Bayes Consistency vs. H-Consistency: The Interplay between Surrogate Loss Functions and the Scoring Function Class

Appendix

A Proof of Lemma 1

Proof. This essentially follows from the definition of \mathcal{F}_{spwlin} . In particular, we have:

$$\begin{aligned} f_{y}(\mathbf{x}) &\geq 0 \iff \min_{y' \neq y} \left\{ (\mathbf{w}_{y} - \mathbf{w}_{y'})^{\top} \mathbf{x} + (b_{y} - b_{y'}) \right\} &\geq 0 \\ \iff \min_{y' \neq y} \left\{ (\mathbf{w}_{y}^{\top} \mathbf{x} + b_{y}) - (\mathbf{w}_{y'}^{\top} \mathbf{x} + b_{y'}) \right\} &\geq 0 \\ \iff (\mathbf{w}_{y}^{\top} \mathbf{x} + b_{y}) &\geq (\mathbf{w}_{y'}^{\top} \mathbf{x} + b_{y'}) \quad \forall y' \neq y \\ \iff y \in \operatorname{argmax}_{y' \in [n]} \mathbf{w}_{y'}^{\top} \mathbf{x} + b_{y'}. \end{aligned}$$

B Proof of Theorem 2

Proof. Let D be a \mathcal{H}_{lin} -realizable distribution. Then $\exists h^* \in \mathcal{H}_{\text{lin}}$ such that $\mathbf{P}_{(X,Y)\sim D}(Y = h^*(X)) = 1$, and therefore $\operatorname{er}_D^{0,1}[\mathcal{H}_{\text{lin}}] = 0$. Thus our goal is to show that \exists a strictly increasing function $g : \mathbb{R}_+ \to \mathbb{R}_+$ that is continuous at 0 with g(0) = 0 such that for all $\mathbf{f} \in \mathcal{F}_{\text{spwlin}}$,

$$\operatorname{er}_{D}^{0-1}[\operatorname{argmax} \circ \mathbf{f}] \leq g\left(\operatorname{er}_{D}^{\operatorname{OvA,log}}[\mathbf{f}] - \operatorname{er}_{D}^{\operatorname{OvA,log}}[\mathcal{F}_{\operatorname{spwlin}}]\right)$$

We will do this in two parts:

(1) We will show that $er_D^{\text{OvA},\log}[\mathcal{F}_{\text{spwlin}}] = 0.$

(2) We will show that for all $\mathbf{f} \in \mathcal{F}_{\text{spwlin}}$, $\operatorname{er}_D^{0-1}[\operatorname{argmax} \circ \mathbf{f}] \leq \frac{1}{\ln(2)} \operatorname{er}_D^{\text{OvA},\log}[\mathbf{f}]$.

Putting these together will then give that for all $\mathbf{f} \in \mathcal{F}_{spwlin}$,

$$\operatorname{er}_D^{0-1}[\operatorname{argmax} \circ \mathbf{f}] \leq \frac{1}{\ln(2)} \left(\operatorname{er}_D^{\operatorname{OvA,log}}[\mathbf{f}] - \operatorname{er}_D^{\operatorname{OvA,log}}[\mathcal{F}_{\operatorname{spwlin}}] \right).$$

Part 1. We will show that for any sufficiently small $\epsilon > 0$, $\exists \mathbf{f}^{\epsilon} \in \mathcal{F}_{\text{spwlin}}$ such that $\operatorname{er}_{D}^{\text{OvA,log}}[\mathbf{f}^{\epsilon}] < \epsilon$; this will establish that $\operatorname{er}_{D}^{\text{OvA,log}}[\mathcal{F}_{\text{spwlin}}] = 0$.

Let $0 < \epsilon < 2n \ln(2)$. Since $h^* \in \mathcal{H}_{\text{lin}}$, we have $\exists \{\mathbf{w}_y^*, b_y^*\}_{y=1}^n$ such that

$$h^*(\mathbf{x}) \in \operatorname{argmax}_{y \in [n]} (\mathbf{w}_y^*)^\top \mathbf{x} + b_y^* \ \forall \mathbf{x} \,.$$

Define $\mathbf{f}^* \in \mathcal{F}_{spwlin}$ as

$$\begin{aligned} f_y^*(\mathbf{x}) &= \min_{y' \neq y} \left\{ (\mathbf{w}_y^* - \mathbf{w}_{y'}^*)^\top \mathbf{x} + (b_y^* - b_{y'}^*) \right\} \\ &= \min_{y' \neq y} \left\{ ((\mathbf{w}_y^*)^\top \mathbf{x} + b_y^*) - ((\mathbf{w}_{y'}^*)^\top \mathbf{x} + b_{y'}^*) \right\}. \end{aligned}$$

Then we have

$$\mathbf{P}_{(X,Y)\sim D}(f_Y^*(X) > 0) = 1.$$

Therefore $\exists \kappa > 0$ such that

$$\mathbf{P}_{(X,Y)\sim D}\big(f_Y^*(X) < \kappa\big) \leq \frac{\epsilon}{2n\ln(2)} \,.$$

Define $\mathbf{f}^{\epsilon} \in \mathcal{F}_{\text{spwlin}}$ as

$$f_y^{\epsilon}(\mathbf{x}) = \frac{f_y^*(\mathbf{x})}{\kappa} \ln\left(\frac{1}{e^{\epsilon/2n}-1}\right).$$

Then it can be verified that

$$f_y^*(\mathbf{x}) > 0 \implies f_y^{\epsilon}(\mathbf{x}) > 0 \implies \psi_{\text{OvA},\log}(y, \mathbf{f}^{\epsilon}(\mathbf{x})) \le n \ln(2)$$

and moreover,

$$f_y^*(\mathbf{x}) \geq \kappa \implies f_y^\epsilon(\mathbf{x}) \geq \ \ln\left(\frac{1}{e^{\epsilon/2n}-1}\right) \implies \psi_{\mathrm{OvA}, \mathrm{log}}(y, \mathbf{f}^\epsilon(\mathbf{x})) \leq \frac{\epsilon}{2} \,.$$

This gives

$$\begin{split} \operatorname{er}_{D}^{\operatorname{OvA,\log}}[\mathbf{f}^{\epsilon}] &= \mathbf{E}_{(X,Y)\sim D} \left[\psi_{\operatorname{OvA,\log}} \big(Y, \mathbf{f}^{\epsilon}(X) \big) \right] \\ &\leq \mathbf{P}_{(X,Y)\sim D} \big(0 < f_{Y}^{*}(X) < \kappa \big) \cdot \mathbf{E} \big[\psi_{\operatorname{OvA,\log}} \big(Y, \mathbf{f}^{\epsilon}(X) \big) \, \big| \, 0 < f_{Y}^{*}(X) < \kappa \big] \\ &+ \mathbf{P}_{(X,Y)\sim D} \big(f_{Y}^{*}(X) \geq \kappa \big) \cdot \mathbf{E} \big[\psi_{\operatorname{OvA,\log}} \big(Y, \mathbf{f}^{\epsilon}(X) \big) \, \big| \, f_{Y}^{*}(X) \geq \kappa \big] \\ &\leq \frac{\epsilon}{2n \ln(2)} \cdot n \ln(2) + 1 \cdot \frac{\epsilon}{2} \\ &= \epsilon \, . \end{split}$$

Part 2. Let $\mathbf{f} \in \mathcal{F}_{\text{spwlin}}$, and let $\{\mathbf{w}_y, b_y\}_{y=1}^n$ be such that

$$f_y(\mathbf{x}) = \min_{y' \neq y} \left\{ (\mathbf{w}_y - \mathbf{w}_{y'})^\top \mathbf{x} + (b_y - b_{y'}) \right\} \quad \forall \mathbf{x}$$

Define $h: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$h(\mathbf{x}) \in \operatorname{argmax}_{y \in [n]} f_y(\mathbf{x}) \quad \forall \mathbf{x} \,.$$

Then we have

C Proof of Theorem 3

Proof. Let $\mathbf{w}_1, \ldots, \mathbf{w}_n \in \mathbb{R}^d, b_1, \ldots, b_n \in \mathbb{R}$, and let $\mathbf{f} \in \mathcal{F}_{\text{spwlin}}$ be parametrized by $\{\mathbf{w}_y, b_y\}_{y=1}^n$, so that

$$f_y(\mathbf{x}) = \min_{y' \neq y} \left\{ (\mathbf{w}_y - \mathbf{w}_{y'})^\top \mathbf{x} + (b_y - b_{y'}) \right\} \quad \forall \mathbf{x} \,.$$

We will show that

$$\operatorname{argmax}_{y \in [n]} f_y(\mathbf{x}) = \operatorname{argmax}_{y \in [n]} \mathbf{w}_y^\top \mathbf{x} + b_y;$$

this will establish the result.

To see that the above claim is true, notice that we can write

$$f_y(\mathbf{x}) = (\mathbf{w}_y^\top \mathbf{x} + b_y) - \max_{y' \neq y} \left\{ \mathbf{w}_{y'}^\top \mathbf{x} + b_{y'} \right\}.$$

In other words, $f_y(\mathbf{x})$ is the difference between $(\mathbf{w}_y^{\top}\mathbf{x} + b_y)$ and the largest value of $(\mathbf{w}_{y'}^{\top}\mathbf{x} + b_{y'})$ among $y' \neq y$. Clearly, this difference is largest when $(\mathbf{w}_y^{\top}\mathbf{x} + b_y) \geq (\mathbf{w}_{y'}^{\top}\mathbf{x} + b_{y'}) \forall y' \neq y$ (in particular, in this case the difference is non-negative; in all other cases, the difference is negative, and therefore smaller). Thus

$$f_y(\mathbf{x}) \ge f_{y'}(\mathbf{x}) \; \forall y' \neq y \iff (\mathbf{w}_y^\top \mathbf{x} + b_y) \ge (\mathbf{w}_{y'}^\top \mathbf{x} + b_{y'}) \; \forall y' \neq y \,.$$

This proves the claim.

D Proof of Corollary 4

This follows directly from the proof of Theorem 3.

E Details of Real Data Sets Used in Experiments in Section 5.2

Data set	# train	# validation	# test	# classes	# features
				(n)	(d)
Covertype (50K)	30000	10000	10000	7	54
Digits	5620	1874	3498	10	16
USPS	5468	1823	2007	10	256
MNIST (70K)	45000	15000	10000	10	780
CIFAR10	37500	12500	10000	10	3072
Sensorless	35105	11702	11702	11	48
Letter	10500	4500	5000	26	16

Table 3: Multiclass classification data sets used in experiments in Section 5.2.

Notes:

Subsampling: For Covertype, we used a random subsample of the original data set containing 50,000 examples (the original data set has 581,012 examples).

Image data sets with pixel features: The versions of the USPS and MNIST datasets that we used came with features scaled to the ranges [-1, 1] and [0, 1], respectively. For CIFAR10, we similarly scaled the features to the range [0, 1] by dividing all features by 255.