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Abstract

This paper introduces the f -divergence variational inference (f -VI) that general-
izes variational inference to all f -divergences. Initiated from minimizing a crafty
surrogate f -divergence that shares the statistical consistency with the f -divergence,
the f -VI framework not only unifies a number of existing VI methods, e.g. Kull-
back–Leibler VI [1], Rényi’s α-VI [2], and χ-VI [3], but offers a standardized
toolkit for VI subject to arbitrary divergences from f -divergence family. A gen-
eral f -variational bound is derived and provides a sandwich estimate of marginal
likelihood (or evidence). The development of the f -VI unfolds with a stochastic
optimization scheme that utilizes the reparameterization trick, importance weight-
ing and Monte Carlo approximation; a mean-field approximation scheme that
generalizes the well-known coordinate ascent variational inference (CAVI) is also
proposed for f -VI. Empirical examples, including variational autoencoders and
Bayesian neural networks, are provided to demonstrate the effectiveness and the
wide applicability of f -VI.

1 Introduction

Variational inference (VI) is a machine learning method that makes Bayesian inference computation-
ally efficient and scalable to large datasets. For decades, the dominant paradigm for approximate
Bayesian inference p(z|x) = p(z, x)/p(x) has been Markov-Chain Monte-Carlo (MCMC) algo-
rithms, which estimate the evidence p(x) =

∫
p(z, x)dz via sampling. However, since sampling

tends to be a slow and computationally intensive process, these sampling-based approximate in-
ference methods fade when dealing with the modern probabilistic machine learning problems that
usually involve very complex models, high-dimensional feature spaces and large datasets. In these
instances, VI becomes a good alternative to perform Bayesian inference. The foundation of VI is
primarily optimization rather than sampling. To perform VI, we posit as a family of approximate (or
recognition) densities Q and find the member q∗(z) ∈ Q that minimizes the statistical divergence
to the true posterior D(q(z)‖p(z|x)). Meanwhile, since VI also has many elegant and favorable
theoretical properties, e.g. variational bounds of the true evidence, it has become the foundation of
many popular generative and machine learning models.

Recent advances in VI can be roughly categorized into three groups, improvements over traditional VI
algorithms [4, 5], developments of scalable VI methods [6–8], and explorations for tighter variational
bounds [9, 10]. Comprehensive reviews on VI’s background and progression can be found in [11, 12].
While most of these advancements were built on the classical VI associated with the Kullback–Leibler
(KL) divergence, some recent efforts tried to extend the VI framework to other statistical divergences
and showed promising results. Among these efforts, Rényi’s α-divergence and χ-divergence as the
root divergences (or generators) of the KL divergence were employed for VI in [2, 3, 13], which
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not only broadens the variety of statistical divergences for VI, but makes KL-VI a special case of
their methods. Stochastic optimization methods from KL-VI, such as stochastic VI [6] and black-box
VI [14], were generalized to Rényi’s α-VI and χ-VI in [2, 3], and the modified algorithms with
new divergences outperformed the classical KL-VI in some benchmarks of Bayesian regressions
and image reconstruction. Nevertheless, mean-field approximation, an important type of KL-VI
algorithms including the coordinate ascent variational inference (CAVI) and expectation propagation
(EP) algorithms [11, 15, 16], were regretfully not revisited or extended for these new divergences.

As the root divergence of the Rényi’s α-divergence, χ-divergence and many other useful diver-
gences [17, 18], f -divergence is a more inclusive statistical divergence (family) and was utilized to
improve the statistical properties [19, 20], sharpness [10, 21], and surely the generality of variational
bounds [10, 21, 22]. However, most of these works only dealt with some portions of f -divergences
for their favorable statistical properties, e.g. mass-covering [19] and tail-adaptive [20], and did not
develop a systematic VI framework that harbors all f -divergences. Meanwhile, since i) the regular
f -divergence does not explicitly induce an f -variational bound as elegant as the ELBO [11], χ
upper bound (CUBO) [3], or Rényi variational bound (RVB) [2], and ii) only specific choices of
f -divergence result in an f -variational bound that trivially depends on the evidence [12], a thorough
and comprehensive analysis on the f -divergence VI has been due for a long time.

In this paper, we extend the traditional VI to f -divergence, a rich family that comprises many well-
known divergences as special cases [17], by offering some new insights into the f -divergence VI and
a unified f -VI framework that encompasses a number of recent developments in VI methods. An
explicit benefit of f -VI is that it allows to perform VI or Bayesian approximation with even more
variety of divergences, which can potentially bring us sharper variational bounds, more accurate
estimate of true evidence, faster convergence rates, more criteria for selecting approximate model
q(z), etc. We hope this effort can be the last brick to complete the building of f -divergence VI and
motivate more useful and efficient VI algorithms in the future. After reviewing the f -divergence and
introducing a crafty surrogate f -divergence that is interchangeable with the regular f -divergence, we
make the following contributions:
c1) We enrich the f -divergence VI theory by introducing an f -VI scheme via minimizing a surrogate

f -divergence, which makes our f -VI framework compatible with the traditional VI approaches
and naturally unifies an amount of existing VI methods, such as KL-VI [1], α-VI [2], χ-VI [3],
and their related developments [7–10, 20].

c2) We derive an f -variational bound for the evidence and equip it with the upper/lower bound
criteria and an importance-weighted (IW-)bound. The f -variational bound is realized with an
arbitrary f -divergence and unifies many existing bounds, such as ELBO, CUBO, RVB, and a
number of generalized evidence bounds (GLBO) [10].

c3) We propose a universal optimization solution that comprises a stochastic optimization algorithm
and a mean-field approximation algorithm for f -VI subject to all f -divergences, whether or
not the f -variational bounds trivially depend on the evidence. Experiments on Bayesian neural
networks and variational autoencoders (VAEs) show that f -VI can be comparable to, or even
better than, a number of the state-of-the-art variational methods.

2 Preliminary of f -divergence

We first introduce some definitions and properties related to f -divergence, which are to be adopted in
our subsequent exposition.

2.1 f -divergence

An f -divergence that measures the difference between two continuous probability distributions q and
p can be defined as follows [17].

Definition 1 The f -divergence from probability density functions q(z) to p(z) is defined as

Df (q(z)‖p(z)) =:

∫
f

(
q(z)

p(z)

)
p(z) dz = Ep

[
f

(
q(z)

p(z)

)]
, (1)

where f(·) is a convex function with f(1) = 0.

Definition 1 assumes that q(z) is absolutely continuous w.r.t. p(z), which might not be exhaustive, but
avoids the unnecessary entanglements with measure theory details. One can however refer to [17, 18]
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for a more rigorous treatment. Most prevailing divergences adopted in VI can be regarded as the
special cases of f -divergence and hence be restored by choosing a proper f -function f(·). Table 1
and [17, 18, 21] present the relationship between some well-known statistical divergences adopted
in VI and their f -functions. Intuitively, one can perform f -VI by minimizing either the forward
f -divergence Df (p‖q) or the reverse f -divergence Df (q‖p), and [21, 23] provide some heuristic
discussions on their statistical differences. Since VI based on the reverse KL divergence is more
tractable to compute and more statistically sensible, we will develop our f -VI framework primarily
based on the reverse f -divergence, while one can still unify or commute between the forward and
reverse f -divergences via the dual function f∗, which is also referred to as the perspective function
or the conjugate symmetry of f in [3, 17, 24].

Definition 2 Given a function f : (0,∞)→ R, the dual function f∗ : (0,∞)→ R is defined as
f∗(t) = t · f(1/t).

One can verify that the dual function f∗ has the following properties: i) (f∗)∗ = f ; ii) if f is convex,
f∗ is also convex, and iii) if f(1) = 0, then f∗(1) = 0. With dual function f∗, an identity between
the forward and reverse f -divergences can be established [3]:

Df∗(p‖q) =

∫
p(z)

q(z)
· f
(
q(z)

p(z)

)
· q(z) dz = Df (q‖p).

In order to facilitate the derivation of f -variational bound, especially when the latent variable model
is involved [21, 25], we introduce a surrogate f -divergence Dfλ

defined by the generator function

fλ(·) = f(λ·)− f(λ), (2)
where λ ≥ 0 is constant. It is straightforward to verify that f and fλ have the same convexity, and
f(1) = 0 implies fλ(1) = 0, which induces a valid (surrogate) f -divergence, denoted as Dfλ , that
can virtually replace Df when needed2. To justify the closeness between divergences Df and Dfλ ,
we first note that Df and Dfλ share the same minimum point at p = q, then we have the following
statement.

Proposition 1 Given two probability distributions q and p, a convergent sequence limn→∞ λn =
1, λn ≥ 0, and a convex function f : (0,+∞) → R such that f(1) = 0 and f(·) is uniformly
continuous, the f -divergences between q and p satisfy

Dfλn
(q‖p)→ Df (q‖p) (3)

almost everywhere as n→∞.

2.2 Shifted homogeneity

We then introduce a class of f -functions equipped with a structural advantage in decomposition,
which will be invoked later to derive the coordinate-wise VI algorithm under mean-field assumption.

Definition 3 A convex function f belongs to F{0,1}, if f(1) = 0, and for any t, t̃ ∈ R, we have

f(tt̃) = tγf(t̃) + f(t)t̃η , (4)
where γ ∈ R, and η ∈ {0, 1}. Function f is type 0 shifted homogeneous or f ∈ F0 if η = 0, and
type 1 shifted homogeneous or f ∈ F1 if η = 1.

This special class of functions allows to decompose an f -function into two or more (by iterations)
terms, each of which is a product of an f -function and an exponent. In Table 1, we show that the
f -functions of many well-known divergences can be classified as F{0,1} functions.

Table 1: Divergences Df (q‖p) and homogeneity decomposition.

Divergences f(t) f(tt̃)

KL divergence [1] t log t tf(t̃) + f(t)t̃
General χn-divergence [3] tn − 1, n ∈ R\(0, 1) tnf(t̃) + f(t)
Hellinger α-divergenceHα [18] (tα − 1)/(α− 1), α ∈ R+\{1} tαf(t̃) + f(t)
Rényi’s α-divergence3 [2] Dα(q‖p) = (α− 1)−1 log[1 + (α− 1)Hα(q‖p)]

2Essentially, Df
λ

is an f -divergence between a positive measure P(·, λ) and a probability measure Q(·).
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The duality property between F0 and F1 is stated in Proposition 2.

Proposition 2 Given f0 ∈ F0 and f1 ∈ F1, the dual functions f∗0 ∈ F1 and f∗1 ∈ F0.

When f ∈ F{0,1}, we can establish a more profound relationship, in contrast with Proposition 1,
between f -divergence Df and surrogate divergence Dfλ .

Proposition 3 When f ∈ F{0,1} and λ > 0, an f -divergence Df and its surrogate divergence Dfλ
satisfy

Dfλ(q‖p) = λγDf (q‖p). (5)

By virtue of the equivalence relationship revealed in Proposition 1 and 3, we can interchangeably
use f -divergence Df and surrogate divergence Dfλ , and the parameter λ of surrogate divergence
provides an additional degree of freedom when deriving the variational bounds and VI algorithms.

3 Variational bounds and optimization

While it was difficult to retrieve an f -variational bound [10, 20, 21], which is an expectation over
q and unifies the existing variational bounds [2, 3, 11], by directly manipulating the original f -
divergence in (1), we will show that such a general variational bound can be found when minimizing
a crafty surrogate f -divergence.

3.1 f -variational bounds

Given a convex function f such that f(1) = 0 and a set of i.i.d. samples D = {x(n)}Nn=1, the
generator function fp(D)−1 with p(D) > 0 can induce a surrogate f -divergence. Our f -VI is then
initiated from minimizing the following reverse (surrogate) f -divergence

Dfp(D)−1 (q(z)‖p(z|D)) =
1

p(D)
· Eq(z)

[
f∗
(
p(z,D)

q(z)

)]
− f

(
1

p(D)

)
. (6)

Multiplying both sides of (6) by p(D) and with rearrangements, we have

Lf (q,D) = Eq(z)
[
f∗
(
p(z,D)

q(z)

)]
= f∗(p(D)) + p(D) ·Dp(D)−1 (q(z)‖p(z|D)) . (7)

For a given evidence p(D), we can minimize the f -divergence Dfp(D)−1 (q(z)‖p(z|D)) by minimiz-
ing the expectation in (7), which is defined as the f -variational bound Lf (q,D). Consequently, by
the non-negativity of f -divergence [17, 18], we can establish the following inequality.

Theorem 1 Dual function of evidence f∗(p(D)) is bounded above by f -variational bound Lf (q,D)

Lf (q,D) = Eq(z)
[
f∗
(
p(z,D)

q(z)

)]
≥ f∗(p(D)), (8)

and equality is attained when q(z) = p(z|D), i.e. Dp(D)−1 (q(z)‖p(z|D)) = 0.4

By properly choosing f -function, f -variational bound Lf (q,D) and (8) can restore the most existing
variational bounds and the corresponding inequalities, e.g. f(t) = t log(t) for ELBO in [11] and
f(t) = t1−n − t for CUBO in [3]. See Supplementary Material (SM) for more restoration examples
and some new variational bounds, e.g. an evidence upper bound (EUBO) under KL divergence. While
the assumption of p(D) > 0 or the existence of p(D)−1 in (6) might lay additional restrictions in
some situations, we can circumvent them by resorting to the f -VI minimizing the forward surrogate
f -divergence Dfp(D)

(p(z|D)‖q(z)). SM provides more details for this alternative. Additionally,
Lf (q,D) in (8) can be further sharpened by leveraging multiply-weighted posterior samples [9], i.e.,
importance-weighted VI.

3Renyi’s α-divergence cannot be directly restored from f -divergence (1), while it is a one-to-one transforma-
tion ofHα of the same order α ∈ R+\{1}.

4Inequality (8) can also be derived by resorting to Jensen’s inequality. Since f∗ is convex, we have

Eq(z)
[
f∗

(
p(z,D)
q(z)

)]
≥ f∗

(
Eq(z)

[
p(z,D)
q(z)

])
= f∗(p(D)).
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Corollary 1 When 1 ≤ L1 ≤ L2, the importance-weighted f -variational bound LIW
f (q,D, L) and

the f -variational bound Lf (q,D) satisfy

Lf (q,D) ≥ LIW
f (q,D, L1) ≥ LIW

f (q,D, L2)
L→∞−−−−→ f∗(p(D)),

where LIW
f (q,D, L) is defined as

LIW
f (q,D, L) = Ez1:L∼q(z)

[
f∗

(
1

L

L∑
l=1

p(zl,D)

q(zl)

)]
,

and z1:L = {zl}Ll=1 are L ∈ N∗ i.i.d. samples from q(z).

For clarity and conciseness, we will develop the subsequent results primarily based on Lf (q,D). Nev-
ertheless, our readers should feel safe to replace Lf (q,D) with LIW

f (q,D, L) in the following context
and obtain improved outcomes. More interesting results can be observed from (8). After composing
both sides of (8) with the inverse dual function (f∗)−1, we have the following observations:

o1) When the dual function f∗ is increasing (or non-decreasing) on R+, the composition gives an
evidence upper bound:

(f∗)−1 ◦ Lf (q,D) ≥ p(D).

o2) When the dual function f∗ is decreasing (or non-increasing) on R+, the composition gives an
evidence lower bound:

(f∗)−1 ◦ Lf (q,D) ≤ p(D).

o3) When the dual function f∗ is non-monotonic on R+, the composition gives a local evidence
bound by applying o1) or o2) on a monotonic interval of f∗.

Based on these observations, we can readily imply a sandwich formula for evidence p(D), which is
essential for accurate VI [12].

Corollary 2 Given convex functions f and g such that f(1) = g(1) = 0, on an interval where f∗ is
increasing and g∗ is decreasing, the evidence p(D) satisfies

(g∗)−1 ◦ Eq(z)
[
g∗
(
p(z,D)

q(z)

)]
≤ p(D) ≤ (f∗)−1 ◦ Eq(z)

[
f∗
(
p(z,D)

q(z)

)]
. (9)

The evidence bounds in (9) are akin to the GLBO, which was proposed on the basis of a few
assumptions and intuitions in [10]. Corollary 1 and Corollary 2 interprets and supplements GLBO
with rigorous f -VI analysis and explicit instructions on choosing f -function. Compared with the
unilateral variational bounds, the bilateral bounds in (9) reveal more information and allow to estimate
p(D) with more accuracy. To sharpen these bilateral bounds, we need to properly choose the functions
f and g and the recognition model q(z) such that supg,q g

−1 ◦ Lg(q,D) and inff,q f
−1 ◦ Lf (q,D)

can be attained. For a selected family of q(z), various choices of f and g will lead to evidence bounds
of different sharpness and optimization efficiency. The model selection of approximate distribution
q(z) is a fundamental problem inherited by all VI algorithms, and a feasible solution is to compare
the performance of candidate models while fixing an f - or g-function [10] or alternating among some
common divergences. Once the functions f and g and the recognition model q(z) are determined,
we can approximate the optimal distribution q∗(z) in q(z) or minimize Lf (q,D) by adjusting the
parameters in q(z), which does not require the dual function f∗ or g∗ be invertible as in (9) and will
be discussed in the succeeding subsections.

3.2 Stochastic optimization

While classical VI is limited to conditionally conjugate exponential family models [11, 12, 23], the
stochastic optimization makes VI applicable for more modern and complicated problems [6, 14].
To minimize Lf (q,D) with stochastic optimization, we supplement the preceding VI formulation
with more details. The approximate model is formulated as qθ(z), where θ ∈ RM are the parameters
to be optimized. While some papers [7, 10, 26] also consider and optimize the parameters φ in the
generative model pφ, we prefer to treat the parameters φ as latent variables z for conciseness. An
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intuitive approach to apply stochastic optimization is to compute the standard gradient of Lf (q,D)
or LIW

f (q,D) w.r.t. θ

∇θLf (qθ,D) = Eqθ(z)
[
f ′
(
qθ(z)

p(z,D)

)
· ∇θ log qθ(z)

]
, (10)

where f ′(t) denotes ∂f(t)/∂t. Since∇θ log qθ(z) is known as the score function in statistics [27] and
is a part of the REINFORCE algorithm [26, 28], (10) is called score function or REINFORCE gradient.
An unbiased Monte Carlo (MC) estimator for (10) can be obtained by drawing z1, z2, · · · , zK from
qθ(z) and

∇θL̂f (qθ,D) =
1

K

K∑
k=1

[
f ′
(
qθ(zk)

p(zk,D)

)
· ∇θ log qθ(zk)

]
. (11)

However, since the variance of estimator (11) can be too large to be useful in practice, the score
function gradient is usually employed along with some variation reduction techniques, such as the
control variates and Rao-Blackwellization [14, 26, 29].

An alternative to the score function gradient is the reparameterization gradient, which empirically has
a lower estimation variance [7, 21] and can be integrated with neural networks. The reparameterization
trick requires the existence of a noise variable ε ∼ p(ε) and a mapping gθ(·) such that z = gθ(ε).
Instead of directly sampling {zk}Kk=1 from qθ(z), the reparameterization estimators rely on the
samples {εk}Kk=1 drawn from p(ε), for example, a Gaussian latent variable z ∼ qθ(z) = N (µ,Σ)
can be reparameterized with a standard Gaussian variable ε ∼ N (0, 1) and a mapping z = gθ(ε) =

µ+ Σ
1
2 ε. More detailed interpretations as well as recent advances in the reparameterization trick can

be found in [7, 30–32]. The gradient of Lf (q,D) after reparameterization becomes

∇θLrep
f (qθ,D) = ∇θEp(ε)

[
f∗
(
p(gθ(ε),D)

qθ(gθ(ε))

)]
. (12)

An unbiased MC estimator for (12) is

∇θL̂
rep
f (qθ,D) =

1

K

K∑
k=1

∇θf∗
(
p(gθ(εk),D)

qθ(gθ(εk))

)
, (13)

where ε1, ε2, · · · , εK are drawn from p(ε). We also give an unbiased MC estimator for the importance-
weighted reparameterization gradient in (14), which will be utilized in later experiments:

∇θL̂
IW, rep
f (qθ,D, L) =

1

K

K∑
k=1

∇θf∗
(

1

L

L∑
l=1

p(gθ(εk,l),D)

qθ(gθ(εk,l))

)
, (14)

where noise samples {εk,1:L}Kk=1 are drawn from p(ε). All the aforementioned estimators for f -
variational bounds and gradients are unbiased, while composing these estimator with other functions,
e.g. inverse dual functions in (9), can sometimes trade the unbiasedness for numerical stability [2, 3,
10].

Nonetheless, the preceding estimators and VI algorithms rely on the full dataset D and can be
handicapped to tackle the problems with large datasets. Meanwhile, since the properties of f∗-
functions are flexible, it is non-trivial to represent the f -variational bounds by the expectation on a
datapoint-wise loss, except for some specific divergences, such as KL divergence [7] or divergences
with dual functions f∗ satisfying f∗(tt̃) = f∗(t) + f∗(t̃), i.e. f∗ ∈ F0 with γ = 0. Therefore, to
deploy the mini-batch training, we integrate the aforementioned estimators with the average likelihood
technique [2]. Given a mini-batch of M datapoints DM = {xn1, · · · , xnM} ⊂ D, we approximate
the full log-likelihood by log p(D|z) ≈ N/M ·

∑M
m=1 log p(xnm|z). Hence, the ratio p(z,D)/q(z)

in (10-14) can be approximated by log[p(z,D)/q(z)] ≈ N/M ·
∑M
m=1 log p(xnm|z) + log p(z)−

log q(z). When z contains local hidden variables, the prior distribution p(z) and approximate
distribution q(z) should also be approximated accordingly. This proxy to the full dataset wraps up our
black-box f -VI algorithm, which is essentially a stochastic optimization algorithm that only relies on
a mini-batch of data in each iteration. A reference black-box f -VI algorithm and the optimization
schemes for a few concrete divergences are given in the SM.
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3.3 Mean-field approximation

Mean-field approximation, which simplifies the original VI problem for tractable computation, is
historically an important VI algorithm before the emergence of stochastic VI. As the cornerstone of
several variational message passing algorithms [33, 34], mean-field VI is still evolving [4, 5, 11, 12]
and worthy to be generalized for f -VI. A mean-field approximation assumes that all latent variables
{zj}Jj=1 are independent, and the recognition model can be fully factorized as q(z) =

∏J
j=1 qj(zj),

which simplifies the derivations and computation but might lead to less accurate results. The mean-
field f -VI algorithm alternatively updates each marginal distribution qj to minimize the f -variational
bound Lf (q,D). For the f -divergences with f ∈ F1, such as KL divergence, the coordinate-wise
update rule for qj(zj) is obtained from fixing the other variational factors q−j(z−j) =

∏
6̀=j q`(z`)

and singling out qj(zj) from f -variational bound Lf (q,D) in (8), which gives

q∗j (zj) ∝ f∗
−1

(
Eq−j

[
f∗

(
p(z,D)

q−j(z−j)

)])
. (15)

For the f -divergences with f ∈ F0, such as χ- or Rényi’s α-divergences, the coordinate-wise
update rule for qj(zj) is obtained by applying the same procedures to the f -variational bound
Lf (q,D) = Eq(z)[f(p(z,D)/q(z))] from the forward f -VI (see SM), which gives

q∗j (zj) ∝ f−1
(
Eq−j

[
f

(
p(z,D)

q−j(z−j)

)])
. (16)

When deriving these mean-field f -VI update rules (see SM), we only exploit the homogeneity of f -
or f∗-function. CAVI [11, 15], EP [16], and other types of mean-field VI algorithms can be restored
from (15) and (16) by choosing a proper f - or f∗-function. A reference mean-field VI algorithm
along with a concrete realization example under KL divergence is provided in the SM. When the
inverse function f∗−1 or f−1 in (15) or (16) is not analytically solvable, we can either generate a
lookup table for f∗−1 or f−1 and numerically evaluate (15) or (16) or resort to the stochastic f -VI.

4 Experiments

The effectiveness and the wide applicability of f -VI are demonstrated with three empirical examples
in this section. We first verify the theoretical results with a synthetic example. The f -VI is then
respectively implemented for a Bayesian neural network for linear regression and a VAE for image
reconstruction and generation. Adam optimizer with recommended parameters in [35] is employed for
stochastic optimization, if not specified. Empirical results and data are reported by their mean value
and 95% confidence intervals. More detailed descriptions on the experimental settings, supplemental
results, and the demonstration of the mean-field approximation method are provided in the SM.

4.1 Synthetic example

We first demonstrate the f -VI theory with a vanilla example. Consider a batch of i.i.d. datapoints
generated by a latent variable model x = sin(z) + N (0, 0.01), z ∼ UNIF(0, π), where N (µ, σ2)
denotes a univariate normal distribution with mean µ and variance σ2, and UNIF(a, b) denotes a
uniform distribution on interval [a, b]. Subsequently, for simplicity, we posit a prior distribution
p(z) = UNIF(0, π), a likelihood distribution p(x|z) = N (sin(z), 0.01), and an approximate model
qθ(z) = UNIF( 1−θ

2 π, θ+1
2 π), which is a uniform distribution centered at z = π/2 with width θπ.

To verify the order and the sharpness of f -variational bounds, we fix θ = 1.1 and approximate the
true evidence p(x), IW-RVB (α = 2), (IW-)CUBO (n = 2), and (IW-)ELBO (L = 8) in Figure 1(a),
which substantiates Theorem 1, Corollary 1 and 2. A variational bound associated with the total
variation distance, an f -divergence with non-monotonic f∗ function, is analyzed in the SM, and
more approximation results when q(z) = N (π/2, 1) can be found in [10]. To demonstrate the
effectiveness of stochastic f -VI algorithm, we set an initial value θ0 = 1.5 and update the recognition
distribution qθ(z) by optimizing the IW-RVB (α = 3), (IW-)CUBO (n = 2), and (IW-)ELBO. The
IW-reparameterization gradient (14) with L = 3 and K = 1000 is adopted for the training on a
dataset of 500 observations, and the f -variational bounds in Figure 1(b) are evaluated on a test set of
50 observations. The sandwich-type bounds in Figure 1(b) give an estimate of the test log-evidence,
which is roughly between −235 and −300.
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Figure 1: f -variational bounds on synthetic data.

4.2 Bayesian neural network

We then implement the f -VI for a single-layer neural network for Bayesian linear regression. Our
experimental setup generally follows the regression settings in [2], while some parameters vary to
adapt to the f -VI framework. The linear regression is performed with twelve datasets from the
UCI Machine Learning Repository [36]. Each dataset is randomly split into 90%/10% for training
and testing, and six different dual functions f∗(·) in LIW

f (q,D, L) are selected such that three well-
established f -VIs (KL-VI, Rényi’s α-VI with α = 3, and χ-VI with n = 2) and three new f -VIs (VIs
subject to total variation distance and two custom f -divergences) are tested and compared. One of the
custom f -divergences, inspired by [19], is defined by a convex dual function f∗c1(t) = f̃∗(t)− f̃∗(1),
where f̃∗(t) = −1/6 · (log t+ t0)3 − 1/2 · (log t+ t0)2 − (log t+ t0)− 1, t = p(z,D)/q(z), and
t0 ∈ R is a parameter to be optimized. The IW-reparameterization gradient with L = 5, K = 50
and mini-batch size of 32 is employed for training. After 20 trials with 500 training epochs in
each trial, the regression results are evaluated by the test root mean squared error (RMSE) and test
negative log-likelihood reported in Table 2. The performance of custom fc1-VI matches the results of
well-established f -VIs on most datasets, and the custom fc1-VI quantitatively outperforms others on
some datasets, e.g. Fish Toxicity and Stock. A complete version of Table 2, including the regression
results of the other two new f -VIs, and more detailed descriptions on the training process, such as
the architecture of neural network, training parameters, numerical stability and estimator biasedness,
are provided in the SM.

Table 2: Average test error and negative log likelihood.

Dataset Test RMSE (lower is better) Test negative log-likelihood (lower is better)

KL-VI χ-VI α-VI fc1-VI KL-VI χ-VI α-VI fc1-VI

Airfoil 2.16±.07 2.36±.14 2.30±.08 2.34±.09 2.17±.03 2.27±.03 2.26±.02 2.29±.02
Aquatic 1.12±.06 1.20±.06 1.14±.07 1.14±.06 1.54±.04 1.60±.08 1.54±.07 1.54±.06
Boston 2.76±.36 2.99±.37 2.86±.36 2.87±.36 2.49±.08 2.54±.18 2.48±.13 2.49±.13
Building 1.38±.12 2.82±.51 1.83±.22 1.80±.21 6.62±.02 6.94±.13 6.79±.03 6.74±.04
CCPP 4.05±.09 4.14±.11 4.06±.08 4.33±.12 2.82±.02 2.84±.03 2.82±.02 2.95±.01
Concrete 5.40±.24 3.32±.34 5.32±.27 5.26±.21 3.10±.04 2.61±.18 3.09±.04 3.09±.03
Fish Toxicity 0.88±.04 0.90±.04 0.89±.04 0.88±.03 1.28±.04 1.27±.04 1.29±.04 1.29±.03
Protein 1.93±.19 2.45±.42 1.87±.17 1.97±.21 2.00±.07 2.01±.08 2.04±.08 2.21±.04
Real Estate 7.48±1.41 7.51±1.44 7.46±1.42 7.52±1.40 3.60±.30 3.70±.45 3.59±.32 3.62±.33
Stock 3.85±1.12 3.90±1.09 3.88±1.13 3.82±1.11 -1.09±.04 -1.09±.04 -1.09±.04 -1.09±.04
Wine .642±.018 .640±.021 .638±.018 .643±.019 .966±.027 .965±.028 .964±.025 .975±.027
Yacht 0.78±.12 1.18±.18 0.99±.12 1.00±.18 1.70±.02 1.79±.03 1.82±.01 2.05±.01

4.3 Bayesian variational autoencoder

We also integrate the f -VI with a Bayesian VAE for image reconstruction and generation on the
datasets of Caltech 101 Silhouettes [37], Frey Face [38], MNIST [39], and Omniglot [40]. By replac-
ing the conventional ELBO loss function of VAE [7, 41] with the more flexible f -variational bound
loss functions, we test and compare the f -VAEs associated with three well-known f -divergences
(KL-divergence, Rényi’s α-divergence with α = 3, and χ-divergence with n = 2) and three new
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f -divergences (total variation distance and two custom f -divergences). The dual function for total
variation distance is f∗(t) = |t− 1|. The custom fc1-variational bound loss is induced by the afore-
mentioned dual function f∗c1(t) = f̃∗(t)− f̃∗(1) with t0 = 0. The custom fc2-variational bound loss
is induced by dual function f∗c2(t) = log2 t + log t, which is convex on t = p(z,D)/q(z) ∈ (0, 1).
The reparameterization gradient with K = 3, L = 1 is used for training. After 20 trials with 200
training epochs in each trial, the average test reconstruction errors (lower is better) measured by
cross-entropy are listed in Table 3. In f -VAE example, the performances of three new f -VIs also
rival the results of three well-known f -VIs on most datasets. Reconstructed and generated images,
architectures of the encoder and decoder networks, and more detailed interpretations on the custom
f -functions and training process of f -VAEs are given in the SM.

Table 3: Average test reconstruction errors of f -VAEs.

KL-VI χ-VI α-VI TV-VI fc1-VI fc2-VI

Caltech 101 73.80±2.27 73.84±2.16 74.95±2.76 74.32±2.26 74.87±2.56 74.85±2.94
Frey Face 160.85±.72 160.57±.95 161.06±1.16 161.11±1.00 160.52±.88 160.65±.87
MNIST 59.06±.40 62.13±.50 61.90±.69 62.44±.41 59.60±.25 59.53±.42
Omniglot 109.62±.20 110.57±.28 110.81±.32 110.21±.31 107.13±.39 108.29±.28

5 Conclusion

We have introduced a general f -divergence VI framework equipped with a rigorous theoretical
analysis and a standardized optimization solution, which together extend the current VI methods to a
broader range of statistical divergences. Empirical experiments on the popular benchmarks imply that
this f -VI method is flexible, effective, and widely applicable, and some custom f -VI instances can
attain state-of-the art results. Future work on f -VI may include finding the f -VI instances with more
favorable properties, more efficient f -VI optimization methods, and VI frameworks and theories that
are more universal than the f -VI.

Broader Impact
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