
A Proof of Theorem 3.1

We restate Theorem 3.1 below.
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Moreover, strong duality holds in the sense that the infimum of (A.1) equals the supremum of (A.2),
and a solution to (A.1) exists. If {(fi, gi)}ni=1 solves (A.2), then each (fi, gi) is a solution to the dual
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where we write (f � g)(x, y)
4
= f(x) + g(y).

Proof. We first prove the strong duality. We view C(X ) as a normed vector space with the supremum
norm. Let V = �2n

i=1C(X ) be the direct sum vector space endowed with the natural norm, i.e., for
u = {(fi, gi)}ni=1 2 V ,
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For brevity, denote ⇠i
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= µi ⌦ ⌘. We use the notation ⇠i to suggest that a more general support

measure can be used to establish the strong duality. Define J : V ! R to be, for u = {(fi, gi)}ni=1,
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Let Y 4
= C(X ). By the Riesz–Markov–Kakutani representation theorem, the continuous dual space

of Y is Y ⇤ = M(X ) with the pairing hp⇤, pi =
R
pdp⇤ for p⇤ 2 Y

⇤
, p 2 Y . Define B : V ! Y as,
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Then the negative of (A.2) becomes
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where the equality B(u) = 0 is component-wise (i.e. B(u) is the constant-zero function in Y ).
Similarly we use , < to mean component-wise inequality in C(X ). Since R⇤ : R ! R is increasing
in our assumption for quadratic and entropic regularization (6), the above program is the same as
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This is because if u 2 {u|B(u)  0} \ {u|B(u) = 0}, then for some x 2 X ,
Pn

i=1 �igi(x) > 0,
and by replacing every gi with gi �

Pn
i=1 �igi(x) the objective (A.5) can only gets smaller.

The dual problem of (A.5) can be calculated as (see Chapter III.(5.23) in [ET99])
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To get (A.7) we used the duality for regularized Wasserstein distance (5).

In order to apply classical results from convex analysis (for instance, Proposition 5.1 of Chapter III
in [ET99]) to establish strong duality and the existence of solutions, we need to show:

(a) J is a convex l.s.c. (lower-semicontinuous) function.

(b) B is convex with respect to .
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(e) There exists u0 2 V such that �B(u0) < 0.

(f) The infimum in (A.5) is finite.

Since B is linear and Y = C(X ) in our case, the conditions (b)-(e) are satisfied automatically.
Convexity of J (a) follows because R
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Next we show that J is l.s.c. with respect to the norm topology on V . Since J is convex and does not
take on values ±1, by Proposition III.2.5 of [ET99], it is enough to show that J is bounded above
in a neighborhood of 0. Fix any � > 0. As before we write u = {(fi, gi)}ni=1 2 V . Then kuk < �
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implies supx2X max(fi(x), gi(x)) < � for all i. Since X is compact, supx,y2X c(x, y) is bounded.
Hence the integrand in (A.4) is bounded for kuk < � as R⇤ is increasing, and the conclusion that J is
bounded on {u 2 V |kuk < �} follows from the fact that both ⇠i and µi are probability measures for
all i. This proves J is continuous, and hence l.s.c..

It remains to show the infimum in (A.5) is finite. Note that for u 2 V such that B(u)  0, we havePn
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Thus by Proposition III.5.1 of [ET99], the problem (A.5) is stable (Definition III.2.2 in [ET99]), and
in particular normal, so we have strong duality (Proposition III.2.1, III.2.2 in [ET99]), and the dual
problem (A.8) has at least one solution. We comment that this does not imply (A.5) has a solution.

To show the solution ⌫
⇤ to (A.8) is actually a probability measure, suppose ⌫⇤(X ) 6= 1. Consider the

inner infimum in (A.6) for a particular i. For any t 2 R, we can set f = t and g = �t. Then
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where we used the fact that R⇤ is increasing and c � 0. Either sending t ! 1 or t ! �1 shows
that the minimizer ⌫⇤ must satisfy ⌫

⇤(X ) = µi(X ) = 1, for otherwise the infimum would be �1,
which contradicts strong duality and (f).

Finally we prove the last statement of Theorem A.1. That is, if {(fi, gi)}ni=1 solves (A.2), then each
pair (fi, gi) solves (A.3). Suppose that {(fi, gi)}ni=1 solves (A.2). Let ⌫⇤ denote the solution to (A.1).
Then
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where the inequality follows from the duality (A.3) of the regularized Wasserstein distance. By strong
duality we just showed, the supremum of (A.2) equals the infimum (A.1) which is (A.9). Hence
inequality in (A.9) is equality, and we see that each pair (fi, gi) solves (A.3).

B Experimental details and additional results

Multivariate Gaussians with varying dimensions. We generate the multivariate Gaussians in
dimension d used in Table 1 in the following manner. The mean is chosen uniformly at random
in [�1, 1]d. The covariance matrix is obtained by first sampling a matrix A with uniform entries
in [�0.3, 0.3] and then taking AA

> as the covariance matrix. We reject A if its condition number
(computed with respect to 2-norm) is not in [2, 80].
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We show in Table B.1 additional results for our algorithm with different choices of Monge map
estimation methods and regularizers; in the last column we show the result of [CD14] where we use
Sinkhorn algorithm [Cut13] instead of LP (see Table 1 for results with LP) to obtain the transport
plan at every iteration.

d Ours with (d) and RL2
Ours with (e) and RL2

Ours with (d) and Re [CD14] with Sinkhorn

2 1.98⇥10�3
(1.17⇥10�4

) 2.38⇥10�3(2.48⇥10�4) 8.25 ⇥ 10�3(5.02 ⇥ 10�4) 5.22 ⇥ 10�2(5.09 ⇥ 10�4)
3 5.05⇥10�3

(6.32⇥10�4
) 5.70⇥10�3(6.90⇥10�4) 8.15 ⇥ 10�3(6.50 ⇥ 10�4) 7.46 ⇥ 10�2(3.87 ⇥ 10�4)

4 1.22⇥10�2(1.44⇥10�3) 1.27⇥10�2(1.19⇥10�3) 2.06 ⇥ 10�2(7.40 ⇥ 10�4) 8.78 ⇥ 10�2(1.40 ⇥ 10�3)
5 1.52⇥10�2(1.18⇥10�3) 2.33⇥10�2(2.86⇥10�3) 3.72 ⇥ 10�2(9.81 ⇥ 10�4) 1.00 ⇥ 10�1(7.30 ⇥ 10�4)
6 2.37⇥10�2(3.24⇥10�3) 3.27⇥10�2(2.63⇥10�3) 6.13 ⇥ 10�2(2.69 ⇥ 10�3) 1.10 ⇥ 10�1(7.93 ⇥ 10�4)
7 4.07⇥10�2(2.65⇥10�3) 4.83⇥10�2(2.90⇥10�3) 8.42 ⇥ 10�2(4.62 ⇥ 10�4) 1.16 ⇥ 10�1(5.44 ⇥ 10�4)
8 4.23⇥10�2(3.14⇥10�3) 4.79⇥10�2(2.46⇥10�3) 1.20 ⇥ 10�1(2.38 ⇥ 10�3) 1.18 ⇥ 10�1(7.07 ⇥ 10�4)

Table B.1: Additional results for the multivariate Gaussian experiment. Reported are the covariance
difference k⌃ � ⌃⇤kF where ⌃ is the MLE covariance of the barycenter computed by each method,
⌃⇤ is the ground truth covariance, and k·kF is the Frobenius norm. Smaller is better. All experiments
are repeated 5 times with the mean and standard deviation reported. Here RL2 refers to quadratic
regularization with " = 10�4, and Re refers to entropic regularization with " = 0.1. The regularizing
" is further scaled with respect to the diagonal length of the bounding box squared. For [CD14] with
Sinkhorn algorithm, we choose " = 0.1.

To briefly comment on the runtime of our algorithm (with (d)) and that of [CD14] and [CCS18], in
the 8-dimensional Gaussian experiment from Table 1, our algorithm takes around 15 minutes, [CD14]
takes 20 minutes, while [CCS18] takes an hour or longer. The simple form of Algorithm 1 and the
convex nature of (11) give rise to fast convergence of our approach.

Subset posterior aggregation. We adopted the BikeTrips dataset and preprocessing steps from
https://github.com/trevorcampbell/bayesian-coresets [CB19]. The posterior samples
in the subset posterior aggregation experiment are generated using NUTS sampler [HG14] imple-
mented by the Stan library [Car+17]. To enforce appropriate scaling of the prior in the subset
posteriors we use stochastic approximation trick [SLD18], i.e. scaling the log-likelihood by the
number of subsets. Please see the code for further details.

In Table B.2, we show additional results comparing [CD14] and our algorithm in three different
losses: difference in mean, covariance, and the (unregularized) 2-Wasserstein distance computed
using 5000 samples. See Figure 3 for a comparison with varying number of samples used to compute
the 2-Wasserstein distance.

Loss [CD14] Ours with (d) and RL2 Ours with (e) and RL2

kµ � µ⇤k 4.79⇥10�3(3.19⇥10�6) 4.79⇥10�3(5.96⇥10�7) 4.79⇥10�3
(1.80⇥10�7

)

k⌃ � ⌃⇤k 2.56⇥10�7(2.17⇥10�9) 2.43⇥10�7
(6.57⇥10�8

) 9.51⇥10�7(6.62⇥10�9)
WLP

2 (⌫, ⌫⇤) 4.85⇥10�3
(8.90⇥10�6

) 4.86⇥10�3(9.40⇥10�6) 4.96⇥10�3(6.10⇥10�6)

Table B.2: Comparison of subset posterior aggregation results in difference in mean, covariance, and
2-Wasserstein distance. All experiments are repeated 20 times with the mean and standard deviation
reported. Variables with a superscript star (µ⇤

,⌃⇤
, ⌫

⇤) are quantities from the full posterior, and
variables without a star are from the computed barycenter. The mean and covariance are estimated
with sufficiently many samples from the barycenter, while the 2-Wasserstein distance is computed
using 5000 samples from both the barycenter and the full posterior.
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