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Abstract

We describe a procedure for explaining neurons in deep representations by iden-
tifying compositional logical concepts that closely approximate neuron behavior.
Compared to prior work that uses atomic labels as explanations, analyzing neurons
compositionally allows us to more precisely and expressively characterize their
behavior. We use this procedure to answer several questions on interpretability in
models for vision and natural language processing. First, we examine the kinds of
abstractions learned by neurons. In image classification, we find that many neurons
learn highly abstract but semantically coherent visual concepts, while other polyse-
mantic neurons detect multiple unrelated features; in natural language inference
(NLI), neurons learn shallow lexical heuristics from dataset biases. Second, we see
whether compositional explanations give us insight into model performance: vision
neurons that detect human-interpretable concepts are positively correlated with task
performance, while NLI neurons that fire for shallow heuristics are negatively cor-
related with task performance. Finally, we show how compositional explanations
provide an accessible way for end users to produce simple “copy-paste” adversarial
examples that change model behavior in predictable ways.

1 Introduction

In this paper, we describe a procedure for automatically explaining logical and perceptual abstractions
encoded by individual neurons in deep networks. Prior work in neural network interpretability
has found that neurons in models trained for a variety of tasks learn human-interpretable concepts,
e.g. faces or parts-of-speech, often without explicit supervision [} (10} [11} 27]. Yet many existing
interpretability methods are limited to ad-hoc explanations based on manual inspection of model
visualizations or inputs [[10} 26} 27, 35,138} 39]. To instead automate explanation generation, recent
work [5,111] has proposed to use labeled “probing datasets” to explain neurons by identifying concepts
(e.g. dog or verb) closely aligned with neuron behavior.

However, the atomic concepts available in probing datasets may be overly simplistic explanations of
neurons. A neuron might robustly respond to images of dogs without being exclusively specialized
for dog detection; indeed, some have noted the presence of polysemantic neurons in vision models
that detect multiple concepts [12}27]. The extent to which these neurons have learned meaningful
perceptual abstractions (versus detecting unrelated concepts) remains an open question. More
generally, neurons may be more accurately characterized not just as simple detectors, but rather as
operationalizing complex decision rules composed of multiple concepts (e.g. dog faces, cat bodies,
and car windows). Existing tools are unable to surface such compositional concepts automatically.

We propose to generate explanations by searching for logical forms defined by a set of composition
operators over primitive concepts (Figure [I). Compared to previous work [5]], these explanations
serve as better approximations of neuron behavior, and identify behaviors that help us answer a
variety of interpretability questions across vision and natural language processing (NLP) models.
First, what kind of logical concepts are learned by deep models in vision and NLP? Second, do the
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Figure 1: Given a set of inputs (a) and scalar neuron activations (b) converted into binary masks (c),
we generate an explanation via beam search, starting with an inventory of primitive concepts (d), then
incrementally building up more complex logical forms (e). We attempt to maximize the IoU score of
an explanation (f); depicted is the IoU of Myg3(x) and (water OR river) AND NOT blue.

quality and interpretability of these learned concepts relate to model performance? Third, can we use
the logical concepts encoded by neurons to control model behavior in predictable ways? We find that:

1. Neurons learn compositional concepts: in image classification, we identify neurons that
learn meaningful perceptual abstractions (e.g. tall structures) and others that fire for unrelated
concepts. In natural language inference (NLI), we show that shallow heuristics (based on
e.g. gender and lexical overlap) are not only learned, but reified in individual neurons.

2. Compositional explanations help predict model accuracy, but interpretability is not always
associated with accurate classification: in image classification, human-interpretable ab-
stractions are correlated with model performance, but in NLI, neurons that reflect shallower
heuristics are anticorrelated with performance.

3. Compositional explanations allow users to predictably manipulate model behavior: we
can generate crude “copy-paste” adversarial examples based on inserting words and image
patches to target individual neurons, in contrast to black-box approaches [1,136, [37].

2 Generating compositional explanations

Consider a neural network model f that maps inputs x to vector representations 7 € R?. f might
be a prefix of a convolutional network trained for image classification or a sentence embedding
model trained for a language processing task. Now consider an individual neuron f,,(x) € R and its
activation on a set of concrete inputs (e.g. ResNet-18 [15]] layer 4 unit 483; Figure [Tp-b). How might
we explain this neuron’s behavior in human-understandable terms?

The intuition underlying our approach is shared with the NetDissect procedure of Bau et al. [3;
here we describe a generalized version. The core of this intuition is that a good explanation is a
description (e.g. a named category or property) that identifies the same inputs for which f,, activates.
Formally, assume we have a space of pre-defined atomic concepts C' € C where each concept is a
function C' : x — {0, 1} indicating whether x is an instance of C. For image pixels, concepts are
image segmentation masks; for the water concept, C'(x) is 1 when x is an image region containing
water (Figure|1[d). Given some measure § of the similarity between neuron activations and concepts,
NetDissect explains the neuron f,, by searching for the concept C' that is most similar:
EXPLAIN-NETDISSECT(n) = argmax d(n, C). (1)
cec
While d can be arbitrary, Bau et al. [3]] first threshold the continuous neuron activations f,, (x) into
binary masks M,,(x) € {0,1} (Figure ). This can be done a priori (e.g. for post-ReLU activations,
thresholding above 0), or by dynamically thresholding above a neuron-specific percentile. We can
then compare binary neuron masks and concepts with the Intersection over Union score (IoU, or
Jaccard similarity; Figure [Tf):

§(n,C) £1oU(n,C) = [ > 1(Mn(x) AC(x))] / [ D L(Mn(x) v C(x))]. 2)

X X



Compositional search. The procedure described in Equation|1|can only produce explanations from
the fixed, pre-defined concept inventory C. Our main contribution is to combinatorially expand the
set of possible explanations to include logical forms L£(C) defined inductively over C via composition
operations such as disjunction (OR), conjunction (AND), and negation (NOT), e.g. (L1 AND Lo)(x) =
L1(x) A Ly(x) (Figure[lf). Formally, if ,, is the set of n-ary composition functions, define £(C):

1. Every primitive concept is a logical form: VC € C, we have C' € L(C).

2. Any composition of logical forms is a logical form: V7, w € Q,,, (L1,...,L,) € L(C)",
where £(C)" is the set of 7)-tuples of logical forms in £(C), we have w(L, ..., L,) € L(C).

Now we search for the best logical form L € £(C):

EXPLAIN-COMP(n) = arg max IoU(n, L). 3)
LEL(C)

The arg max in Equation [3|ranges over a structured space of compositional expressions, and has the
form of an inductive program synthesis problem [23]. Since we cannot exhaustively search £(C), in
practice we limit ourselves to formulas of maximum length NV, by iteratively constructing formulas
from primitives via beam search with beam size B = 10. At each step of beam search, we take the
formulas already present in our beam, compose them with new primitives, measure IoU of these new
formulas, and keep the top B new formulas by IoU, as shown in Figure [Tk.

3 Tasks

The procedure we have described above is model- and task-agnostic. We apply it to two tasks in
vision and NLP: first, we investigate a scene recognition task explored by the original NetDissect
work [5], which allows us to examine compositionality in a task where neuron behavior is known to
be reasonably well-characterized by atomic labels. Second, we examine natural language inference
(NLI): an example of a seemingly challenging NLP task which has recently come under scrutiny due
to models’ reliance on shallow heuristics and dataset biases [13} 114,22, 25,130, 37]]. We aim to see
whether compositional explanations can uncover such undesirable behaviors in NLI models.

Image Classification. NetDissect [|5] examines whether
a convolutional neural network trained on a scene recog-
nition task has learned detectors that correspond to mean-
ingful abstractions of objects. We take the final 512-
unit convolutional layer of a ResNet-18 [15] trained on
the Places365 dataset [40]], probing for concepts in the
ADE20k scenes dataset [41] with atomic concepts C de-
fined by annotations in the Broden dataset [3]]. There are
1105 unique concepts in ADE20k, categorized by Scene,
Object, Part, and Color (see Figure 2] for examples).

street flower headboard  pink
(scene) (object) (part) (color)

| 1
Figure 2: Example concepts from the

Broden dataset [5], reproduced with per-
mission.

Broden has pixel-level annotations, so for each input image X € R”*W inputs are indexed by
pixels (¢,7): x; ; € X. Let f,,(x; ;) be the activation of the nth neuron at position (7, j) of the image
X, after the neuron’s activation map has been bilinearly upsampled from layer dimensions H; x W,
to the segmentation mask dimensions H x W. Following [5]], we create neuron masks M, (x) via
dynamic thresholding: let T;, be the threshold such that P(f,,(x) > T,) = 0.005 over all inputs
x € X. Then M, (x) = 1(f,(x) > T},). For composition, we use operations AND (A), OR (V), and
NoOT (—), leaving more complex operations (e.g. relations like ABOVE and BELOW) for future work.

NLI. Given premise and hypothesis sentences, the task of NLI is to determine whether the premise
entails the hypothesis, contradicts it, or neither (neutral). We investigate a BiLSTM baseline
architecture proposed by [7]. A bidirectional RNN encodes both the premise and hypothesis to form
512-d representations. Both representations, and their elementwise product and difference, are then
concatenated to form a 2048-d representation that is fed through a multilayer perceptron (MLP) with
two 1024-d layers with ReL.U nonlinearities and a final softmax layer. This model is trained on the
Stanford Natural Language Inference (SNLI) corpus [6] which consists of 570K sentence pairs.

Neuron-level explanations of NLP models have traditionally analyzed how RNN hidden states detect
word-level features as the model passes over the input sequence [4}[10]], but in most NLI models, these
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RNN features are learned early and are often quite distant from the final sentence representation used
for prediction. Instead, we analyze the MLP component, probing the 1024 neurons of the penultimate
hidden layer for sentence-level explanations, so our inputs x are premise-hypothesis pairs.

We use the SNLI validation set as our probing dataset (10K examples). As our features, we take the
Penn Treebank part of speech tags (labeled by SpaC and the 2000 most common words appearing
in the dataset. For each of these we create 2 concepts that indicate whether the word or part-of-speech
appears in the premise or hypothesis. Additionally, to detect whether models are using lexical overlap
heuristics [25], we define 4 concepts indicating that the premise and hypothesis have more than 0%,
25%, 50%, or 75% overlap, as measured by IoU between the unique words.

For our composition operators, we keep AND, OR, and NOT; in addition, to capture the idea that
neurons might fire for groups of words with similar meanings, we introduce the unary NEIGHBORS
operator. Given a word feature C, let the neighborhood N (C') be the set of 5 closest words C’ to C,
as measured by their cosine distance in GloVe embedding space [28]. Then, NEIGHBORS(C')(x) =
Vereney €' (x) (ie. the logical OR across all neighbors). Finally, since these are post-ReLU

activations, instead of dynamically thresholding we simply define our neuron masks M, (x) =
1(fn(x) > 0). There are many “dead” neurons in the model, and some neurons fire more often than
others; we limit our analysis to neurons that activate reliably across the dataset, defined as being
active at least 500 times (5%) across the 10K examples probed.

4 Do neurons learn compositional concepts?

Image Classification. Figure[3|(left) plots the distribution of IoU scores for the best concepts found
for each neuron as we increase the maximum formula length N. When N = 1, we get EXPLAIN-
NETDISSECT, with a mean IoU of 0.059; as IV increases, loU increases up to 0.099 at N = 10, a
statistically significant 68% increase (p = 2 x 10~?). We see diminishing returns after length 10, so
we conduct the rest of our analysis with length 10 logical forms. The increased explanation quality
suggests that our compositional explanations indeed detect behavior beyond simple atomic labels:
Figure {] shows an example of a bullring detector which is actually revealed to detect fields in general.

We can now answer our first question from the introduction: are neurons learning meaningful
abstractions, or firing for unrelated concepts? Both happen: we manually inspected a random
sample of 128 neurons in the network and their length 10 explanations, and found that 69 % learned
some meaningful combination of concepts, while 31% were polysemantic, firing for at least some
unrelated concepts. The 88 “meaningful” neurons fell into 3 categories (examples in Figure[5} more
in Appendix [C} Appendix [A-T|reports concept uniqueness and granularity across formula lengths):

1. 50 (57%) learn a perceptual abstraction that is also lexically coherent, in that the primitive
words in the explanation are semantically related (e.g. to fowers or bathrooms; Figure [3h).

2. 28 (32%) learn a perceptual abstraction that is not lexically coherent, as the primitives are
not obviously semantically related. For example, cradle OR autobus OR fire escape
is a vertical rails detector, but we have no annotations of vertical rails in Broden (Figure Eb).

3. 10 (12%) have the form L; AND NOT Ls, which we call specialization. They detect more
specific variants of Broden concepts (e.g. (water OR river) AND NOT blue; Figure|Sk).
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Unit 192 skyscraper OR lighthouse OR water tower
loU 0.06

Unit 310 sink OR bathtub OR toilet
loU 0.16

(a) abstraction (lexical and perceptual)

Unit 321 ball pit OR orchard OR bounce game
loU 0.12

Unit 102 cradle OR autobus OR fire escape
loU 0.12

IZA

(b) abstraction (perceptual only)

Figure 5: Image classification explanations categorized by semantically coherent abstraction (a—b)

Unit 483 (water OR river) AND NOT blue
loU 0.13

Unit 432 attic AND (NOT floor) AND (NOT bed)

loU 0.15
s »

(c) specialization

Unit 314 operating room OR castle OR bathroom
loU 0.05

Unit 439 bakery OR bank vault OR shopfront
loU 0.08

(d) polysemanticity

and specialization (c), and unrelated polysemanticity (d). For clarity, logical forms are length N = 3.

Unit 870 (gender-sensitive)

((((NOT hyp:man) AND pre:man) OR hyp:eating)
AND (NOT pre:woman)) OR hyp:dancing
10U 0.123  Wenai -0.046  Wheytral -0.021  Wegnera 0.040

Pre A guy pointing at a giant blackberry.
Hyp A woman tearing down a giant display.
Act 29.31 True contra Pred contra

Pre A manin ahatis working with...flowers.

Hyp Women are working with flowers.
Act 27.64 True contra Pred contra

Unit 99 (high overlap)

((NOT hyp:JJ) AND overlap-75% AND (NOT
pre:people)) OR pre:basket OR pre:tv
10U 0.118  Weneait 0.043  Wpeytral -0.029  Weontra -0.021

Pre Awomanina lightblue jacket is riding a bike.
Hyp Awomenin ajacket riding a bike.
Act 19.13 True entail Pred entail

Pre Agirlina pumpkin dress sitting at a table.
Hyp There is a girlin a pumpkin dress sitting at a table.

Unit 15 (sitting only in hypothesis)

hyp:eating OR hyp:sitting OR hyp:sleeping
OR hyp:sits AND (NOT pre:sits)
10U 0.239  Wepgai -0.083  Wheytral -0.059  Weonera 0.086

Pre A person...is walking through an airport.
Hyp A woman sitsin the lobby waiting on the doctor.
Act 30.68 True contra Pred contra

Pre A manjumps over another man...

Hyp Two men are sitting down, watching the game.
Act 27.64 True contra Pred contra

Unit 473 (unclear)

((NOT hyp:sleeping) AND (pre:NN OR pre:NNS))
AND (NOT hyp:alone) AND (NOT hyp:nobody)
10U 0.586  Wentail 0.020  Wreuwal 0.016  Weonra -0.050

Pre Agentlemanin a striped shirt gesturing with a stick...

Hyp A gentleman in a striped shirt joyously gesturing.
Act 31.62 True neutral Pred neutral

Pre An Asian man in a...uniform diving...in a game.
Hyp A person in auniform does something.

Act 17.84 True entail Pred entail Act 29.76 True neutral Pred entail

Figure 6: NLI length 5 explanations. For each neuron, we show the explanation (e.g. pre: x indicates
x appears in the premise), IoU, class weights wenail,neutral,contra} » and activations for 2 examples.

The observation that IoU scores do not increase substantially past length 10 corroborates the finding of
[12]], who also note that few neurons detect more than 10 unique concepts in a model. Our procedure,
however, allows us to more precisely characterize whether these neurons detect abstractions or
unrelated disjunctions of concepts, and identify more interesting cases of behavior (e.g. specialization).
While composition of Broden annotations explains a majority of the abstractions learned, there is
still considerable unexplained behavior. The remaining behavior could be due to noisy activations,
neuron misclassifications, or detection of concepts absent from Broden.



NLI. NLI IoU scores reveal a similar trend (Figure 3] right): as we increase the maximum formula
length, we account for more behavior, though scores continue increasing past length 30. However,
short explanations are already useful: Figure[6, Figure [9 (explained later), and Appendix [D]show
example length 5 explanations, and Appendix [A.2]reports on the uniqueness of these concepts across
formula lengths. Many neurons correspond to simple decision rules based mostly on lexical features:
for example, several neurons are gender sensitive (Unit 870), and activate for contradiction when
the premise, but not the hypothesis, contains the word man. Others fire for verbs that are often
associated with a specific label, such as sitting, eating, or sleeping. Many of these words have
high pointwise mutual information (PMI) with the class prediction; as noted by [[14], the top two
highest words by PMI with contradiction are sleeping (15) and nobody (39, Figure[9). Still others
(99) fire when there is high lexical overlap between premise and hypothesis, another heuristic in the
literature [25]. Finally, there are neurons that are not well explained by this feature set (473). In
general, we have found that many of the simple heuristics [[14} [25] that make NLI models brittle to
out-of-distribution data [[13} 22} 37| are actually reified as individual features in deep representations.

S Do interpretable neurons contribute to model accuracy?

A natural question to ask is whether it is empirically
desirable to have more (or less) interpretable neurons,
with respect to the kinds of concepts identified above.
To answer this, we measure the performance of the
entire model on the task of interest when the neuron
is activated. In other words, for neuron n, what is
the model accuracy on predictions for inputs where
M, (x) = 1? In image classification, we find that
the more interpretable the neuron (by IoU), the more 5 o300
accurate the model is when the neuron is active (Fig- o275

Accuracy when firing

-0.50

-0.55

ure[7, left; r = 0.31, p < le — 13); the correlation g o250 ~0.60
increases as the formula length increases and we are 02— 0B
better able to explain neuron behavior. Given that we Max formula length Max formula length

are measuring abstractions over the human-annotated
features deemed relevant for scene classification, this
suggests, perhaps unsurprisingly, that neurons that
detect more interpretable concepts are more accurate.

Figure 7: Top: neuron IoU versus model accu-
racy over inputs where the neuron is active for
vision (length 10) and NLI (length 3). Bottom:

] Pearson correlation between these quantities
However, when we apply the same analysis to the versus max formula length.

NLI model, the opposite trend occurs: neurons that

we are better able to explain are less accurate (Figure right; 7 = —0.60, p < 1e—08). Unlike vision,
most sentence-level logical descriptions recoverable by our approach are spurious by definition, as
they are too simple compared to the true reasoning required for NLI. If a neuron can be accurately
summarized by simple deterministic rules, this suggests the neuron is making decisions based on
spurious correlations, which is reflected by the lower performance. Analogously, the more restricted
our feature set (by maximum formula length), the better we capture this anticorrelation. One important
takeaway is that the “interpretability” of these explanations is not a priori correlated with performance,
but rather dependent on the concepts we are searching for: given the right concept space, our method
can identify behaviors that may be correlated or anticorrelated with task performance.

6 Can we target explanations to change model behavior?

Finally, we see whether compositional explanations allow us to manipulate model behavior. In both
models, we have probed the final hidden representation before a final softmax layer produces the class
predictions. Thus, we can measure a neuron’s contribution to a specific class with the weight between
the neuron and the class, and see whether constructing examples that activate (or inhibit) these neurons
leads to corresponding changes in predictions. We call these “copy-paste” adversarial examples to
differentiate them from standard adversarial examples involving imperceptible perturbations [36].

Image Classification. Figure|8 shows some Places365 classes along with the neurons that most
contribute to the class as measured by the connection weight. In many cases, these connections are
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Figure 8: “copy-paste” adversarial examples for vision. For each scene (with 3 example images at
bottom), the neuron that contribute most (by connection weight) are shown, along with their length
3 explanations. We target the bold explanations to crudely modify an input image and change the
prediction towards/away from the scene. In the top-right corner, the left-most image is presented to
the model (with predictions from 4 models shown); we modify the image to the right-most image,
which changes the model prediction(s).

Unit 133 (couch words in hypothesis)

NEIGHBORS (hyp:couch) OR hyp:inside OR
hyp:home OR hyp:indoors OR hype:eating
10U 0.202  Wengail -0.125  Wheutral -0.024  Weonera 0.088

Unit 39 (nobody in hypothesis)

hyp:nobody AND (NOT pre:hair) AND (NOT
pre:RB) AND (NOT pre:’s)
10U 0.465  Wentai -0.117  Wpeutral -0.053  Weontra 0.047

Pre 5 women sitaround a table doing some crafts.
Orig Hyp 5womensitaround a table.

Pre Three women prepare a meal in a kitchen.
Orig Hyp The ladies are cooking.

Adv Hyp Nobodybut the ladies are cooking.
True entail % neutral Pred entail *% contra

Unit 15 (sitting only in hypothesis)

hyp:eating OR hyp:sitting OR hyp:sleeping OR
hyp:sits AND (NOT pre:sits)

10U 0.239  Wengai -0.083 Wpeutral -0.059  Weontra 0.086

Orig Pre A blond woman is holding 2 golf balls while
reaching down into a golf hole.

Adv Pre Ablond woman is holding 2 golf balls.

Hyp A blond woman is sitting down.

True contra % neutral Pred contra > contra

Adv Hyp 5womensitaround a table neara couch.
True entail % neutral Pred entail %% contra

Unit 941 (inside/indoors in hypothesis)

hyp:inside OR hyp:not OR hyp:indoors OR
hyp:moving OR hyp:something

IoU 0.151  Wengail 0.086 Wheytral -0.030 Weontra -0.023

Orig Pre Two people are sitting in a station.

Adv Pre Two people are sitting in a pool.

Hyp A couple of people are inside and not standing.
True entail °% neutral  Pred entail *% entail

Figure 9: “copy-paste” adversarial examples for NLI. Taking an example from SNLI, we construct
an adversarial (adv) premise or hypothesis which changes the true label and results in an incorrect
model prediction (original label/prediction “— adversarial label/prediction).

sensible; water, foliage, and rivers contribute to a swimming hole prediction; houses, staircases, and
fire escape (objects) contribute to fire escape (scene). However, the explanations in bold involve
polysemanticity or spurious correlations. In these cases, we found it is possible to construct a
“copy-paste” example which uses the neuron explanation to predictably alter the predictionEl In some
cases, these adversarial examples are generalizable across networks besides the probed ResNet-18,
causing the same behavior across AlexNet [24]], ResNet-50 [13]], and DenseNet-161 [21]], all trained
on Places365. For example, one major contributor to the swimming hole scene (top-left) is a neuron
that fires for non-blue water; making the water blue switches the prediction to grotfo in many models.
The consistency of this misclassification suggests that models are detecting underlying biases in the

2Appendixtests sensitivity of these examples to size and position of the copy-pasted subimages.



training data. Other examples include a neuron contributing to clean room that also detects ice and
igloos; putting an igloo in a corridor causes a prediction to shift from corridor to clean room, though
this does not occur across models, suggesting that this is an artifact specific to this model.

NLI. In NLI, we are able to trigger similar behavior by targeting spurious neurons (Figure [9).
Unit 39 (top-left) detects the presence of nobody in the hypothesis as being highly indicative of
contradiction. When creating an adversarial example by adding nobody to the original hypothesis,
the true label shifts from entailment to neutral, but the model predicts contradiction. Other neurons
predict contradiction when couch-related words (Unit 133) or sitting (Unit 15) appear in the
hypothesis, and can be similarly targeted.

Overall, these examples are reminiscent of the image-patch attacks of [9]], adversarial NLI inputs
[} 37]], and the data collection process for recent counterfactual NLI datasets [13} 22], but instead of
searching among neuron visualizations or using black-box optimization to synthesize examples, we
use explanations as a transparent guide for crafting perturbations by hand.

7 Related Work

Interpretability. Interpretability in deep neural networks has received considerable attention over
the past few years. Our work extends existing work on generating explanations for individual neurons
in deep representations [4, 5, [10H12} 27]], in contrast to analysis or probing methods that operate at
the level of entire representations (e.g. [2} [19, 29]]). Neuron-level explanations are fundamentally
limited, since they cannot detect concepts distributed across multiple neurons, but this has advantages:
first, neuron-aligned concepts offer evidence for representations that are disentangled with respect
to concepts of interest; second, they inspect unmodified “surface-level” neuron behavior, avoiding
recent debates on how complex representation-level probing methods should be |18} 29].

Complex explanations. In generating logical explanations of model behavior, one related work
is the Anchors procedure of [33]], which finds conjunctions of features that “anchor” a model’s
prediction in some local neighborhood in input space. Unlike Anchors, we do not explain local model
behavior, but rather globally consistent behavior of neurons across an entire dataset. Additionally, we
use not just conjunctions, but more complex compositions tailored to the domain of interest.

As our compositional formulas increase in complexity, they begin to resemble approaches to generat-
ing natural language explanations of model decisions [2, 18, 16,17, 131]]. These methods primarily
operate at the representation level, or describe rationales for individual model predictions. One
advantage of our logical explanations is that they are directly grounded in features of the data and
have explicit measures of quality (i.e. IoU), in contrast to language explanations generated from
black-box models that themselves can be uninterpretable and error-prone: for example, [17] note that
naive language explanation methods often mention evidence not directly present in the input.

Dataset biases and adversarial examples. Complex neural models are often brittle: they fail to
generalize to out-of-domain data [3| |13} 22| |32] and are susceptible to adversarial attacks where
inputs are subtly modified in a way that causes a model to fail catastrophically [34, 36} |37]. This
may be due in part to biases in dataset collection [3} (14} 130, |32]], and models fail on datasets which
eliminate these biases [3}113},122}[32]]. In this work we suggest that these artifacts are learned to the
degree that we can identify specific detectors for spurious features in representation space, enabling
“copy-paste” adversarial examples constructed solely based on the explanations of individual neurons.

8 Discussion

We have described a procedure for obtaining compositional explanations of neurons in deep represen-
tations. These explanations more precisely characterize the behavior learned by neurons, as shown
through higher measures of explanation quality (i.e. IoU) and qualitative examples of models learning
perceptual abstractions in vision and spurious correlations in NLI. Specifically, these explanations
(1) identify abstractions, polysemanticity, and spurious correlations localized to specific units in the
representation space of deep models; (2) can disambiguate higher versus lower quality neurons in
a model with respect to downstream performance; and (3) can be targeted to create “copy-paste”
adversarial examples that predictably modify model behavior.



Several unanswered questions emerge:

1. We have limited our analysis in this paper to neurons in the penultimate hidden layers of our
networks. Can we probe other layers, and better understand how concepts are formed and
composed between the intermediate layers of a network (cf. [27]])?

2. Does model pruning [20] more selectively remove the “lower quality” neurons identified by
this work?

3. To what extent can the programs implied by our explanations serve as drop-in approximations
of neurons, thus obviating the need for feature extraction in earlier parts of the network?
Specifically, can we distill a deep model into a simple classifier over binary concept detectors
defined by our neuron explanations?

4. If there is a relationship between neuron interpretability and model accuracy, as Section[5
has suggested, can we use neuron interpretability as a regularization signal during training,
and does encouraging neurons to learn more interpretable abstractions result in better
downstream task performance?

Reproducibility

Code and data are available at/github.com/jayelm/compexp.

Broader Impact

Tools for model introspection and interpretation are crucial for better understanding the behavior of
black-box models, especially as they make increasingly important decisions in high-stakes societal
applications. We believe that the explanations generated in this paper can help unveil richer concepts
that represent spurious correlations and potentially problematic biases in models, thus helping
practitioners better understand the decisions made by machine learning models.

Nonetheless, we see two limitations with this method as it stands: (1) it currently requires technical
expertise to implement, limiting usability by non-experts; (2) it relies on annotated datasets which
may be expensive to collect, and may be biased in the kinds of features they contain (or omit). If a
potential feature of interest is not present in the annotated dataset, it cannot appear in an explanation.
Both of these issues can be ameliorated with future work in (1) building easier user interfaces for
explainability, and (2) reducing data annotation requirements.

In high stakes cases, e.g. identifying model biases, care should also be taken to avoid relying too
heavily on these explanations as causal proof that a model is encoding a concept, or assuming that the
absence of an explanation is proof that the model does not encode the concept (or bias). We provide
evidence that neurons exhibit surface-level behavior that is well-correlated with human-interpretable
concepts, but by themselves, neuron-level explanations cannot identify the full array of concepts
encoded in representations, nor establish definitive causal chains between inputs and decisions.

Acknowledgments and Disclosure of Funding

Thanks to David Bau, Alex Tamkin, Mike Wu, Eric Chu, and Noah Goodman for helpful comments
and discussions, and to anonymous reviewers for useful feedback. This work was partially supported
by a gift from NVIDIA under the NVAIL grant program. JM is supported by an NSF Graduate
Research Fellowship and the Office of Naval Research Grant ONR MURI N00014-16-1-2007.

References

[1] M. Alzantot, Y. S. Sharma, A. Elgohary, B.-J. Ho, M. Srivastava, and K.-W. Chang. Generating natural
language adversarial examples. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, 2018.

[2] J. Andreas, A. Dragan, and D. Klein. Translating neuralese. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 232-242,2017.


github.com/jayelm/compexp

(3]

(4]

(5]

(6]

(7]

(8]

(91
[10]

(1]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfreund, J. Tenenbaum, and B. Katz. ObjectNet:
A large-scale bias-controlled dataset for pushing the limits of object recognition models. In Advances in
Neural Information Processing Systems, pages 9448-9458, 2019.

A. Bau, Y. Belinkov, H. Sajjad, N. Durrani, F. Dalvi, and J. Glass. Identifying and controlling important
neurons in neural machine translation. In International Conference on Learning Representations, 2019.

D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection: Quantifying interpretability
of deep visual representations. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 6541-6549, 2017.

S. Bowman, G. Angeli, C. Potts, and C. D. Manning. A large annotated corpus for learning natural
language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 632-642, 2015.

S. Bowman, J. Gauthier, A. Rastogi, R. Gupta, C. D. Manning, and C. Potts. A fast unified model for
parsing and sentence understanding. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1466-1477, 2016.

O.-M. Camburu, T. Rocktischel, T. Lukasiewicz, and P. Blunsom. e-SNLI: natural language inference with
natural language explanations. In Advances in Neural Information Processing Systems, pages 9539-9549,
2018.

S. Carter, Z. Armstrong, L. Schubert, I. Johnson, and C. Olah. Activation atlas. Distill, 4(3):e15, 2019.

F. Dalvi, N. Durrani, H. Sajjad, Y. Belinkov, A. Bau, and J. Glass. What is one grain of sand in the desert?
Analyzing individual neurons in deep NLP models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 6309-6317, 2019.

F. Dalvi, A. Nortonsmith, A. Bau, Y. Belinkov, H. Sajjad, N. Durrani, and J. Glass. NeuroX: A toolkit
for analyzing individual neurons in neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 9851-9852, 2019.

R. Fong and A. Vedaldi. Net2vec: Quantifying and explaining how concepts are encoded by filters in deep
neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 8730-8738, 2018.

M. Gardner, Y. Artzi, V. Basmova, J. Berant, B. Bogin, S. Chen, P. Dasigi, D. Dua, Y. Elazar, A. Got-
tumukkala, et al. Evaluating NLP models via contrast sets. arXiv preprint arXiv:2004.02709, 2020.

S. Gururangan, S. Swayamdipta, O. Levy, R. Schwartz, S. Bowman, and N. A. Smith. Annotation artifacts
in natural language inference data. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers),
pages 107-112, 2018.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, pages 770-778, 2016.

L. A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, and T. Darrell. Generating visual
explanations. In Proceedings of the European Conference on Computer Vision, pages 3—19, 2016.

L. A. Hendricks, R. Hu, T. Darrell, and Z. Akata. Grounding visual explanations. In Proceedings of the
European Conference on Computer Vision, pages 264-279, 2018.

J. Hewitt and P. Liang. Designing and interpreting probes with control tasks. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-1JCNLP), pages 2733-2743, 2019.

J. Hewitt and C. D. Manning. A structural probe for finding syntax in word representations. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 4129-4138, 2019.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional networks.

In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 4700-4708,
2017.

10



[22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]

(40]

[41]

D. Kaushik, E. Hovy, and Z. C. Lipton. Learning the difference that makes a difference with
counterfactually-augmented data. In International Conference on Learning Representations (ICLR),
2020.

E. Kitzelmann. Inductive programming: A survey of program synthesis techniques. In International
workshop on approaches and applications of inductive programming, pages 50-73. Springer, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems, pages 1097-1105, 2012.

T. McCoy, E. Pavlick, and T. Linzen. Right for the wrong reasons: Diagnosing syntactic heuristics in natural
language inference. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 3428-3448, 2019.

A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune. Synthesizing the preferred inputs for
neurons in neural networks via deep generator networks. In Advances in Neural Information Processing
Systems, pages 3387-3395, 2016.

C. Olah, N. Cammarata, L. Schubert, G. Goh, M. Petrov, and S. Carter. Zoom in: An introduction to
circuits. Distill, 5(3):¢00024-001, 2020.

J. Pennington, R. Socher, and C. D. Manning. GloVe: Global vectors for word representation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, pages
1532-1543, 2014.

T. Pimentel, J. Valvoda, R. H. Maudslay, R. Zmigrod, A. Williams, and R. Cotterell. Information-theoretic
probing for linguistic structure. arXiv preprint arXiv:2004.03061, 2020.

A. Poliak, J. Naradowsky, A. Haldar, R. Rudinger, and B. Van Durme. Hypothesis only baselines in
natural language inference. In Proceedings of the Seventh Joint Conference on Lexical and Computational
Semantics, pages 180-191, 2018.

N. F. Rajani, B. McCann, C. Xiong, and R. Socher. Explain yourself! Leveraging language models for
commonsense reasoning. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 4932-4942, 2019.

B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do ImageNet classifiers generalize to ImageNet? In
International Conference on Machine Learning, pages 5389-5400, 2019.

M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision model-agnostic explanations. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

M. T. Ribeiro, S. Singh, and C. Guestrin. Semantically equivalent adversarial rules for debugging NLP
models. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 856-865, 2018.

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. In International Conference on Learning Representations, 2014.

E. Wallace, S. Feng, N. Kandpal, M. Gardner, and S. Singh. Universal adversarial triggers for attacking
and analyzing nlp. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 2153-2162, 2019.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European Conference
on Computer Vision, pages 818—833. Springer, 2014.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Object detectors emerge in deep scene CNNs.
In International Conference on Learning Representations, 2015.

B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. Places: A 10 million image database for
scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.

B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene parsing through ADE20K dataset.
In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 633-641, 2017.

11



	Introduction
	Generating compositional explanations
	Tasks
	Do neurons learn compositional concepts?
	Do interpretable neurons contribute to model accuracy?
	Can we target explanations to change model behavior?
	Related Work
	Discussion
	Concept uniqueness and granularity
	Image Classification
	NLI

	Adversarial example sensitivity
	Additional image classification examples
	Additional NLI examples

