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Abstract

This supp. material discusses variations of the threat model in Sec. A. It details the1

variant used to attack federated averaging (Sec. 6 in the main paper) and ConvNet2

architecturein Sec. B. Further, hyperparameter settings for all experiments and3

visual representations of the results of Section 4.2 are recorded in C. A proof of4

proposition 3.1 of the main paper is included in Sec.D, and finally more examples5

for ImageNet-scale images and the full 100 images for the multi-image experiment6

of Sec. 6.1 are shown in Sec. E.7

A Variations of the threat model8

In this work we consider a honest-but-curious threat model as discussed in the introduction. Straying9

from this scenario could be done primarily in two ways: First by changing the architecture, and10

second by keeping the architecture non-malicious, but changing the global parameters sent to the11

user.12

A.1 Dishonest Architectures13

So far we assumed that the server operates under an honest-but-curious model, and as such would14

not modify the model maliciously to make reconstruction easier. If we instead allow for this, then15

reconstruction becomes nearly trivial: Several mechanisms could be used: Following Prop. 1, the16

server could, for example, place a fully-connected layer in the first layer, or even directly connect17

the input to the end of the network by concatenation. Slightly less obvious, the model could be18

modified to contain reversible blocks [1, 3]. These blocks allow the recovery of input from their19

outputs. From Prop. 1 we know that we can reconstruct the input to the classification layer, so this20

allows for immediate access to the input image. If the server maliciously introduces separate weights21

or sub-models for each batch example, then this also allows for a recovery of an arbitrarily large22

batch of data. Operating in a setting, where such behavior is possible would require the user (or a23

provider trusted by the user) to vet any incoming model either manually or programmatically.24

A.2 Dishonest Parameter Vectors25

However, even with a fixed honest architecture, a malicious choice of global parameters can signif-26

icantly influence reconstruction quality. For example, considering the network architecture in [6]27

which does not contain strides and flattens convolutional features, the dishonest server could set all28

convolution layers to represent the identity [2], moving the input through the network unchanged up to29

the classification layer, from which the input can be analytically computed as in Prop. 1. Likewise for30
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5.9e-1 29.37dB 4.6e+2 26.62dB 1.8e+2 27.37dB 1.5e+2 18.27dB

Figure 1: Label flipping. Images can be easily reconstructed when two rows in the parameters of
the final classification layer are permuted. Below each input image is given the gradient magnitude,
below each output image its PSNR. Compare these results to the additional examples in Fig. 3

an architecture that contains strides to a recognizable lower resolution [5], the input can be recovered31

immediately albeit in a smaller resolution when the right parameter vector is sent to the user.32

Such a specific choice of parameters is however likely detectable. A subtler approach, as least33

possible in theory, would be to optimize the network parameters themselves that are sent to the user34

so that reconstruction quality from these parameters is maximized. While such an attack is likely to35

be difficult to detect on the user-side, it would also be very computationally intensive.36

Label flipping. There is even a cheaper alternative. According to Sec. 5, very small gradient vectors37

may contain less information. A simple way for a dishonest server to boost these gradients is to38

permute two rows in the weight matrix and bias of the classification layer, effectively flipping the39

semantic meaning of a label. This attack is difficult to detect for the user (as long as the gradient40

magnitude stays within usual bounds), but effectively tricks him into differentiating his network w.r.t41

to the wrong label. Fig. 1 shows that this mechanism can allow for a reliable reconstruction with42

boosted PSNR scores, as the effect of the trained model is negated.43

B Experimental Details44

Figure 2: Network architecture ConvNet, consisting of 8 convolution layers, specified with corre-
sponding number of output channels. Each convolution layer is followed by a batch normalization
layer and a ReLU layer. D scales the number of output channels and is set to D = 64 by default.

B.1 Federated Averaging45

The extension of Eq. (4) to the case of federated averaging (in which multiple local update steps are46

taken and sent back to the server) is straightforward. Notice first, that given old parameters θk, local47

updates θk+l, learning rate τ , and knowledge about the number of update steps1, the update can be48

1We assume that the number of local updates is known to the server, yet this could also be found by
brute-force, given that l is a small integer.

2



Table 1: Ablation Study for the proposed approach for a trained ResNet-18 architecture, trained
on CIFAR-10. Reconstruction PSNR scores are averaged over the first 10 images of the CIFAR-10
validation set (Standard Error in parentheses).

Basic Setup 20.12 dB (±1.02)
L2 Loss instead of cosine similarity 15.13 dB (±0.70)

Without total variation 19.96 dB (±0.75)
With L-BFGS instead of Adam 5.13 dB (±0.50)

rewritten as the average of updated gradients.49

θk+l = θk − τ
l∑

m=1

∇θk+mLθk+m(x, y) (1)

Subtracting θk from θk+l, we simply apply the proposed approach to the resulting average of updates:50

arg min
x∈[0,1]n

1−
〈
∑l
m=1∇θk+mLθk+m(x, y),

∑l
m=1∇θk+mLθk+m(x∗, y)〉

||
∑l
m=1∇θk+mLθk+m(x, y)||||

∑l
m=1∇θk+mLθk+m(x∗, y)||

+ αTV(x). (2)

Using automatic differentiation, we backpropagate the gradient w.r.t to x from the average of update51

steps.52

B.2 ConvNet53

We use a ConvNet architecture as a baseline for our experiments as it is relatively fast to optimize,54

reaches above 90% accuracy on CIFAR-10 and includes two max-pooling layers. It is a rough55

analogue to AlexNet [4]. The architecture is described in Fig. 2.56

B.3 Ablation Study57

We provide an ablation for proposed choices in Table 1. We note that two things are central, the58

Adam optimizer and the similarity loss. Total variation is a small benefit, and using signed gradients59

is a minor benefit.60

C Hyperparameter Settings61

In our experiments we reconstruct the network’s input using Adam based on signed gradients as62

optimization algorithm and cosine similarity as cost function as described in Sec. 4. It is important63

to note that the optimal hyperparameters for the attack depend on the specific attack scenario -64

that the attack fails with default parameters is no guarantee for security. We always initialize our65

reconstructions from a Gaussian distribution with mean 0 and variance 1 (Note that the input data is66

normalized as usual for all considered datasets) and set the step size of the optimization algorithm67

within [0.01, 1]. We use a smaller step sizes of 0.1, for the wider and deeper networks in Sec. 5.268

and a larger step sizes of 1 for the federated averaging experiments in Sec 6, with 0.1 being the69

default choice. The optimization runs for up to 24000 iterations. The step size decay is always fixed,70

occuring after 3
8 , 5

8 and 7
8 of iterations and reducing the learning rate by a factor of 0.1 each time. The71

number of iterations is a generally conservative estimate, privacy can often be broken much earlier.72

We tweak the total variation parameter depending on the specific attack scenario, however note that73

its effect on avg. PSNR is mostly minor as seen in table 1. When not otherwise noted we default to a74

value of 0.01.75

Remark (Restarts). Generally, multiple restarts of the attack from different random initializations can76

improve the attack success moderately. However they also increase the computational requirements77

significantly. To allow for quantitative experimental evaluations of multiple images, we do not78

consider restarts in this work (aside from Sec. 5 where we apply them to improve results of the79

competing LBFGS solver) - but stress that an attacker with enough ressources could further improve80

his attack by running it with multiple restarts.81
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Architecture LeNet (Zhu) ResNet20-4
Trained False True False True

TV 10−2 10−3 0 10−2

Table 2: TV regularization values used for the proposed approach in the baseline experiments of
Section 5.

Number of epochs E 1 1 1 5 5
Number of local images n 4 8 8 1 8
Mini-batch size B 2 2 8 1 8
TV 10−6 10−6 10−4 10−4 10−4

Table 3: Total variation weights for the reconstruction of network input in the experiments in Sec. 4.2

C.1 Settings for the experiments in Sec. 582

Comparison to previous approaches For comparison with baselines in section 5, we re-implement83

the network from [6], which we dub LeNet (Zhu) in the following, and additionally run all experiments84

for the ResNet20-4 architecture. We base both the network and the approach on code from the authors85

of [6], 2. For the LBFGS-L2 optimization we use a learning rate of 1e− 4 and 300 iterations. For the86

ResNet experiments we use the generous amount of 8 restarts and for the faster to optimize LeNet87

(Zhu) architecture we use the even higher number of 16 restarts. All experiment conducted with the88

proposed approach only use one restart, 4800 iterations, a learning rate of 0.1 and TV regularization89

parameters as detailed in Table 2. Note that in the described settings the proposed method took90

significantly less time to optimize than the LBFGS optimization.91

Spatial Information The experiments on spatial information are performed on the ConvNet archi-92

tecture with D = 64 channels.93

C.2 Setting for experiments in Sec. 694

For the five cases consider in Table 2 we consider an untrained ConvNet, a learning rate of 1, 480095

iterations, one restart and the TV regularization parameters as given in table 3. Each of the 10096

experiments uses different images, i.e. each experiments uses the images of the CIFAR-10 validation97

set following the ones used in the previous experiment. As multiple images of the same label in one98

mini-batch cause an ambiguity in the ordering of images w.r.t. that label, we do not consider that case.99

If an image with an already encountered label is about to be added to the respective mini-batch we100

skip that image and use the next image of the validation set with a different label.101

D Proofs for section 3.1102

In the following we give a more detailed proof of Prop 3.1, which is follows directly from the two103

propositions below:104

Proposition D.1. Let a neural network contain a biased fully-connected layer at some point, i.e. for105

the layer’s input xl ∈ Rnl its output xl+1 ∈ Rnl+1 is calculated as xl+1 = max{yl, 0} for106

yl = Alxl + bl, (3)

for Al ∈ Rnl+1×nl and bl ∈ Rnl+1. Then the input xl can be reconstructed from dL
dAl

and dL
dbl

, if there107

exists an index i s.t. dL
d(bl)i

6= 0.108

2https://github.com/mit-han-lab/dlg
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Proof. It holds that dL
d(bl)i

= dL
d(yl)i

and dyi
d(Al)i, :

= xT . Therefore109

dL
d (Al)i, :

=
dL

d (yl)i
·

d (yl)i
d (Al)i, :

(4)

=
dL

d (bl)i
· xTl (5)

for (Al)i, : denoting the ith row of Al. Hence xl can can be uniquely determined as soon as110

dL
d(bl)i

6= 0.111

Proposition D.2. Consider a fully-connected layer (not necessarily including a bias) followed by112

a ReLU activation function, i.e. for an input xl ∈ Rnl the output xl+1 ∈ Rnl+1 is calculated as113

xl+1 = max{yl, 0} for114

yl = Alxl, (6)
where the maximum is computed element-wise. Now assume we have the additional knowledge of115

the derivative w.r.t. to the output dL
dxl+1

. Furthermore assume there exists an index i s.t. dL
d(xl+1)i

6= 0.116

Then the input v can be derived from the knowledge of dL
dAl

.117

Proof. As dL
d(xl+1)i

6= 0 it holds that dL
d(yl)i

= dL
d(xl+1)i

and it follows that118

dL
d (Al)i, :

=
dL

d (yl)i
·

d (yl)i
d (Al)i, :

(7)

=
dL

d (xl+1)i
· xTl . (8)

119

E Additional Examples120

E.1 Additional CIFAR-10 examples121

Figure 3 shows additional "extreme" examples for CIFAR-10, reconstructing the image with lowest122

and the image with largest gradient magnitude for the training and validation set of CIFAR-10 for123

trained and untrained ConvNet and ResNet20-4 models.124

E.2 Visualization of experiments in Sec. 5125

Network Width The reconstructions for the first six CIFAR images for different width ResNet-18126

architectures are given in Fig. 4.127

Network Depth The experiments concerning the network depth are performed for different deep128

ResNet architectures. Multiple reconstruction results for different deep networks are shown in Fig. 5.129

E.3 More ImageNet examples for Sec. 5130

Fig. 6 shows further instructive examples of reconstructions for ImageNet validation images for a131

trained ResNet-18 (the same setup as Fig. 3 in the main paper). We show a very good reconstruction132

(German shepherd), a good, but translated reconstruction (giant panda) and two failure cases (ambu-133

lance and flower). For the ambulance, for example, the actual writing on the ambulance car is still134

hidden. For the flower, the exact number of petals is hidden. Also, note how the reconstruction of the135

giant panda is much clearer than that of the tree stump co-occurring in the image, which we consider136

an indicator of the self-regularizing effect described in Sec. 5.137

Figures 7 and 8 show more examples. We note that the examples in these figures and in Figure 3 are138

not handpicked, but chosen neutrally according to their ID in the ILSVRC2012, ImageNet, validation139

set. The ID for each image is obtained by sorting the synset that make up the dataset in increasing140

order according to their synset ID and sorting the images within each synset according to their synset141

ID in increasing order. This is the default order in torchvision.142

5



Trained ConvNet
Images from the training set Images from the validation set

4.5e-21 18.04dB 2.5e+02 14.85dB 9.8e-17 14.60dB 5.5e+02 30.26dB

Trained ResNet20-4
Images from the training set Images from the validation set

5.3-06 15.21dB 1.0e+2 19.75dB 1.2e-5 13.84dB 4.6e+2 15.53dB

Untrained ConvNet Untrained ResNet20-4

6.1e-1 31.36dB 6.7e-1 31.16dB 3.8e+1 21.90dB 4.5e+1 20.23dB

Figure 3: Reconstruction of images for the trained ConvNet model (Top) and ResNet20-4 (middle).
We show reconstructions of the worst-case image and best case image from CIFAR-10, based on
gradient magnitude for both the training and the validation set. Below each input image is given the
gradient magnitude, below each output image its PSNR. The bottom row shows reconstructions for
the worst-case examples for untrained models.

16 Channels

64 Channels

128 Channels

Figure 4: Reconstructions using ResNet-18 architectures with different widths.

ResNet-18

ResNet-34

ResNet-50

Figure 5: Reconstructions using different deep ResNet architectures.
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Figure 6: Additional qualitative ImageNet examples, failure cases and positive cases for a trained
ResNet-18. Images taken from the ILSVRC2012 validation set.

Figure 7: Additional single-image reconstruction from the parameter gradients of trained ResNet-152.
Top row: Ground Truth. Bottom row: Reconstruction. The paper showed images 0000, 1000, 2000,
3000, 4000, 5000, 6000, 7000 from the ILSVRC2012 validation set. These are images 8000-12000.

Figure 8: Additional single-image reconstruction from the parameter gradients of trained ResNet-152.
Top row: Ground Truth. Bottom row: Reconstruction. These are images 500, 1500, 2500, 3500,
4500.
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Figure 9: Results of the first 100 experiments for E = 5, n = 1, B = 1.

E.4 Multi-Image Recovery of Sec. 6143

For multi-image recovery, we show the full set of 100 images in Fig. 14, we recommend to zoom in144

to a digital version of the figure. The success rate for separate images is semi-random, depending on145

the initialization.146

E.5 General case of Sec. 6147

We show the results for the first ten experiments in Figures 9, 10, 11, 12, 13. In Figure 9 we even148

show all 100 experiments as there only one image is used per experiment.149

150

Additional images are following on the next pages.151
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Figure 10: Results of the first ten experiments for E = 1, n = 4, B = 2.
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Figure 11: Results of the first ten experiments for E = 1, n = 8, B = 2.
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Figure 12: Results of the first ten experiments for E = 1, n = 8, B = 8.
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Figure 13: Results of the first ten experiments for E = 5, n = 8, B = 8.
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Figure 14: Full results for the batch of CIFAR-100 images. Same experiment as in Fig. 6 of the paper.
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