0 For our base case we have W1(Qn,0, Q∞,0) → 0 by
assumption.

Now, fix any r ≥ 0 and assume W1(Qn,r, Q∞,r) → 0, so that c0(1 + ‖·‖2) is uniformly Qn,r-
integrable and Qn,∞-integrable by [17, Proof of Cor. 1]. Therefore, there exists a constant C ′ > 0
such that

supn≥1 1 + ǫrc1(1 +Qn,r(‖·‖2)) + ǫrc2(1 +Q∞,r(‖·‖2)) ≤ C ′.

Now, note that

W1(Qn,r+1, Q∞,r+1) = W1(Φǫr (Qn,r),Φǫr (Q∞,r)).

To control this expression, we provide a lemma, proved in App. G.3, which establishes the pseudo-
Lipschitzness of the one-step SVGD mapping Φǫ.

Lemma 12 (Wasserstein pseudo-Lipschitzness of SVGD). Suppose that, for some c1, c2 > 0,

supz∈Rd ‖∇z(∇ log p(x)k(x, z) +∇xk(x, z))‖op ≤ c1(1 + ‖x‖2) and

supx∈Rd ‖∇x(∇ log p(x)k(x, z) +∇xk(x, z))‖op ≤ c2(1 + ‖z‖2).
Then, for any ǫ > 0 and probability measures µ, ν,

W1(Φǫ(µ),Φǫ(ν)) ≤ W1(µ, ν)(1 + ǫc1(1 + µ(‖·‖2)) + ǫc2(1 + ν(‖·‖2))).

Our pseudo-Lipschitz assumptions (7) and Lemma 12 imply

W1(Φǫr (Qn,r),Φǫr (Q∞,r)) ≤ W1(Qn,r, Q∞,r)(1 + ǫrc1(1 +Qn,r(‖·‖2)) + ǫrc2(1 +Q∞,r(‖·‖2)))
≤ C ′W1(Qn,r, Q∞,r) → 0,

proving our first claim.

Inductive proof of W1(Q
m
n,r, Qn,r) → 0 For our base case we have, W1(Q

m
n,0, Qn,0) = 0.

Now fix any r ≥ 0, let E be the event on which W1(Q
m
n,r, Qn,r) → 0 as n → ∞, and assume

P(E) = 1. Since W1(Qn,r, Q∞,r) → 0, on E we find that W1(Q
m
n,r, Q∞,r) → 0 and hence

c0(1 + ‖·‖2) is uniformly Qm
n,r-integrable and uniformly Qn,r-integrable by [17, Proof of Cor. 1].

Therefore, on E , there exists a constant C such that

supn≥1 1 + ǫrc1(1 +Qm
n,r(‖·‖2)) + ǫrc2(1 +Qn,r(‖·‖2)) ≤ C.

By the triangle inequality,

W1(Q
m
n,r+1, Qn,r+1) = W1(Φ

m
ǫr,n(Q

m
n,r),Φǫr (Qn,r))

≤ W1(Φ
m
ǫr,n(Q

m
n,r),Φǫr (Q

m
n,r)) +W1(Φǫr (Q

m
n,r),Φǫr (Qn,r)).

On E , our growth assumptions (8), the uniformly Qm
n,r-integrability of c0(1+‖·‖2), and the following

lemma, proved in App. G.4, establish that the Wasserstein distance W1(Φ
m
ǫr,n(Q

m
n,r),Φǫr (Q

m
n,r))

between one step of SSVGD and one step of SVGD from a common starting point converges to 0
almost surely as n grows.

Lemma 13 (One-step convergence of SSVGD to SVGD). Fix any triangular array of points
(xn

i )i∈[n],n≥1 in R
d, and define the discrete probability measures νn = 1

n

∑n
i=1 δxn

i
. Suppose

∇ log pσ(·)k(·, z) is continuous for each z ∈ R
d and σ ∈

(
[L]
m

)
and let

f0(x) , sup
z∈Rd,σ∈([L]

m ) ‖∇ log pσ(x)‖∞|k(x, z)|,

f1(x) , sup
z∈Rd,σ∈([L]

m ) ‖∇x(∇ log pσ(x)k(x, z))‖op.

If f0 is νn-uniformly integrable and f0, f1 are bounded on each compact set, then, for any ǫ > 0,

W1(Φ
m
ǫ,n(νn),Φǫ(νn))

a.s.→ 0 as n → ∞.

In addition, on E , our pseudo-Lipschitz assumptions (7) and Lemma 12 imply

W1(Φǫr (Q
m
n,r),Φǫr (Qn,r)) ≤ W1(Q

m
n,r, Qn,r)(1 + ǫc1(1 +Qm

n,r(‖·‖2)) + ǫc2(1 +Qn,r(‖·‖2)))
≤ CW1(Q

m
n,r, Qn,r) → 0.

Hence, on E , W1(Q
m
n,r+1, Qn,r+1)

a.s.→ 0, proving our second claim.
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G.3 Proof of Lemma 12: Wasserstein pseudo-Lipschitzness of SVGD

Assume that µ and ν have integrable means (or else the advertised claim is vacuous), and select
(X ′, Z ′) to be an optimal 1-Wasserstein coupling of (µ, ν). The triangle inequality, Jensen’s inequality,
and our pseudo-Lipschitzness assumptions imply that

‖Tµ,ǫ(x)− Tν,ǫ(z)‖2
≤ ‖x− z‖2
+ ǫ‖E[∇ log p(X ′)k(X ′, x) +∇x′k(X ′, x)− (∇ log p(X ′)k(X ′, z) +∇k(X ′, z))]‖2
+ ǫ‖E[∇ log p(X ′)k(X ′, z) +∇x′k(X ′, z)− (∇ log p(Z ′)k(Z ′, z) +∇z′k(Z ′, z))]‖2
≤ ‖x− z‖2(1 + ǫc1(1 + E[‖X ′‖2])) + ǫc2E[‖X ′ − Z ′‖2](1 + ‖z‖2)
= ‖x− z‖2(1 + ǫc1(1 + µ(‖·‖2)) + ǫc2W1(µ, ν)(1 + ‖z‖2).

Since Tµ,ǫ(X
′) ∼ Φǫ(µ) and Tν,ǫ(Z

′) ∼ Φǫ(ν), we conclude that

W1(Φǫ(µ),Φǫ(ν)) ≤ E[‖Tµ,ǫ(X
′)− Tν,ǫ(Z

′)‖2]
≤ E[‖X ′ − Z ′‖2](1 + ǫc1(1 + µ(‖·‖2)) + ǫc2W1(µ, ν)(1 + E[‖Z ′‖2])
= W1(µ, ν)(1 + ǫc1(1 + µ(‖·‖2)) + ǫc2(1 + ν(‖·‖2))).

G.4 Proof of Lemma 13: One-step convergence of SSVGD to SVGD

Note that the random one-step SSVGD mapping takes the form

Tm
νn,ǫ,n(x) = x+ ǫνn(∇xn

j
k(·, x)) + ǫ

(
L
m

)−1 ∑
σ∈([L]

m ) νnσ(∇ log pσ(·)k(·, x))

for νnσ =
(
L
m

)
L
m

1
n

∑n
j=1 Bjσδxn

j
and Bjσ = I[σ = σj ]. Moreover, by Kantorovich-Rubinstein

duality, we may write the 1-Wasserstein distance as

W1(Φ
m
ǫ,n(νn),Φǫ(νn))

= supf :M1(f)≤1 Φ
m
ǫ,n(νn)(f)− Φǫ(νn)(f)

= supf :M1(f)≤1
1
n

∑n
i=1 f(T

m
νn,ǫ,n(x

n
i ))− f(Tνn,ǫ(x

n
i ))

≤ 1
n

∑n
i=1 ‖Tm

νn,ǫ,n(x
n
i )− Tνn,ǫ(x

n
i )‖2

=
(
L
m

)−1 ǫ
n

∑n
i=1 ‖

∑
σ

L
mνn(∇ log pσ(·)k(·, xn

i ))− νnσ(∇ log pσ(·)k(·, xn
i ))‖2

≤
(
L
m

)−1 ∑
σ

ǫ
√
d

n

∑n
i=1 ‖ L

mνn(∇ log pσ(·)k(·, xn
i ))− νnσ(∇ log pσ(·)k(·, xn

i ))‖∞
≤ ǫ

√
d
(
L
m

)−1 ∑
σ suph∈Hf

|νnσ(h)− L
mνn(h)|. (15)

where we have used the triangle inequality and norm relation ‖·‖2 ≤
√
d‖·‖∞ in the penultimate

display and Hf is defined in the statement of Lemma 8.

For each σ ∈
(
[L]
m

)
, since |f0| is uniformly νn-integrable, and νnσ(|f0|IK) ≤

(
L
m

)
L
mνn(|f0|IK) for

every compact set K, we find that |f0| is uniformly νnσ-integrable for each σ. Letting IBR
(x) =

I[‖x‖2 ≤ R], for each σ, since νnσ(hIBR
)− L

mνn(hIBR
)
a.s.→ 0 for any R > 0 and any bounded h

by Lemma 10, we have suph∈Hf
|νnσ(h) − L

mνn(h)| a.s.→ 0 by Lemma 8. The result now follows

from the bound (15).
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