
Thank you reviewers.1

R1: «Setting Questions» : The task sequence is arbitrary and is chosen by the environment, which may be adversarial2

(lines 83-86). Thus the environment might present the instance sequence for different tasks in a given order. Alternatively3

the active task on trial t could be determined by the environment at random, etc. You ask “ ... what is the difference. ...4

switching constraints ... memory”: The bound is completely independent of the task sequence.5

R2: “...algorithms require some prior knowledge ...”, “parameter-free design” : See lines 293-295. Automatic6

parameter tuning has been considered since the advent of online learning, using e.g. “doubling trick”, “adaptive7

parameter rates” and “mixtures over parameters”; there is no reason to suppose such methods would not apply here.8

“ further survey .. contextual bandit ..” : Thank you for the references. We will include them in the manuscript. Note,9

however, none of them consider long term memory, the key theoretical concept of this paper.10

“Consider multitask... compare their regret upper bounds..individually” : These comparisons follow directly from the11

theorem statements. E.g., in Thm. 3, we would pay the learner complexity term
∑

h∈m(h∗) ‖h‖
2
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K on a per-task12

basis. Finally this gain in the multitask case is not just in the upper-bound but it is also reflected by the lower-bound13

(see Prop. 4).14

R3: Thank you for your comments.15

R4: “ In the online multitask expert setting, I would suggest providing a more rigorous comparison with the related16

work. As indicated above, it seems that the present framework can be cast as a problem already investigated in [1]” :17

We provide a rigorous comparison. See lines 167-169 for a discussion that includes [1] where we say about their model18

“a special case of ours where each task is associated only with a single hypothesis, i.e., no internal switching within a19

task.” Your proposed reduction would not even enable vanilla switching in a single task setting! Unless the environment20

sent a signal to switch comparators, which trivializes switching altogether.21

Further, comparing the framework of [1] to this paper. In [1] they are interested in a model where each task is associated22

with single comparator, i.e., each task in our Figure 1 would have a single color, not a sequence of colors. I suspect that23

your confusion comes from a misinterpretation of [1, Corollary 1]. When the authors of [1] use the word “switch” they24

do not mean a switch in the “comparator sequence,” but a switch in the “task-query sequence” (our vector `) i.e, if the25

environment queries task 1 on trial 1 and then queries task 5 on trial 2, then their regret bound pays a lnm for each such26

“switch.” For our bound such switches of task vector incur NO increase in regret, i.e., we strictly improve.27

“In the online multitask linear setting - and more generally the RKHS setting (Section 4), there is28

something wrong about the results. ... In this setting, it is well-known that for linear functions of29

dimension d ≥ 2 the Littlestone dimension is infinite (see e.g. [52]). So, we cannot hope to find30

sublinear regret bounds for linear functions with respect to the zero-one loss!”31

It seems that the source of your confusion is that you did not understand what is an RKHS HK or the definition of32

H(x)
K (recalling lines 58-61).33

Given a reproducing kernel K : X × X → < we denote the induced norm of the reproducing kernel34

Hilbert space (RKHS) HK as ‖·‖K (for details on RKHS see [5]). Given an instance sequence35

x := (x1, . . . , xT ), we let H(x)
K := {h ∈ HK : h(xt) ∈ {−1, 1},∀t ∈ [T ]} denote the functions in36

HK that are binary-valued on the sequence.37

Here HK is real Hilbert space i.e., a set of real-valued functions endowed with an inner product and thus a norm38

(which our bounds are in terms of). In the next sentence we define H(x)
K ⊂ HK as the subset of functions that are39

interpolants on the instance sequence x (observe that if h ∈ HK in the typical case sign(h) 6∈ HK). Since these are40

linear interpolants not halfspaces this should alleviate your complexity concerns. We provided the reference [5] for41

the definition of HK ; we do not write out the full formal definition in the paper because of its length but we note that42

RKHSs have been a mainstay of statistical learning theory for at least 30 years.43

You also misunderstand the implications of infinite Littlestone dimension for regret and mistake bounds. Yes for a44

Gaussian kernel the corresponding spaces have infinite Ldim. However, this only rules out a uniform bound. One may45

still have a non-uniform bound with respect e.g., to a norm of a given hyp. in the space, see for example Novikoff’s46

Theorem where the inverse margin corresponds to the norm of the classifier. We provide a non-uniform bound (Thm 3).47

“Theorem 50 in Appendix C” : Please read theorem statement (esp. line 1071 we recall “for any vector u such that48

|〈u,xt〉| = 1 for t = 1, . . . , T . ”). The bound is with respect to interpolants not halfspaces. Note that [33] has a new49

version in Arxiv, we refer to Lemmas 19 and 20 in version 3. These are minor algebraic and probabilistic results; the50

only connection to matrix completion is the notation. We will amend the proof to make this clear.51


