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A Proofs of the lemmas used in Theorem 1

A.1 Proof of Lemma 1

We denote by DKL(πγ ||πγ̃) the Kullback-Leibler divergence between the distributions πγ and πγ̃ .
Since πγ̃ is (m+ γ̃)-strongly log-concave, the transportation cost inequality (Gozlan and Léonard,
2010, Corollary 7.2) yields

W 2
2 (πγ̃ , πγ) ≤ 2

m+ γ̃
DKL(πγ ||πγ̃). (11)

Let us denote by cγ the logarithm of the normalizing constant for πγ so that πγ(θ) = exp(−f(θ)−
(1/2)γ‖θ‖22 + cγ). Similarly, we denote by cγ̃ the logarithm of the normalizing constant of πγ̃ . This
readily yields

DKL(πγ ||πγ̃) =

∫
Rp
πγ(θ) log

(
πγ(θ)

πγ̃(θ)

)
dθ

=

∫
Rp
πγ(θ)

(
1/2(γ̃ − γ)‖θ‖22 + cγ − cγ̃

)
dθ

= 1/2(γ̃ − γ)µ2(πγ) + cγ − cγ̃ .

Using the inequality e−x ≤ 1 − x + (1/2)x2 for all x > 0 implies the following upper bound on
cγ − cγ̃ :

cγ − cγ̃ = log

(∫
Rp
πγ(θ) exp

(
1/2(γ − γ̃)‖θ‖22

)
dθ

)
≤ log

(
1 + 1/2(γ − γ̃)µ2(πγ) + 1/8(γ − γ̃)2µ4(πγ)

)
.

Since log(1 + x) ≤ x for x > −1 we get

DKL(πγ ||πγ̃) ≤ 1/8(γ − γ̃)2µ4(πγ).
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Since m+ γ ≥ 0, the distribution πγ is log-concave. Thus, in view of (Dalalyan et al., 2019, Remark
3), we have the inequality µ4(πγ) ≤ 442µ2

2(πγ). Finally, combining these bounds with (11), we get

W2(πγ̃ , πγ) ≤
√

2

m+ γ̃
× (γ̃ − γ)µ

1/2
4 (πγ)√
8

≤ 11µ2(πγ)√
m+ γ̃

(γ̃ − γ).

This completes the proof of the lemma.

A.2 Proof of Lemma 2

For k ∈ N ∪ {0}, define

hk(γ) =

∫
Rp
‖θ‖k2 exp

(
−f(θ)− γ‖θ‖22/2

)
dθ.

If π ∈ Pk(Rp) then the function hk is continuous on [0; +∞). Indeed, if the sequence {γn}n
converges γ0, when n→ +∞, then the function ‖θ‖k2 exp

(
−f(θ)− (1/2)γn‖θ‖22

)
is upper-bounded

by ‖θ‖k2 exp (−f(θ)). Thus in view of the dominated convergence theorem, we can interchange the
limit and the integral. Since, by definition,

µk(πγ) =
hk(γ)

h0(γ)
,

we get the continuity of µ2(πγ) and µ4(πγ). Let us now prove that hk(t) is continuously differentiable,
when π ∈ Pk+2(Rp). The integrand function in the definition of hk is a continuously differentiable
function with respect to t. In addition, its derivative is continuous and is as well integrable on Rp, as
we supposed that π has the (k + 2)-th moment. Therefore, Leibniz integral rule yields the following

h′k(γ) = −1

2

∫
Rp
‖θ‖k+2

2 exp
(
−f(θ)− γ‖θ‖22/2

)
dθ = −1

2
hk+2(t).

The latter yields the smoothness of hk. Finally, in order to prove the monotony of µ2(πγ), we will
simply calculate its derivative

(µ2(πγ))
′

= − 1

2h0(γ)
h4(γ)− h′0(γ)

h0(γ)2
h2(γ)

= −1

2
µ4(πγ) +

h22(γ)

2h0(γ)2

=
1

2

(
µ2
2(πγ)− µ4(πγ)

)
.

Since the latter is always negative, this completes the proof of the lemma.

A.3 Proof of Lemma 3

From the definition of Wasserstein distance, we have

W2

(
νPLD
t+δ ,Qt,δ

)
≤ ‖L̃t+δ −LPLD

t+δ‖L2 .

In view of the definition of the process L̃, we can write

L̃t+δ −LPLD
t+δ =

∫ t+δ

t

(
∇f(LPLD

s )−∇f(L̃s) + α(s)LPLD
s − α(t)L̃s

)
ds.

Therefore we have

‖L̃t+δ −LPLD
t+δ‖L2

≤
∥∥∥∥∫ t+δ

t

(
∇f(LPLD

s )−∇f(L̃s)
)
ds︸ ︷︷ ︸

:=T1

∥∥∥∥
L2

+

∥∥∥∥ ∫ t+δ

t

(
α(s)LPLD

s − α(t)L̃s

)
ds︸ ︷︷ ︸

:=T2

∥∥∥∥
L2

.
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Now let us analyze these two terms separately. We start with T1:

‖T1‖L2
=

∥∥∥∥∥
∫ t+δ

t

(
∇f(LPLD

s )−∇f(L̃s)
)
ds

∥∥∥∥∥
L2

≤
∫ t+δ

t

∥∥∥∇f(LPLD
s )−∇f(L̃s)

∥∥∥
L2

ds

≤M
∫ t+δ

t

‖LPLD
s − L̃s‖L2

ds.

These are due to the Minkowskii inequality and the Lipschitz continuity of the gradient. In order
to bound the second term T2, we will add and subtract the term α(t+ s)L̃t+s. Similar to the case
above, we get the following upper bound:

‖T2‖L2 ≤
∫ t+δ

t

α(s)
∥∥LPLD

s − L̃s
∥∥
L2
ds+

∫ t+δ

t

∣∣α(s)− α(t)
∣∣ ∥∥L̃s∥∥L2

ds

=

∫ δ

0

α(t+ s)
∥∥LPLD

t+s − L̃t+s
∥∥
L2
ds+

∫ δ

0

∣∣α(t+ s)− α(t)
∣∣ ∥∥L̃t+s∥∥L2

ds.

Recall that L̃t+s is the solution of Langevin SDE with an (m + α(t))-strongly convex potential
function, and Qt,s is its distribution on Rp. Thus, the triangle inequality yields∥∥L̃t+s∥∥L2

= W2(Qt,s, δ0) ≤W2(Qt,s, πα(t)) +W2(πα(t), δ0)

≤W2(νPLD
t , πα(t)) exp(−ms− α(t)s) +

√
µ2(πα(t))

≤W2(νPLD
t , πα(t)) +

√
µ2(πα(t)) := Vt.

Summing up, we have∥∥LPLD
t+δ − L̃t+δ

∥∥
L2
≤
∫ δ

0

(
M + α(t+ s)

)
‖LPLD

t+s − L̃t+s‖L2ds+ α̃t(δ)Vt,

where α̃t(δ) is an auxiliary function defined as

α̃t(δ) :=

∫ δ

0

|α(t+ s)− α(t)| ds.

Now let us define Φ(s) = ‖LPLD
t+s − L̃t+s‖L2 . The last inequality can be rewritten as

Φ(δ) ≤
∫ δ

0

(
M + α(t+ s)

)
Φ(s) ds+ α̃t(δ)Vt.

The (integral form of the) Gronwall inequality, lemma 5, implies that

Φ(δ) ≤ Vt
∫ δ

0

α̃t(s)
(
M + α(t+ s)

)
e
∫ δ
s
(M+α(t+u)) du ds+ α̃t(δ)Vt

= Vt

∫ δ

0

α̃′t(s) e
∫ δ
s
(M+α(t+u)) du ds

≤ Vt α̃t(δ) exp

{
Mδ +

∫ δ

0

α(t+ u) du

}
.

This completes the proof.

A.4 Different forms of the Gronwall inequality

In this section, we provide two forms of the Gronwall inequality that are used in the present work.
For the sake of the self-containedness, the proofs of these inequalities are also provided.

14



Lemma 4 (Differential form). Let A : [a, b] → R and B : [a, b] → R be two functions. If the
function Φ : [a, b]→ R satisfies the recursive differential inequality

Φ′(x) ≤ A(x)Φ(x) +B(x), ∀x ∈ [a, b], (12)

then it also satisfies the inequality

Φ(x) ≤ Φ(a) exp

{∫ x

a

A(z) dz

}
+

∫ x

a

B(s) exp

{∫ x

s

A(z) dz

}
ds, ∀x ∈ [a, b].

Proof. To ease notation, we set E(x) = exp{−
∫ x
a
A(z) dz}. By multiplying both sides of (12) by

E(x), we get (
Φ(x)E(x)

)′
≤ B(x)E(x), ∀x ∈ [a, b].

Integrating this inequality, we arrive at

Φ(x)E(x) ≤ Φ(a)E(a) +

∫ x

a

B(s)E(s) ds.

Dividing both sides of this inequality by E(x) > 0 and taking into account that E(a) = 1, we get the
claim of the lemma.

Lemma 5 (Integral form). Let A : [a, b] → [0,+∞) and B : [a, b] → R be two functions. If the
function Φ : [a, b]→ R satisfies the recursive integral inequality

Φ(x) ≤
∫ x

a

A(s)Φ(s) ds+B(x), ∀x ∈ [a, b],

then it also satisfies the inequality

Φ(x) ≤
∫ x

a

A(s)B(s) exp

{∫ x

s

A(z) dz

}
ds+B(x), ∀x ∈ [a, b]. (13)

Proof. We set

Ψ(x) = exp

{
−
∫ x

a

A(z) dz

}∫ x

a

A(s)Φ(s) ds.

We have

Ψ′(x) = −A(x)Ψ(x) + exp

{
−
∫ x

a

A(z) dz

}
A(x)Φ(x)

≤ −A(x)Ψ(x) + exp

{
−
∫ x

a

A(z) dz

}
A(x)

(∫ x

a

A(s)Φ(s) ds+B(x)
)

= −A(x)Ψ(x) +A(x)Ψ(x) +A(x)B(x) exp

{
−
∫ x

a

A(z) dz

}
.

Therefore,

Ψ(x) ≤ Ψ(a) +

∫ x

a

A(s)B(s) exp

{
−
∫ s

a

A(z) dz

}
ds.

Replacing Ψ by its expression and using the fact that Ψ(a) = 0, we get

exp

{
−
∫ x

a

A(z) dz

}∫ x

a

A(s)Φ(s) ds ≤
∫ x

a

A(s)B(s) exp

{
−
∫ s

a

A(z) dz

}
ds.

This implies that ∫ x

a

A(s)Φ(s) ds ≤
∫ x

a

A(s)B(s) exp

{∫ x

s

A(z) dz

}
ds.

Combining this inequality with (13), we get the claim of the lemma.
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B Proof of Proposition 1

For the penalty factor α(t) = 1/(A+ 2t), we get β(t) =
∫ t
0
α(s) ds = (1/2) log

(
1 + (2/A)t

)
. This

implies that √
µ2(π) e−β(t) + 11µ2(π)

√
α(t) =

√
Aµ2(π) + 11µ2(π)√

A+ 2t
.

Finally, the middle term in the right hand side of (2) takes the form

11µ2(π)

∫ t

0

|α′(s)|√
α(s)

eβ(s)−β(t)ds =
11µ2(π)√
A+ 2t

∫ t

0

2

A+ 2s
ds

=
11µ2(π)√
A+ 2t

log (1 + (2/A)t).

Combining these relations, we get the claim of the proposition.

C (Weakly) convex potentials: what is known and what we can hope for

Many recent papers investigated the case of strongly convex potential; this case is now rather well
understood. Let us briefly summarize here some facts and conjectures that can shed some light on the
broader case of weakly convex potential. This might help to understand what can be expected to be
proved in the framework s<tudied in this work.

The ergodicity properties of the Langevin process are closely related to such notions of functional
analysis as the spectral gap, the Poincaré and the log-Sobolev inequalities. Thus, the generator
of a Markov semi-group associated with an m-strongly convex potential has a spectral-gap CSG at
least equal to m. This property was exploited by Dalalyan (2017) to derive guarantees on the LMC
algorithm. It is known that the spectral gap exists if and only if the invariant density satisfies the
Poincaré inequality. Furthermore, the spectral gap is equal to the inverse of the Poincaré constant
CP. Furthermore, distributions associated to m-strongly convex potentials satisfy the log-Sobolev
inequality with the constant CLS ≤ 1/m. This property was used by Durmus and Moulines (2019) to
extend the guarantees to the Wasserstein-2 distance.

Note that the log-Sobolev inequality is stronger than the Poincaré inequality and CP ≤ CLS. For
m-strongly convex potentials, we have C−1SG = CP ≤ CLS ≤ 1/m. Results in (Dalalyan, 2017; Durmus
and Moulines, 2019) imply that in order to get a Wasserstein distance smaller than ε

√
p/m, it suffices

to perform a number of LMC iterations proportional to (M/m)2ε−2, up to logarithmic factors.
A formal proof of the fact that the same result holds for the densities satisfying the log-Sobolev
inequality with constant 1/m (but which are not necessarily m-strongly log-concave) was given in
(Vempala and Wibisono, 2019).

On the other hand, it was established by (Bobkov, 1999) that any log-concave distribution satisfies
the Poincaré inequality. However, the Poincaré constant might depend on the dimension. In (Kannan
et al., 1995), the authors conjectured that there is a universal constant CKLS > 0 such that for any
log-concave distribution π on Rp,

CP ≤ CKLS‖Eπ[XX>]‖op := CKLSµop(π). (KLS)

Despite important efforts made in recent years (see (Alonso-Gutiérrez and Bastero, 2015; Cattiaux
and Guillin, 2018)), this conjecture is still unproved. Finally, in the recent paper (Chewi et al.,
2020), Corollary 4 establishes that W2(µLD

t , π) ≤
√

2CPχ2(ν0||π) e−t/CP . While the exponential in
t convergence to zero is a very appealing property of this result, it comes with two shortcomings. To
the previously mentioned difficulty of assessing the Poincaré constant, one has to add the challenging
problem of finding a meaningful upper bound on the χ2-divergence between the initial distribution
and the target.

What can we hope for in the light of the previous discussion? As shown in (Dalalyan, 2017, Lemma
5), for f satisfying (m,M)-SCGL, choosing ν0 = N (x∗,M

−1Ip) yields χ2(ν0‖π) ≤ (M/m)p/2.
In the case m = 0, it might be possible to replace m by 1/CP in this result. If in addition, we admit
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inequality KLS, then we get

W 2
2 (µLD

t , π) ≤ 2CP (MCP)p/2e−2t/CP

≤ 2CKLSµop(π)
(
MCKLSµop(π)

)p/2
e−2t/CKLSµop(π).

This is, probably, the best upper bound one could hope for in the general log-concave setting by
Langevin diffusion based algorithms. We see that it has three drawbacks as compared to our result
stated in Proposition 1. First, it requires the knowledge of a minimizer x∗. Second, it involves the
Lipschitz constant M of the gradient. Third, it is heavily based on CKLS, which might be very large.

D Penalized Gradient Flow

D.1 Proof of Theorem 2

We recall that for every γ ∈ R, is given by fγ(·) := f(·) + γ‖ · ‖22/2. We define xγ the minimum
point of fγ . In particular, x0 = x∗. The triangle inequality yields

‖XPGF
t − x∗‖2 ≤ ‖XPGF

t − xα(t)‖2 + ‖xα(t) − x0‖2 (14)

for every t > 0. We will bound these two terms separately. A(A, q) for γ = 0 and γ̃ = α(t) yields
the following bound on the second term:

‖xα(t) − x0‖2 ≤ Dα(t)1−q‖x∗‖1−q.

To bound the first term of (14), we aim at obtaining a Gronwall-type inequality for the function

φ(t) := ‖XPGF
t − xα(t)‖2.

To this end, we consider an auxiliary stochastic process {X̃u : u ≥ t}, defined as a solution of the
following differential equation

dX̃u = −
(
∇f(X̃u) + α(t)X̃u

)
du,

with the starting point X̃t = Xt. This is in fact the gradient flow corresponding to the strongly-
convex potential fα(t). The triangle inequality yields

φ(t+ δ) ≤
∥∥∥XPGF

t+δ − X̃t+δ

∥∥∥
2

+
∥∥∥X̃t+δ − xα(t)

∥∥∥
2

+
∥∥xα(t) − xα(t+δ)∥∥2 .

From the linear convergence of the gradient flow of an α(t)-strongly convex function, we get the
following: ∥∥∥XPGF

t+δ − xα(t)
∥∥∥
2
≤ exp

(
− δα(t)

) ∥∥∥X̃t − xα(t)
∥∥∥
2

= exp (−δα(t))φ(t).

In order to bound the distance between xα(t) and xα(t+δ), we use again A(A, q) condition, thus∥∥xα(t) − xα(t+δ)∥∥2 ≤ D

αq(t)
(α(t)− α(t+ δ))‖x∗‖1−q2 .

Thus we obtain a bound for φ(t+ δ), that depends linearly on φ(t):

φ(t+ δ) ≤
∥∥∥XPGF

t+δ − X̃t+δ

∥∥∥
2

+ e−δα(t)φ(t) +
D

αq(t)
(α(t)− α(t+ δ))‖x∗‖1−q2 . (15)

Let us subtract φ(t) from both sides of (15) and divide by δ:

φ(t+ δ)− φ(t)

δ
≤ 1

δ
·
∥∥∥XPGF

t+δ − X̃t+δ

∥∥∥
2

+
exp (−δα(t))− 1

δ
· φ(t) (16)

+
D(α(t)− α(t+ δ))

δαq(t)
‖x∗‖1−q2 .

The next lemma provides an upper bound on
∥∥∥XPGF

t+δ − X̃t+δ

∥∥∥
2

showing that it is o(δ), when δ → 0.
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Lemma 6. Suppose f satisfies (m,M)-SCGL with m = 0. Then for every t, δ > 0, and for every
integrable function α : [t, t+ δ]→ [0,∞),

‖X̃t+δ −XPGF
t+δ ‖2 ≤

(
φ(t) + ‖xα(t)‖2

)
exp

{
Mδ +

∫ δ

0

α(t+ u) du

}∫ δ

0

∣∣α(t+ s)− α(t)
∣∣ ds.

The proof can be found in the Appendix D.2. When δ tends to 0, according to Lemma 6, the first term
of the right-hand side of (16) vanishes. Thus, after passing to the limit, we are left with the following
Gronwall-type inequality:

φ′(t) ≤ −α(t)φ(t)− Dα′(t)

αq(t)
· ‖x∗‖1−q2 . (17)

Here we tacitly used the fact that ‖xα(t+δ)‖2 ≤ ‖x0‖2. Recalling that the function β(t) is given by
β(t) =

∫ t
0
α(s)ds, one can rewrite (17) as

(
φ(t)eβ(t)

)′ ≤ −Dα′(t)eβ(t)

αq(t)
‖x∗‖1−q2 .

Therefore we infer the following bound on φ(t):

φ(t) ≤ φ(0)e−β(t) − D‖x∗‖1−q2

∫ t

0

α′(s)

αq(s)
eβ(s)−β(t)ds.

Combining this bound with (7), we obtain the inequality

‖XPGF
t − x0‖2 ≤ ‖XPGF

0 − xα(0)‖2e−β(t) − D‖x∗‖1−q2

∫ t

0

α′(s)

αq(s)
eβ(s)−β(t)ds+ D‖x∗‖1−q2 α(t)1−q.

Since the process XPGF
t starts at point 0, ‖XPGF

0 − xα(0)‖2 = ‖xα(0)‖2. The next lemma bounds
‖xα(0)‖2.

Lemma 7. The function γ 7→ ‖xγ‖2 is a non-increasing continuous function on the interval [0,∞).

Therefore, ‖xα(0)‖2 ≤ ‖x0‖2 = ‖x∗‖2, which completes the proof of Theorem 2.

D.2 Proof of Lemma 6

From the definition of X̃ , we can write

X̃t+δ −XPGF
t+δ =

∫ t+δ

t

(
∇f(XPGF

s )−∇f(X̃s) + α(s)XPGF
s − α(t)X̃s

)
ds.

Therefore we have

‖X̃t+δ −XPGF
t+δ ‖2 ≤

∥∥∥∥∫ t+δ

t

(
∇f(XPGF

s )−∇f(X̃s)
)
ds︸ ︷︷ ︸

:=T1

∥∥∥∥
2

+

∥∥∥∥∫ t+δ

t

(
α(s)XPGF

s − α(t)X̃s

)
ds︸ ︷︷ ︸

:=T2

∥∥∥∥
2

.

Now let us analyze these two terms separately. We start with T1:

‖T1‖2 =

∥∥∥∥∥
∫ t+δ

t

(
∇f(XPGF

s )−∇f(X̃s)
)
ds

∥∥∥∥∥
2

≤
∫ t+δ

t

∥∥∥∇f(XPGF
s )−∇f(X̃s)

∥∥∥
2
ds

≤M
∫ t+δ

t

‖XPGF
s − X̃s‖2ds.
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These are due to the Minkowskii inequality and the Lipschitz continuity of the gradient. In order
to bound the second term T2, we will add and subtract the term α(t+ s)X̃t+s. Similar to the case
above, we get the following upper bound:

‖T2‖2 ≤
∫ t+δ

t

α(s)
∥∥XPGF

s − X̃s

∥∥
2
ds+

∫ t+δ

t

∣∣α(s)− α(t)
∣∣ ∥∥X̃s

∥∥
2
ds

=

∫ δ

0

α(t+ s)
∥∥XPGF

t+s − X̃t+s

∥∥
2
ds+

∫ δ

0

∣∣α(t+ s)− α(t)
∣∣ ∥∥X̃t+s

∥∥
2
ds.

Recall that X̃t+s is the gradient flow of an (m+ α(t))-strongly convex potential function. Thus, the
triangle inequality yields∥∥X̃t+s

∥∥
2
≤
∥∥X̃t+s − x(t)

∥∥
2

+ ‖x(t)‖2
≤
∥∥X̃t − xt

∥∥
2

exp(−ms− α(t)s) + ‖xt‖2
≤
∥∥XPGF

t − xt
∥∥
2

+ ‖xt‖2 := Vt.

Summing up, we have∥∥XPGF
t+δ − X̃t+δ

∥∥
2
≤
∫ δ

0

(
M + α(t+ s)

)
‖XPGF

t+s − X̃t+s‖2ds+ α̃t(δ)Vt,

where α̃t(δ) is an auxiliary function defined as

α̃t(δ) :=

∫ δ

0

|α(t+ s)− α(t)| ds.

Now let us define Φ(s)L := ‖XPGF
t+s − X̃t+s‖2. The last inequality can be rewritten as

Φ(δ) ≤
∫ δ

0

(
M + α(t+ s)

)
Φ(s) ds+ α̃t(δ)Vt.

The (integral form of the) Gronwall inequality implies that

Φ(δ) ≤ Vt
∫ δ

0

α̃t(s)
(
M + α(t+ s)

)
e
∫ δ
s
(M+α(t+u)) du ds+ α̃t(δ)Vt

= Vt

∫ δ

0

α̃′t(s) e
∫ δ
s
(M+α(t+u)) du ds

≤ Vt α̃t(δ) exp

{
Mδ +

∫ δ

0

α(t+ u) du

}
.

This completes the proof.

D.3 Proof of Lemma 7

Suppose that γ1 < γ2. We want to show that ‖xγ1‖2 > ‖xγ2‖2. Let us consider the function fγ2 .
We have that

fγ2(xγ2) ≤ fγ2(xγ1) = f(xγ1) + γ2‖xγ1‖2/2.
The definition of fγ1 yields

fγ2(xγ2) ≤ fγ1(xγ1) + (γ2 − γ1)‖xγ1‖2/2
≤ fγ1(xγ2) + (γ2 − γ1)‖xγ1‖2/2
≤ fγ2(xγ2) + (γ2 − γ1)

(
‖xγ1‖2 − ‖xγ2‖2

)
/2.

Here the second passage is valid, as xγ1 is the minimum point of fγ1 . Since γ2 > γ1, the difference
‖xγ1‖2 − ‖xγ2‖2 is positive. Thus the monotony is proved.

To prove the continuity of the function we take a sequence γn that tends to γ0 and show that
xγn → xγ0 . Assumption A(D, q) yields

‖xγn − xγ0‖2 ≤
D

max(γn, γ0)q
|γn − γ0|‖x∗‖2, ∀n ∈ N.

Since q < 1, the ratio of |γn − γ0| and max(γn, γ0)q tends to zero, when n→ 0. This concludes the
proof.

19



E Examples of functions satisfying condition A(D, q)

In this section we consider several functions that are convex but not strongly convex and satisfy
A(D, q) condition presented in Section 3.

E.1 Locally strongly convex functions

We prove that locally strongly convex functions satisfy A(D, 0). Recalling Lemma 7 we get that
‖xγ‖2 ≤ ‖x∗‖2. Thus the we can consider the function only on B(0, ‖x∗‖2). Since f is locally
strongly convex, there exists m∗ such that it is m∗-strongly convex in the ball B(0, ‖x∗‖2). The latter
means, that fγ̃ is (m∗ + γ̃)-strongly convex. Therefore (Nesterov, 2004)[Theorem 2.1.9] yields the
following:

‖xγ − xγ̃‖2 ≤
1

m∗ + γ̃
‖∇fγ̃(xγ)−∇fγ̃(xγ̃)‖2.

Using the optimality condition for differentiable functions one gets ∇fγ̃(xγ) = (γ̃ − γ)xγ for all
γ ≥ 0. Therefore, for every 0 ≤ γ < γ̃, we obtain

‖xγ − xγ̃‖2 ≤
1

m∗ + γ̃
‖(γ̃ − γ)xγ‖2 ≤

γ̃ − γ
m∗
‖xγ‖2.

The latter is true due to Lemma 7. Thus f satisfies A(1/m∗, 0).

E.2 Cubic function f(x) = ‖x− x∗‖32
In this section we show that the cubic function satisfies A(1/

√
3‖x∗‖2, 1/2). It is straightforward to

verify that the function f is convex. fγ is strongly convex and the optimality condition for xγ yields
the following equality:

∇f(xγ) + γxγ = 3‖xγ − x∗‖2(xγ − x∗) + γxγ = 0. (18)

In the case when x∗ = 0, the penalized minimum point xγ equals 0, for every γ, thus we suppose
in the following that x∗ 6= 0. Since the norm is scalar, (18) yields that the vectors xγ − x∗ and xγ
are co-linear. Therefore there exists a real number λγ such that xγ = λγx∗. Lemma 7 implies that
|λγ | ≤ 1, thus the following quadratic equality is true:

−3‖x∗‖2(λγ − 1)2x∗ + γλγx∗ = 0. (19)

As said in the beginning, x∗ 6= 0, therefore it its coefficient that is equal to zero. Solving the quadratic
equation with respect to λγ , we get the following formula:

λγ = 1− γ

γ/2 +
√

3γ‖x∗‖2 + γ2/4
.

According to Lemma 7, for every γ̃ > γ, we have |λγ | > |λγ̃ |. On the other hand, from (19) one
deduces that λγ > 0, for every γ > 0. Thus, inserting the found value for λγ , we obtain the following
inequality:

‖xγ − xγ̃‖2 = ‖x∗‖2

(
γ̃

γ̃/2 +
√

3γ̃‖x∗‖2 + γ̃2/4
− γ

γ/2 +
√

3γ‖x∗‖2 + γ2/4

)

≤ (γ̃ − γ)‖x∗‖2
γ̃/2 +

√
3γ̃‖x∗‖2 + γ̃2/4

≤ (γ̃ − γ)‖x∗‖1/22√
3γ̃

.

Therefore f satisfies A(1/
√
3, 1/2).

E.3 Power function f(x) = ‖x− x∗‖a2
For a ≥ 2, we consider the function f(x) = ‖x − x∗‖a2 . We show here that f satisfies
A((1/a)1/(a−1), (a−2)/(a−1)). Since fγ is a differentiable strongly-convex function, we get the fol-
lowing equation for xγ :

a‖xγ − x∗‖a−22 (xγ − x∗) + γxγ = 0. (20)
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Similar to the previous case, we notice that xγ − x∗ and xγ are co-linear. Thus, there exists λγ such
that xγ = (1− λγ)x∗. Since x∗ is assumed to be non-zero, in order to calculate xγ , one needs to
solve the following equation:

|λγ |a−2λγ =
γ(1− λγ)

a‖x∗‖a−2
. (21)

Thus the p-dimensional equation (20) reduces to equation (21) involving a one-dimensional unknown.
Lemma 7 yields λγ̃ > λγ > 0 for every γ̃ > γ ≥ 0. In addition, from (21), we have that λγ ≤ 1
for every γ > 0. It is straightforward to verify that for every γ ≥ 0, (21) has exactly one solution
satisfying these conditions.
Lemma 8. Let α ≥ 1. If (λs : s ∈ (0, 1)) satisfies λαs = s(1− λs) for every s ∈ (0, 1), then

|λs − λs′ | ≤
|s− s′|

(s ∨ s′)(α−1)/α
, ∀s′, s ∈ (0, 1).

Proof. Without loss of generality, we assume that s′ ≤ s. Computing the derivative of both sides of
the identity λαs = s(1− λs), we get

λ′s =
1− λs

αλα−1s + s
≥ 0.

This implies that λs′ ≤ λs. In addition,

λs − λs′ ≤
λαs − λαs′
λα−1s

=
s(1− λs)− s′(1− λs′)

λα−1s

=
(s− s′)(1− λs′)

λα−1s

− s(λs − λs′)
λα−1s

.

Rearranging the terms, we arrive at

λs − λs′ ≤
(s− s′)(1− λs′)
λα−1s

(
1 + s

λα−1
s

)
=

(s− s′)(1− λs′)
λα−1s + s

In the last fraction, the numerator is bounded by s− s′, while the denominator satisfies

λα−1s + s = (s(1− λs))(α−1)/α + s

≥ (s(1− s1/α))(α−1)/α + s

≥ s(α−1)/α(1− s1/α) + s = s(α−1)/α.

This completes the proof of the lemma.

Applying this lemma to (21), we get

λγ̃ − λγ ≤
γ̃ − γ

a‖x∗‖a−22 (γ̃/a‖x∗‖a−22 )(a−2)/(a−1)
=

γ̃ − γ
a1/(a−1)‖x∗‖(a−2)/(a−1)2 γ̃(a−2)/(a−1)

,

for all γ, γ̃ satisfying 0 ≤ γ ≤ γ̃ ≤ a‖x∗‖a−22 . In conclusion, we get

‖xγ̃ − xγ‖2 ≤
γ̃ − γ

a1/(a−1)‖x∗‖(a−2)/(a−1)2 γ̃(a−2)/(a−1)
‖x∗‖2

≤ γ̃ − γ
γ̃(a−2)/(a−1)

(‖x∗‖2/a)1/(a−1).

This concludes the proof.
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