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Abstract

We focus on a stochastic learning model where the learner observes a finite set
of training examples and the output of the learning process is a data-dependent
distribution over a space of hypotheses. The learned data-dependent distribution
is then used to make randomized predictions, and the high-level theme addressed
here is guaranteeing the quality of predictions on examples that were not seen
during training, i.e. generalization. In this setting the unknown quantity of interest
is the expected risk of the data-dependent randomized predictor, for which upper
bounds can be derived via a PAC-Bayes analysis, leading to PAC-Bayes bounds.
Specifically, we present a basic PAC-Bayes inequality for stochastic kernels, from
which one may derive extensions of various known PAC-Bayes bounds as well as
novel bounds. We clarify the role of the requirements of fixed ‘data-free’ priors,
bounded losses, and i.i.d. data. We highlight that those requirements were used
to upper-bound an exponential moment term, while the basic PAC-Bayes theorem
remains valid without those restrictions. We present three bounds that illustrate
the use of data-dependent priors, including one for the unbounded square loss.

1 Introduction

The context of this paper is the statistical learning model where the learner observes training data
S = (Z1, Z2, . . . , Zn) randomly drawn from a space of size-n samples S = Zn (e.g. Z = Rd × Y
for a supervised learning problem where the input space is Rd and the label set is Y) according to
some unknown probability distribution1 Pn ∈ M1(S). Typically Z1, . . . , Zn are independent and
share a common distribution P1 ∈M1(Z). Upon observing the training data S, the learner outputs
a data-dependent probability distribution QS over a hypothesis space H. Notice that this learning
scenario involves randomness in the data and the hypothesis. In this stochastic learning model, the
randomized predictions are carried out by randomly drawing a fresh hypothesis for each prediction.
Therefore, we consider the performance of a probability distribution Q over the hypothesis space:
the expected empirical loss isQ[L̂s] =

∫
H L̂s(h)Q(dh), i.e. theQ-average of the standard empirical

loss L̂s(h) = L̂(h, s) defined as L̂(h, s) = 1
n

∑n
i=1 `(h, zi) for a fixed h ∈ H and s = (z1, . . . , zn),

where ` : H × Z → [0,∞) is a given loss function. Similarly, the expected population loss is
Q[L] =

∫
H L(h)Q(dh), i.e. theQ-average of the standard population lossL(h) =

∫
Z `(h, z)P1(dz)

for a fixed h ∈ H, where P1 ∈M1(Z) is the distribution that generates one random example.

An important component of our development is formalizing “data-dependent distributions over H”
in a way that makes explicit their difference to fixed “data-free” distributions overH.

1We writeM1(X ) to denote the family of probability measures over a set X , see Appendix A.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Data-dependent distributions as stochastic kernels. A data-dependent distribution over the
space H is formalized as a stochastic kernel2 from S to H, which is defined as a mapping3

Q : S × ΣH → [0, 1] such that (i) for each B ∈ ΣH the function s 7→ Q(s,B) is measurable;
and (ii) for each s ∈ S the function Qs : B 7→ Q(s,B) is a probability measure over H. We write
K(S,H) to denote the set of all stochastic kernels from S to —distributions over— H. We reserve
the notationM1(H) for the set of ‘data-free’ distributions overH. Notice thatM1(H) ⊂ K(S,H),
since every ‘data-free’ distribution can be regarded as a constant kernel.

With the notation just introduced,QS stands for the distribution overH corresponding to a randomly
drawn data set S. The stochastic kernel Q can be thought of as describing a randomizing learner.
One well-known example is the Gibbs learner, where QS is of the form QS(dh) ∝ e−γL̂(h,S)µ(dh)
for some γ > 0, with µ a base measure over H. Note that, besides randomized predictors, other
prediction schemes may be devised from a learned distribution over hypotheses, as for instance
ensemble predictors and majority vote predictors (see the related literature in Section 4 below).

A common question arising in learning theory aims to explain the generalization ability of a learner:
how can a learner ensure a ‘well-behaved’ population loss? One way to answer this question is
via upper bounds on the population loss, also called generalization bounds. Often the focus is
on the generalization gap, which is the difference between the population loss and the empirical
loss, and giving upper bounds on the gap. There are several types of generalization bounds we
care about in learning theory, with variations in the way they depend on the training data S and
the data-generating distribution Pn. The classical bounds (such as VC-bounds) depend on neither.
Distribution-dependent bounds are expressed in terms of quantities related to the data-generating
distribution (e.g. population mean or variance) and possibly constants, but not the data in any way.
These bounds can be helpful to study the behaviour of a learning method on different distributions—
for example, some data-generating distributions might give faster convergence rates than others.
Finally, data-dependent bounds are expressed in terms of empirical quantities that can be computed
directly from data. These are useful for building and comparing predictors [Catoni, 2007], and also
for “self-bounding” [Freund, 1998] or “self-certified” [Pérez-Ortiz et al., 2020] learning algorithms,
which are learning algorithms that use all the available data to simultaneously provide a predictor
and a risk certificate that is valid on unseen examples.

PAC-Bayesian inequalities allow to derive distribution- or data-dependent generalization bounds
in the context of the stochastic prediction model discussed above. The usual PAC-Bayes analysis
introduces a reference ‘data-free’ probability measure Q0 ∈ M1(H) on the hypothesis space H.
The learned data-dependent distribution QS is commonly called a posterior, while Q0 is called a
prior. However, in contrast to Bayesian learning, the PAC-Bayes prior Q0 acts as an analytical
device and may or may not be used by the learning algorithm, and the PAC-Bayes posterior QS is
unrestricted and so it may be different from the posterior that would be obtained from Q0 through
Bayesian inference. In this sense, the PAC-Bayes approach affords an extra level of flexibility in the
choice of distributions, even compared to generalized Bayesian approaches [Bissiri et al., 2016].

In the following, for any given Q ∈ K(S,H) and s ∈ S , we write Qs[L̂s] =
∫
L̂s(h)Qs(dh) and

Qs[L] =
∫
L(h)Qs(dh) for the expected empirical loss and the expected population loss, respec-

tively. The focus of PAC-Bayes analysis is deriving bounds on the gap between QS [L] and QS [L̂S ].
For instance, the classical result of McAllester [1999] says the following: For a fixed ‘data-free’
distribution Q0 ∈ M1(H), bounded loss function with range [0, 1], stochastic kernel Q ∈ K(S,H)
and for any δ ∈ (0, 1), with probability at least 1− δ over size-n random samples S:

QS [L]−QS [L̂S ] ≤
√

1

2n− 1

(
KL(QS‖Q0) + log

(
n+2
δ

))
. (1)

KL(·‖·) stands for the Kullback-Leibler divergence4 which is defined for two given probability
distributions Q,Q′ overH as follows: KL(Q‖Q′) =

∫
H log (dQ/dQ′) dQ, where dQ/dQ′ denotes

the Radon-Nikodym derivative. Note that PAC-Bayes bounds (e.g. McAllester’s bound described
above) are usually presented under a statement that says that with probability at least 1 − δ, the

2This is also called a transition kernel or probability kernel, a well-known concept in the literature on
stochastic processes, see e.g. Kallenberg [2017], Meyn and Tweedie [2009], Ethier and Kurtz [1986].

3The space of size-n samples S is equipped with a sigma algebra that we denote ΣS , and the hypothesis
spaceH is equipped with a sigma algebra that we denote ΣH. For precise definitions see Appendix A.

4Also known as relative entropy, see e.g. Cover and Thomas [2006].
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displayed inequality holds simultaneously for all probability distributions Q over H, i.e. with an
arbitrary Q replacing QS . Such commonly used formulation has the apparent advantage of being
valid uniformly for all distributions overH, while our formulation is valid for a fixed kernel. At the
same time, the commonly used formulation has the disadvantage of hiding the data-dependence of
the ‘posterior’ distributions used in practice, while our formulation in terms of a stochastic kernel
shows explicitly the data-dependence: given the data S, the corresponding distribution over H is
QS . Notice that one fixed stochastic kernel suffices in order to describe a whole parametric family
of distributions (such as Gaussian or Laplace distributions, among others) with parameter values
learned from data. Since our main interest is in results for data-dependent distributions (contrasted to
results for fixed ‘data-free’ distributions), we argue in favour of the formulation based on stochastic
kernels. These have appeared in the learning theory literature under the names of Markov kernels
[Xu and Raginsky, 2017] or regular conditional probabilities [Catoni, 2004, 2007, Alquier, 2008].

A large body of subsequent work focused on refining the PAC-Bayes analysis by means of alter-
native proof techniques and different ways to measure the gap between QS [L] and QS [L̂S ]. For
instance Langford and Seeger [2001] and Seeger [2002] gave an upper bound on the relative entropy
of QS [L̂S ] and QS [L], commonly called the PAC-Bayes-kl bound [Seldin et al., 2012], which holds
with high probability over randomly drawn size-n samples S:

kl(QS [L̂S ] ‖QS [L]) ≤ 1

n

(
KL(QS‖Q0) + log

(
n+1
δ

))
. (2)

kl(·‖·), appearing on the left-hand side of this inequality, denotes the binary KL divergence, which
is by definition the KL divergence between the Bernoulli distributions with the given parameters:

kl(q‖q′) = q log(
q

q′
) + (1− q) log(

1− q
1− q′

) for q, q′ ∈ [0, 1].

Inequality (2) is tighter than (1) due to Pinsker’s inequality 2(p−q)2 ≤ kl(p‖q). In fact, by a refined
form of Pinsker’s inequality, namely (p− q)2/(2q) ≤ kl(p‖q) which is valid for p < q (and tighter
than the former when q < 0.25), from Eq. (2) one obtains a localised inequality5 (see Eq. (6) of
McAllester [2003]), which holds with high probability6 over randomly drawn size-n samples S:

QS [L]−QS [L̂S ] .

√
QS [L̂S ]

n
KL(QS‖Q0) +

1

n
KL(QS‖Q0) . (3)

PAC-Bayes bounds like Eq. (1) and Eq. (3) tell us that the population loss is controlled by a trade-
off between the empirical loss and the deviation of the posterior from the prior as captured by
the KL divergence. Note that inequality (3) is tighter than (1) when QS [L̂S ] < QS [L] < 0.25.
Obviously, the upper bound in Eq. (3) is dominated by the lower-order (second) term whenever the
empirical loss QS [L̂S ] is small enough, which makes this inequality very appealing for learning
problems based on empirical risk minimization, where the empirical loss is driven to zero. At a high
level, such kinds of data-dependent upper bounds on the generalization gap are much desirable, as
their empirical terms are closely linked to—and hopefully capture more properties of—the data. In
this direction, valuable contributions were made by Tolstikhin and Seldin [2013] who obtained an
empirical PAC-Bayes bound similar in spirit to Eq. (3), but controlled by the sample variance of the
loss. An alternative direction to get sharper empirical bounds was explored through tunable bounds
[Catoni, 2007, van Erven, 2014, Thiemann et al., 2017], which involve a free parameter that offers
a trade-off between the empirical error term and the KL(Posterior‖Prior) term.

Despite their variety and attractive properties, the results discussed above (and the vast majority of
the literature) share two crucial limitations: the priorQ0 cannot depend on the training data S and the
loss function has to be bounded. It is conceivable that in many realistic situations the population loss
is effectively controlled by the KL “complexity” term—indeed, in most modern learning scenarios
(e.g. training deep neural networks) the empirical loss is driven to zero. At the same time, the
choice of a fixed ‘data-free’ prior essentially becomes a wild guess on how the posterior will look
like. Therefore, allowing prior distributions to be data-dependent introduces much needed flexibility,
since this opens up the possibility to minimize upper bounds in both the posterior and the prior,
which should lead to tighter empirical bounds on QS [L] and tighter risk certificates.

5For x, b, c nonnegative, x ≤ c+ b
√
x implies x ≤ c+ b

√
c+ b2.

6The notation . hides universal constants and logarithmic factors.
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These limitations have been removed in the PAC-Bayesian literature in special cases. For instance,
Ambroladze et al. [2007] and Parrado-Hernández et al. [2012] used priors that were trained on a
held-out portion of the available data, thus enabling empirical bounds with PAC-Bayes priors that
are data-dependent, but independent from the training set. Priors that depend on the full training set
have also been studied recently. Thiemann et al. [2017] proposed to construct a prior as a mixture
of point masses at a finite number of data-dependent hypotheses trained on a k-fold split of the
training set, effectively a data-dependent prior. Another approach was proposed by Dziugaite and
Roy [2018b]: rather than splitting the training data, they require the data-dependent prior Q0

s (where
Q0 ∈ K(S,H)) to be stable with respect to ‘small’ changes in the composition of the n-tuple s. As
we will see shortly, there is benefit in relaxing the restrictions of the usual PAC-Bayes literature.

2 Our Contributions

In this paper we discuss a basic PAC-Bayes inequality (Theorem 1 below) and a general template
for PAC-Bayesian bounds (Theorem 2 below). The formulation of both these results is based on
representing data-dependent distributions as stochastic kernels. To make a case for the usefulness
of this approach, we show that our Theorem 2 encompasses many usual bounds which appear in the
literature [McAllester, 1998, 1999, Seeger, 2002, Catoni, 2007, Thiemann et al., 2017], while at the
same time it enables new PAC-Bayes inequalities. Importantly, our study takes a critical stand on
the “usual assumptions” on which PAC-Bayes inequalities are based, namely, (a) data-free prior, (b)
bounded loss, and (c) i.i.d. data observations. We aim to clarify the role of these assumptions and
to illustrate how to obtain PAC-Bayes inequalities in cases where these assumptions are removed.
As we will soon see, the analysis leading to our Theorem 2 shows that the PAC-Bayes priors can be
data-dependent by default, and also that the underlying loss function can be unbounded by default.
Furthermore, the proof of our Theorem 2 does not rely on the assumption of i.i.d. data observations,
which may enable new results for statistically dependent data in future research.

For illustration, our general PAC-Bayes theorem7 for stochastic kernels (Theorem 2 in Section 3),
in specialized form, implies that for any convex function F : R2 → R, for any stochastic kernels
Q,Q0 ∈ K(S,H) and δ ∈ (0, 1), with probability at least 1− δ over randomly drawn S one has

F (QS [L], QS [L̂S ]) ≤ KL(QS‖Q0
S) + log(ξ(Q0)/δ) , (4)

where ξ(Q0) is the exponential moment of F (L(h), L̂s(h)), which is defined as follows:

ξ(Q0) =

∫
S

∫
H
eF (L(h),L̂s(h))Q0

s(dh)Pn(ds) .

Observe that Eq. (4) is defined for an arbitrary convex function F . This way the usual bounds are
encompassed: F (x, y) = 2n(x− y)2 yields a McAllester [1999]-type bound, F (x, y) = n kl(y‖x)

gives the bound of Seeger [2002], and F (x, y) = n log
(

1
1−x(1−e−λ)

)
− λny gives the bound

of Catoni [2007]. Furthermore, F (x, y) = n(x − y)2/(2x) leads to the so-called PAC-Bayes-λ
bound of Thiemann et al. [2017], or to the bound of Rivasplata et al. [2019] which holds under the
usual requirements of fixed ‘data-free’ prior Q0, losses within the [0, 1] range, and i.i.d. data:

QS [L] ≤


√
QS [L̂S ] +

KL(QS‖Q0) + log( 2
√
n
δ )

2n
+

√
KL(QS‖Q0) + log( 2

√
n
δ )

2n

2

. (5)

As consequence of the universality of Eq. (4), besides the usual bounds we may derive novel bounds,
e.g. with data-dependent priors Q0

S . Conceptually, our approach splits the usual PAC-Bayesian
analysis into two components: (i) choose F to use in Eq. (4), and (ii) obtain an upper bound on
the exponential moment ξ(Q0). The cost of generality is that for each specific choice of the bound
(technically, a choice of a function F and Q0) we need to study the exponential moment ξ(Q0) and,
in particular, provide a reasonable, possibly data-dependent upper bound on it. We stress that the
only technical step necessary for the introduction of a data-dependent prior is a bound on ξ(Q0), the
rest is taken care of by Eq. (4). While previous works8 analysed separately the exponential moment,

7Generic PAC-Bayes theorems, similar in spirit to ours, have been presented before, e.g. by Audibert [2004],
Germain et al. [2009], Bégin et al. [2014, 2016], but only with fixed ‘data-free’ priors.

8Audibert and Bousquet [2007], Alquier et al. [2016], among others, for the case of fixed ‘data-free’ priors.
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as we do here, to the best of our knowledge they considered data-free priors only. We think our
work is the first to point out techniques to upper bound ξ(Q0) when Q0 is a stochastic kernel, and
to present PAC-Bayesian inequalities where the prior is data-dependent by default. Our work also
clarifies where / how the data-free nature of the priors was used in previous works.

We emphasize that in this paper the main focus is on using data-dependent priors in the PAC-Bayes
analysis. Again, we point out that the proof of the basic PAC-Bayes inequality (Theorem 1 below)
does not require fixed ‘data-free’ priors, nor bounded loss functions nor i.i.d. data observations. The
same can be said of Theorem 2, a consequence of Theorem 1(ii), which gives a general template for
deriving PAC-Bayes bounds. Below we discuss three generalization bounds with data-dependent
priors, two of which are for bounded losses, while the third is for the unbounded square loss.

2.1 A PAC-Bayes bound with a data-dependent Gibbs prior

Choosing as prior an empirical Gibbs distribution Q0
s(dh) ∝ e−γL̂(h,s)µ(dh) for some fixed γ > 0

and base measure µ overH, we derive a novel PAC-Bayes bound. Recall that s is the size-n sample.
We use F (x, y) =

√
n(x−y), and we prove that in this case the exponential moment ξ(Q0) satisfies

log(ξ(Q0)) ≤ 2

(
1 +

2γ√
n

)
+ log

(
1 +
√
e
)
.

The proof (Appendix B) is based on the algorithmic stability argument for Gibbs densities, inspired
by the proof of Kuzborskij et al. [2019, Theorem 1]. Combining this with Eq. (4), for any kernel
Q ∈ K(S,H) and δ ∈ (0, 1), with probability at least 1− δ over size-n i.i.d. samples S we have

QS [L]−QS [L̂S ] ≤ 1√
n

(
KL(QS‖Q0

S) + 2
(

1 +
2γ√
n

)
+ log

(1 +
√
e

δ

))
. (6)

Notice that this prior allowed to remove ‘log(n)’ from the usual PAC-Bayes bounds (see our Eq. (1)
and Eq. (2) above). This was one of the important contributions of Catoni [2007], who also used a
data-dependent Gibbs distribution, see Catoni [2007, Theorem 1.2.4, Theorem 1.3.1, & corollaries].
Interestingly, the choice Q = Q0 gives the smallest right-hand side in Eq. (6) (however, it does
not necessarily minimize the bound on QS [L]) which leads to the following for the Gibbs learner:
QS [L]−QS [L̂S ] . 1/

√
n+ γ/n . Notice that this latter bound has an additive 1/

√
n compared to

the bound in expectation of Raginsky et al. [2017].

2.2 PAC-Bayes bounds with d-stable data-dependent priors

Next we discuss an approach to convert any PAC-Bayes bound with a usual ‘data-free’ prior into a
bound with a stable data-dependent prior, which is accomplished by generalizing a technique from
Dziugaite and Roy [2018b]. Essentially, they show (see Appendix C) that for any fixed ‘data-free’
distribution Q∗ ∈M1(H) and stochastic kernel Q0 ∈ K(S,H) satisfying the DP(ε) property9, one
can turn the inequality F (QS [L], QS [L̂S ]) ≤ KL(QS‖Q∗) + log(ξ(Q∗)/δ) into

F (QS [L], QS [L̂S ]) ≤ KL(QS‖Q0
S) + log(2ξ(Q∗)/δ) +

nε2

2
+ ε

√
n

2
log(

4

δ
) . (7)

In other words, if Eq. (4) holds with a data-free prior Q∗, then Eq. (7) holds with a data-dependent
prior that is distributionally stable (i.e. satisfies DP(ε)). Note that different choices of F would
lead to different bounds on ξ(Q∗) —essentially, upper bounds on the exponential moment typically
considered in the PAC-Bayesian literature. For example, taking F (x, y) = n kl(y‖x) one can show
that ξ(Q∗) ≤ 2

√
n [Maurer, 2004], and this leads to Theorem 4.2 of Dziugaite and Roy [2018b]: if

Q0 ∈ K(S,H) satisfies the DP(ε) property, then for any kernel Q ∈ K(S,H) and δ ∈ (0, 1), with
probability at least 1− δ over size-n i.i.d. samples S we have

kl(QS [L̂S ]‖QS [L]) ≤ 1

n

(
KL(QS‖Q0

S) + log(
4
√
n

δ
) +

nε2

2
+ ε

√
n

2
log(

4

δ
)

)
.

Eq. (7) is a general version of this result, whose derivation is based on the notion of max-information
[Dwork et al., 2015a]. The details of the general conversion recipe are given in Appendix C.

9DP(ε) stands for “differential privacy with ε.” See Appendix C for details on this property.
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2.3 A generalization bound for the square loss with a data-dependent prior

Our third and last contribution is a novel bound for the setting of learning linear predictors with the
square loss. This will demonstrate the full power of our take on the PAC-Bayes analysis, as we will
consider a regression problem with the unbounded squared loss and a data-dependent prior. In fact,
our framework of data-dependent priors makes it possible to obtain the problem-dependent bound
in Eq. (8) for square loss regression. We are not aware of an equivalent previous result.

In this setting, the input space isX = Rd and the label spaceY = R. A linear predictor is of the form
hw : Rd → R with hw(x) = w>x for x ∈ Rd, where of coursew ∈ Rd. Hence hw may be identified
with the weight vector w and correspondingly the hypothesis space H may be identified with the
weight spaceW = Rd. The size-n random sample is S = ((X1, Y1), . . . , (Xn, Yn)) ∈ (Rd × R)n.
The population and empirical losses are defined with respect to the square loss function:

L(w) =
1

2
E[(w>X1 − Y1)2] and L̂S(w) =

1

2n

n∑
i=1

(w>Xi − Yi)2 .

The population covariance matrix is Σ = E[X1X
>
1 ] ∈ Rd×d and its eigenvalues are λ1 ≥ · · · ≥ λd.

The (regularized) sample covariance matrix is Σ̂λ = (X1X
>
1 + · · · + XnX

>
n )/n + λI for λ > 0,

with eigenvalues λ̂1 ≥ · · · ≥ λ̂d. Note that λ̂i are data-dependent.

Consider the prior Q0
γ,λ with density q0

γ,λ(w) ∝ e−
γλ
2 ‖w‖

2

for some γ, λ > 0, that possibly depend
on the data. In this setting, we prove (Appendix D) that for any posterior Q ∈ K(S,W), for any
γ > 0, and any λ > maxi{λi − λ̂i}, with probability one over size-n random samples S we have

QS [L]−QS [L̂S ] ≤ min
w∈Rd

L(w) +
1

γ
KL(QS ||Q0

γ,λ) +
1

2γ

d∑
i=1

log

(
λ

λ+ λ̂i − λi

)
. (8)

A straightforward observation is that this generalization bound holds with probability one over the
distribution of size-n random samples. This is a stronger result than usual high-probability bounds.
Of course one may derive a high-probability bound from Eq. (8) by an application of Markov’s
inequality, but that would make the result weaker. The stronger result with probability one, for
instance, allows to select the best out a countable collection of λ values at no extra cost, while the
high-probability bound would need to pay a union bound price for such selection.

Notice that we are not necessarily assuming bounded inputs or labels. Our bound depends on the
data-generating distribution (possibly of unbounded support) via the spectra of the covariance ma-
trices. While this is apparent by looking at the last term in Eq. (8), in fact the KL(Posterior‖Prior)
term also depends on the covariances (see Proposition 12 in Appendix D). In particular, if the data
inputs are independent sub-gaussian random vectors, then with high probability |λ̂i − λi| .

√
d/n

and the last term in Eq. (8) then behaves as d log
(
λ/(λ+ λ̂i−λi)

)
. d/

√
n− 1. This of course can

be extended to heavy-tailed distributions or, in general, to any input distributions such that spectrum
of the covariance matrix concentrates well [Vershynin, 2011].

The explicit dependence on the spectrum of the sample covariance matrix opens interesting venues
for distribution-dependent analysis. The above argument can be extended to heavy-tailed data dis-
tributions, where in some cases we can have concentration of the smallest eigenvalue of a sample
covariance matrix even for unbounded instances, see Vershynin [2011, Section 5.4.2]. Moreover, our
technique allows to combine PAC-Bayes analysis with specific applications by considering various
data distributions. For instance, we can obtain bounds for structured data by analyzing eigenvalues
of the corresponding (sparse or blocked) covariance matrices [Wainwright, 2019], thus revealing
fined-grained dependence on the distribution compared to the usual PAC-Bayes bounds. Similarly,
one can obtain generalization bounds for statistically dependent data by looking at the concentration
of the covariance with dependent observations [de la Peña and Giné, 2012].

An important component of the proof of Eq. (8) is the following identity for the exponential moment
of f = γ(L(w) − L̂S(w)) under the prior distribution: for λ > maxi{λi − λ̂i}, with probability
one over random samples S,

logQ0
γ,λ[ef ] = γ min

w∈Rd

(
L(w)− (L̂S(w) +

λ

2
‖w‖2)

)
+

1

2

d∑
i=1

log

(
λ

λ+ λ̂i − λi

)
. (9)
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This identity computes explicitly the exponential moment of f under the prior distribution. Also
this explains why the upper bound in Eq. (8) contains the term minw∈Rd L(w). The latter should
be understood as the label noise. This term will disappear in a noise-free problem, while given a
distribution-dependent boundedness of the loss function, the term will concentrate well around zero
(see Proposition 11 in Appendix D). We comment on the free parameter γ in Appendix D.

Finally, note that Eq. (9) elucidates an equivalence between the concentration of eigenvalues of the
sample covariance matrix and concentration of the empirical loss. Indeed, for simplicity assuming
a noise-free setting (that is minw∈Rd L(w) = 0), we observe that whenever (λ̂i − λi) → 0 as
n→∞ for i.i.d. instances, we have L̂S(w)→ L(w). This provides an alternative way to control the
concentration, compared to works based on restrictions on the loss as e.g. by Germain et al. [2016],
Holland [2019]. We discuss another PAC-Bayes bound for unbounded losses in Appendix E.

3 Our PAC-Bayes theorem for stochastic kernels

The following results involve data- and hypothesis-dependent functions f : S×H → R. Notice that
the order S×H is immaterial—functionsH×S → R are treated the same way. It will be convenient
to define fs(h) = f(s, h). If ρ ∈ M1(H) is a ‘data-free’ distribution, we will write ρ[fs] to denote
the ρ-average of fs(·) for fixed s, that is, ρ[fs] =

∫
H fs(h)ρ(dh). When ρ is data-dependent, that is,

ρ ∈ K(S,H) is a stochastic kernel, we will write ρs for the distribution over H corresponding to a
fixed s, so ρs(B) = ρ(s,B) for B ∈ ΣH, and ρs[fs] =

∫
H fs(h)ρs(dh).

The joint distribution over S×H defined byP ∈M1(S) andQ ∈ K(S,H) is the measure denoted10

by P ⊗Q that acts on functions φ : S ×H → R as follows:

(P ⊗Q)[φ] =

∫
S
P (ds)

∫
H
Q(s, dh)[φ(s, h)] =

∫
S

∫
H
φ(s, h)Qs(dh)P (ds) .

Drawing a random pair (S,H) ∼ P ⊗Q is equivalent to drawing S ∼ P and drawing H ∼ QS . In
this case, with E denoting the expectation under the joint distribution P ⊗ Q, the previous display
takes the form E[φ(S,H)] = E[E[φ(S,H)|S]]. Our basic result is the following theorem.

Theorem 1 (Basic PAC-Bayes inequality) Fix a probability measure P ∈ M1(S), a stochastic
kernel Q0 ∈ K(S,H), and a measurable function f : S ×H → R, and let

ξ =

∫
S

∫
H
ef(s,h)Q0

s(dh)P (ds) .

(i) For any Q ∈ K(S,H), for any δ ∈ (0, 1), with probability at least 1 − δ over the random
draw of a pair (S,H) ∼ P ⊗Q we have

f(S,H) ≤ log

(
dQS
dQ0

S

(H)

)
+ log(ξ/δ) .

(ii) For any Q ∈ K(S,H), for any δ ∈ (0, 1), with probability at least 1 − δ over the random
draw of S ∼ P we have

QS [fS ] ≤ KL(QS‖Q0
S) + log(ξ/δ) .

To the best of our knowledge, this theorem is new. Notice that Q0 is by default a stochastic kernel
from S to H. Hence, given data S, the prior Q0

S is a data-dependent distribution over hypotheses.
By contrast, the usual PAC-Bayes approaches assume that Q0 is a ‘data-free’ distribution. Also
note that the function f is unrestricted, and the distribution P ∈ M1(S) is unrestricted, except for
integrability conditions to ensure that ξ is finite. A key step of the proof involves a well-known
change of measure that can be traced back to Csiszár [1975] and Donsker and Varadhan [1975].

Proof Recall that when Y is a positive random variable, by Markov inequality, for any δ ∈ (0, 1),
with probability at least 1− δ we have:

log Y ≤ logE[Y ] + log(1/δ) . (?)

10The notation P ⊗Q (see e.g. Kallenberg [2017]), used here for the joint distribution over S ×H defined
by P ∈M1(S) and Q ∈ K(S,H), corresponds to what in Bayesian learning is commonly written QH|SPS .
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Let Q0 ∈ K(S,H), and let E0 denote expectation under the joint distribution P ⊗ Q0. Thus if
S ∼ P and H ∼ Q0

S we then have ξ = E0[E0[ef(S,H)|S]].

Let Q ∈ K(S,H) and denote by E the expectation under the joint distribution P ⊗ Q. Then by a
change of measure we may re-write ξ = E0[ef(S,H)] as ξ = E[ef̃(S,H)] = E[eD] with

D = f̃(S,H) = f(S,H)− log

(
dQS
dQ0

S

(H)

)
.

(i) Applying inequality (?) to Y = eD, with probability at least 1 − δ over the random draw of the
pair (S,H) ∼ P ⊗Q we get D ≤ logE[eD] + log(1/δ).

(ii) Recall fS(H) = f(S,H). Notice that E[D|S] = QS [fS ]−KL(QS‖Q0
S) . By Jensen inequality,

E[D|S] ≤ logE[eD|S]. While from (?) applied to Y = E[eD|S], with probability at least 1 − δ
over the random draw of S ∼ P we have logE[eD|S] ≤ logE[eD] + log(1/δ).

Suppose the function f is of the form f = F ◦ A with A : S × H → Rk and F : Rk → R convex.
In this case, by Jensen inequality we have F (Qs[As]) ≤ Qs[F (As)] and Theorem 1(ii) gives:

Theorem 2 (PAC-Bayes for stochastic kernels) For any P ∈ M1(S), for any Q0 ∈ K(S,H),
for any positive integer k, for any measurable function A : S × H → Rk and convex function
F : Rk → R, let f = F ◦A and let ξ = (P ⊗Q0)[ef ] as in Theorem 1. Then for any Q ∈ K(S,H)
and any δ ∈ (0, 1), with probability at least 1− δ over the random draw of S ∼ P we have

F (QS [AS ]) ≤ KL(QS‖Q0
S) + log(ξ/δ) . (10)

This theorem is a general template for deriving PAC-Bayes bounds, not just with ‘data-free’ priors,
but also more generally with data-dependent priors. Previous works (see Section 4 below) that
presented similar generic templates for deriving PAC-Bayes bounds only considered data-free priors.
We emphasize that a ‘data-free’ distribution is equivalent to a constant stochastic kernel: Q0

s = Q0
s′

for all s, s′ ∈ S. HenceM1(H) ⊂ K(S,H), which implies that our Theorem 2 encompasses the
usual PAC-Bayes inequalities with data-free priors in the literature.

Interestingly, our Theorem 2 is valid with any normed space instead of Rk. This theorem extends
the typically used case where k = 2 and A = (L(h), L̂(h, s)), in which case the function of interest
is f(s, h) = F (L(h), L̂(h, s)), where F : R2 → R is a convex function, but there are no restrictions
on the loss function ` that is used in defining L(h) and L̂(h, s). Hence Theorem 2 is valid for
any loss function: convex or non-convex, bounded or unbounded. Notice also that our Theorem 2
holds for any P ∈ M1(S), i.e. without restrictions on the data-generating process. In particular,
our Theorem 2 holds without the i.i.d. data assumption, hence this theorem could potentially enable
new generalization bounds for statistically dependent data. In Section 4 below we comment on some
literature related to unbounded losses and non-i.i.d. data.

An important role is played by ξ, the exponential moment (moment generating function at 1) of the
function f under the joint distribution P ⊗Q0. As discussed above in Section 2, there are essentially
two main steps involved in obtaining a PAC-Bayesian inequality: (i) choose F to use in Theorem 2,
and (ii) upper-bound the exponential moment ξ. We emphasize that the “usual assumptions” on
which PAC-Bayes bounds are based, namely, (a) data-free prior, (b) bounded loss, and (c) i.i.d. data,
played a role only in the technique used for controlling ξ. This is because with a data-free Q0 we
may swap the order of integration:

ξ =

∫
S

∫
H
ef(s,h)Q0(dh)P (ds) =

∫
H

∫
S
ef(s,h)P (ds)Q0(dh) =: ξswap .

Then bounding ξ proceeds by calculating or bounding ξswap for which there are readily available
techniques for bounded loss functions and i.i.d. data (see e.g. Maurer [2004], Germain et al. [2009],
van Erven [2014]). The bounds with data-dependent priors that we presented in Section 2 required
different kinds of techniques to control the exponential moment, the details are in the appendices.
To the best of our knowledge, ours is the first work to extend the PAC-Bayes analysis to stochastic
kernels. This framework appears to be a promising theoretical tool to obtain new results. The three
types of data-dependant priors discussed in Section 2 show the versatility of the approach. Deriving
more cases of PAC-Bayes inequalities without the usual assumptions is left for future research.
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4 Additional discussion and related literature

The literature on the PAC-Bayes learning approach is vast. We briefly mention the usual references
McAllester [1999], Langford and Seeger [2001], Seeger [2002], and Catoni [2007]; but see also
Maurer [2004], and Keshet et al. [2011]. Note that McAllester [1999] continued McAllester [1998]
whose work was inspired by Shawe-Taylor and Williamson [1997]’s work on a PAC analysis of a
Bayesian-style estimator. We acknowledge the tutorials of Langford [2005] and McAllester [2013],
the mini-tutorial of van Erven [2014], and the primer of Guedj [2019]. Our Theorem 2 is akin to
general forms of the PAC-Bayes theorem given before by Audibert [2004], Germain et al. [2009],
and Bégin et al. [2014, 2016]. Our Theorem 1(i) is akin to the “pointwise” bound of Blanchard and
Fleuret [2007], in that the bound holds over the random draw of data and hypothesis pairs.

There are many application areas that have used the PAC-Bayes approach, but there are essentially
two ways that a PAC-Bayes bound is typically applied: either use the bound to give a risk certificate
for a randomized predictor learned by some method, or turn the bound itself into a learning method
by searching a randomized predictor that minimizes the bound. The latter is mentioned already by
McAllester [1999], credit for this approach in various contexts is due also to Germain et al. [2009],
Seldin and Tishby [2010], Keshet et al. [2011], Noy and Crammer [2014], Keshet et al. [2017],
possibility among others. Recently, the use of the latter approach has also found success in training
neural networks, see Dziugaite and Roy [2017, 2018b]. In fact, the recent resurgence of interest
in the PAC-Bayes approach has been to a large extent motivated by the interest in generalization
guarantees for neural networks. Langford and Caruana [2001] used McAllester [1999]’s classical
PAC-Bayesian bound to evaluate the error of a (stochastic) neural network classifier. Dziugaite and
Roy [2017] obtained numerically non-vacuous generalization bounds by optimizing the same bound.
Subsequent studies (e.g. Rivasplata et al. [2019], Pérez-Ortiz et al. [2020]) continued this approach,
sometimes with links to the generalization of stochastic optimization methods (e.g. London [2017],
Neyshabur et al. [2018], Dziugaite and Roy [2018a]) or algorithmic stability.

A line of work related to connecting PAC-Bayes priors to data was explored by Lever et al. [2013],
Pentina and Lampert [2014] and more recently by Rivasplata et al. [2018], who assumed that priors
are distribution-dependent. In that setting the priors are still ‘data-free’ but in a less agnostic fashion
(compared to an arbitrary fixed prior), which allows to demonstrate improvements for “nice” data-
generating distributions. Data-dependent priors were investigated recently by Awasthi et al. [2020],
who relied on tools from the empirical process theory and controlled the capacity of a data-dependent
hypothesis class (see also Foster et al. [2019]). The PAC-Bayes literature does contain a line of work
that investigates relaxing the restriction of bounded loss functions. A straightforward way to extend
PAC-Bayes inequalities to unbounded loss functions is to make assumptions on the tail behaviour
of the loss [Alquier et al., 2016, Germain et al., 2016] or its moments [Alquier and Guedj, 2018,
Holland, 2019], leading to interesting bounds in special cases. Recent work has also looked into
the analysis for heavy-tailed losses. For example, Alquier and Guedj [2018] proposed a polynomial
moment-dependent bound with f -divergence replacing the KL divergence, while Holland [2019]
devised an exponential bound assuming that the second moment of the loss is bounded uniformly
across hypotheses. An alternative approach was explored by Kuzborskij and Szepesvári [2019],
who proposed a stability-based approach by controlling the Efron-Stein variance proxy of the loss.
Squared loss regression was studied by Shalaeva et al. [2020] who improved results of Germain et al.
[2016] and also relaxed the data-generation assumption to non-iid data. It is worth mentioning the
important work related to extending the PAC-Bayes framework to statistically dependent data, see
e.g. Alquier and Wintenberger [2012] who applied Rio [2000]’s version of Hoeffding’s inequality,
derived PAC-Bayes bounds for non-i.i.d. data, and used them in model selection for time series.

As we mentioned in the introduction, besides randomized predictions, other prediction schemes may
be derived from a learned distribution over hypotheses. Aggregation by exponential weighting was
considered by Dalalyan and Tsybakov [2007, 2008], ensembles of decision trees were considered
by Lorenzen et al. [2019], weighted majority vote by Masegosa et al. [2020], Germain et al. [2015].
This list is far from being complete. Finally, it is worth mentioning that the PAC-Bayesian analysis
extends beyond bounds on the gap between population and empirical losses: A large body of litera-
ture has also looked into upper and lower bounds on the excess risk, namely, QS [L]− infh∈H L(h),
we refer e.g. to Catoni [2007], Alquier et al. [2016], Grünwald and Mehta [2019], Kuzborskij et al.
[2019], Mhammedi et al. [2019]. The approach of analyzing the gap (for randomized predictors),
which we follow in this paper, is generally complementary to such excess risk analyses.
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Broader Impact

We think this work will have a positive impact on the theoretical machine learning community.
However, since this work presents a high-level theoretical framework, its direct impact on society
will be linked to the particular user-specific applications where this framework may be instantiated.
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bounds for stable algorithms with instance-dependent priors. In Advances in Neural Information
Processing Systems (NeurIPS), pages 9214–9224, 2018.

O. Rivasplata, V. M. Tankasali, and C. Szepesvári. PAC-Bayes with Backprop. arXiv:1908.07380,
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A Measure-Theoretic Notation

Let (X ,ΣX ) be a measurable space, i.e. X is a non-empty set and ΣX is a sigma-algebra of subsets
of X . A measure is a countably additive set function ν : ΣX → [0,+∞] such that ν(∅) = 0.
We write M(X ,ΣX ) for the set of all measures on this space, and M1(X ,ΣX ) for the set of all
measures with total mass 1, i.e. probability measures. Actually, when the sigma-algebra where the
measure is defined is clear from the context, the notation may be shortened toM(X ) andM1(X ),
respectively. For any measure ν ∈ M(X ) and measurable function f : X → R, we write ν[f ] to
denote the ν-integral of f , so

ν[f ] =

∫
X
f(x)ν(dx) .

Thus for instance if X is an X -valued random variable with probability distribution P ∈ M1(X ),
i.e. for sets A ∈ ΣX the event that the value of X falls within A has probability P[X ∈ A] = P (A).
Then the expectation of f(X) is E[f(X)] = P [f ], and its variance is Var[f(X)] = P [f2]− P [f ]2.

B Proof of the bound for data-dependent Gibbs priors

For the sake of clarity let us recall once more that P ⊗Q denotes the joint distribution over S ×H
defined by P ∈M1(S) andQ ∈ K(S,H). Drawing a random pair (S,H) ∼ P ⊗Q is equivalent to
drawing S ∼ P and drawing H ∼ QS . With E denoting expectation under P ⊗Q, for measurable
functions φ : S ×H → R we have E[φ(S,H)] = E[E[φ(S,H)|S]]. Also recall S = Zn.

Lemma 3 For any n, for any loss function with range [0, b], for any Q ∈ K(S,H) such that
Qs(dh) ∝ e−γL̂(h,s)µ(dh), the following upper bound on ξ(Q) = E[e

√
n(L(H)−L̂(H,S))] holds:

log(ξ(Q)) ≤ 2b2
(

1 +
2γ√
n

)
+ log

(
1 + eb

2/2
)
.

For the proof of Lemma 3, we will use the shorthand ∆s(h) =
√
n
(
L(h)− L̂(h, s)

)
where (s, h) ∈

S ×H. We need two technical results, quoted next for convenience.

Lemma 4 (Boucheron et al. 2013, Lemma 4.18) Let Z be a real-valued integrable random vari-
able such that

logE
[
eα(Z−E[Z])

]
≤ α2σ2

2
(∀α > 0)

holds for some σ > 0, and let Z ′ be another real-valued integrable random variable. Then we have
E[Z ′]− E[Z] ≤

√
2σ2 KL (Law(Z ′)‖Law(Z)).
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Lemma 5 (Kuzborskij et al. 2019, Lemma 9) Let fA, fB : H → R be measurable functions such
that the normalizing factors

NA =

∫
H
e−γfA(h) dh and NB =

∫
H
e−γfB(h) dh

are finite for all γ > 0, and let pA and pB be the corresponding densities:

pA(h) =
1

NA
e−γfA(h) , pB(h) =

1

NB
e−γfB(h) , h ∈ H .

Whenever NA > 0 we have that

log

(
NB
NA

)
≤ γ

∫
H
pB(h) (fA(h)− fB(h)) dh .

The last lemma is helpful for bounding the log-ratio of Gibbs integrals. The notation ‘dh’ stands for
integration with respect to a fixed reference measure (suppressed in the notation) over the space H.
Now we are ready for the proof.

Proof [of Lemma 3] Throughout the proof we will use an auxiliary random variable H ′ drawn ran-
domly from a distribution Q′ ∈ M1(H) that does not depend on S in any way. The first step is
to relate the exponential moment of ∆S(H) to the expectation of ∆S(H) under a suitably defined
Gibbs distribution and the exponential moment of ∆S(H ′). Then the expectation of ∆S(H) will
be bounded via an algorithmic stability analysis of the Gibbs density as in the proof of Theorem 1
by Kuzborskij et al. [2019], while the exponential moment of ∆S(H ′) is bounded by readily avail-
able techniques since the distribution of H ′ is decoupled from S.

We will carry out the first step through the continuous version of the log-sum inequality, which says
that for positive random variables A and B one has:

E[A] log
E[A]

E[B]
≤ E

[
A log

(
A

B

)]
.

We will use this inequality with the random variables A = e∆S(H) and B = e(∆S(H′))+ where
(x)+ = x1x≥0 is the positive part function. This gives

E
[
e∆S(H)

] (
logE

[
e∆S(H)

]
− logE

[
e(∆S(H′))+

])
≤ E

[
e∆S(H) (∆S(H)− (∆S(H ′))+)

]
so then rearranging

logE
[
e∆S(H)

]
≤ E

[
e∆S(H)

E
[
e∆S(H)

] (∆S(H)− (∆S(H ′))+)

]
+ logE

[
e(∆S(H′))+

]
≤ E

[
e∆S(H)

E
[
e∆S(H)

]∆S(H)

]
+ logE

[
e(∆S(H′))+

]
. (11)

Let’s write qs for the density of Qs with respect to a reference measure dh over H, and introduce a
measure

dµS(h) =
e∆S(h)

E
[
e∆S(H)

] dqS(h), h ∈ H .

Then the inequality (11) can be written as

logE
[
e∆S(H)

]
≤ E

∫
∆S(h) dµS(h)︸ ︷︷ ︸

(I)

+ logE
[
e(∆S(H′))+

]
︸ ︷︷ ︸

(II)

.
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Bounding (I). We handle the first term through the stability analysis of the density µS . We will
denote by S(i) = (Z1:i−1, Z

′
1, Zi+1:n) the sample obtained from S = (Z1:i−1, Zi, Zi+1:n) when

replacing the ith entry with an independent copy Z ′1. In particular,

1√
n
E
∫

∆S(h) dµS(h) = E
∫
`(h, Z ′1) dµS(h)− 1

n

n∑
i=1

E
∫
`(h, Zi) dµS(h)

=
1

n

n∑
i=1

E
∫

(`(h, Z ′1)− `(h, Zi)) dµS(h) (12)

=
1

n

n∑
i=1

E
[∫

`(h, Zi) dµS(i)(h)−
∫
`(h, Zi) dµS(h)

]
.

The last equality comes from switching Z ′1 and Zi since these variables are distributed identically.
Now we use Lemma 4 with µS(i) and µS , and with σ = b, to get that∫

`(h, Zi) dµS(i)(h)−
∫
`(h, Zi) dµS(h) ≤

√
2b2 KL (µS(i)‖µS) .

Notice that we may use σ = b in Lemma 4 since the loss function has range [0, b]. Focusing on the
KL-divergence, and writing ‘dh’ for a reference measure on H with respect to which qS , µS , µS(i)

are absolutely continuous,

KL (µS(i)‖µS) =

∫
log(dµS(i)(h)/dh) dµS(i)(h)−

∫
log(dµS(h)/ dh) dµS(i)(h)

=

∫
log

(
e∆

S(i) (h)

E
[
e∆S(H)

] e−γL̂S(i) (h)

NS(i)

)
dµS(i)(h)−

∫
log

(
e∆S(h)

E
[
e∆S(H)

] e−γL̂S(h)

NS

)
dµS(i)(h)

=

∫
(∆S(i)(h)−∆S(h)) dµS(i)(h) + log

(
NS
NS(i)

)
+ γ

∫ (
L̂S(h)− L̂S(i)(h)

)
dµS(i)(h)

≤
√
n

∫ (
L̂S(h)− L̂S(i)(h)

)
dµS(i)(h) (By definition of ∆S)

+ γ

∫ (
L̂S(i)(h)− L̂S(h)

)
dµS(h) (By Lemma 5)

+ γ

∫ (
L̂S(h)− L̂S(i)(h)

)
dµS(i)(h)

=
1√
n

∫
(`(h, Zi)− `(h, Z ′1)) dµS(i)(h)

+
γ

n

∫
(`(h, Z ′1)− `(h, Zi)) dµS(h)

+
γ

n

∫
(`(h, Zi)− `(h, Z ′1)) dµS(i)(h) ,

where the last step is due to multiple cancellations. Therefore, taking expectation,

E[KL (µS(i)‖µS)] ≤
(

1√
n

+
2γ

n

)
E
[∫

(`(h, Z ′1)− `(h, Zi)) dµS(h)

]
.

Putting all together, for each term in Eq. (12) (each i ∈ [n]) we get

E
[∫

(`(h, Z ′1)− `(h, Zi)) dµS(h)

]
= E

[∫
`(h, Zi) dµS(i)(h)−

∫
`(h, Zi) dµS(h)

]
≤ E

[√
2b2 KL (µS(i)‖µS)

]
≤
√

2b2 E[KL (µS(i)‖µS)] (By Lemma 4 and Jensen)

=

√
2b2
(

1√
n

+
2γ

n

)
E
[∫

(`(h, Z ′1)− `(h, Zi)) dµS(h)

]
.
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The last calculation implies∣∣E [∫ (`(h, Zi)− `(h, Zi)) dµS(h)

]∣∣ ≤ 2b2
(

1√
n

+
2γ

n

)
.

Finally, combining this with Eq. (12) gives

E
∫

∆S(h) dµS(h) ≤ 2b2
(

1 +
2γ√
n

)
. (13)

Bounding (II). Now we turn our attention to the exponential moment of (∆S(H ′))+ in (11):

logE
[
e(∆S(H′))+

]
= logEE

[
e(∆S(H′))+ | S

]
= logEE

[
e(∆S(H′))+ | H ′

]
(swapping the order of integration)

and observe that the internal expectation is bounded as

E
[
e(∆S(H′))+ | H ′

]
≤ 1 + E

[
e∆S(H′) | H ′

]
= 1 + E

[
exp

(
1√
n

n∑
i=1

(E[`(H ′, Z ′1) |H ′]− `(H ′, Zi))

)
| H ′

]

= 1 +

n∏
i=1

E
[
exp

(
1√
n

(E[`(H ′, Z ′1) |H ′]− `(H ′, Zi))
)
| H ′

]

≤ 1 +

n∏
i=1

exp
((

2b/
√
n
)2
/8
)

= 1 + eb
2/2 ,

where we obtain the last inequality thanks to Hoeffding’s lemma for independent random variables
with values in the range [−b/

√
n, b/
√
n]. Plugging the bounds on terms (I) and (II) into Eq. (11)

finishes the proof of Lemma 3.

Using Lemma 3 to bound log(ξ(Q0)) we obtain the following corollary by observing that the Gibbs
distribution Q0 with density ∝ e−γL̂(h,s) satisfies the DP(2γ/n) property (defined in Appendix C).

Corollary 6 For any n, for any P1 ∈ M1(Z), for any loss function with range [0, 1], for any
γ > 0, for any Q0 ∈ K(S,H) such that Q0

s ∝ e−γL̂(h,s), for any Q ∈ K(S,H) and δ ∈ (0, 1), with
probability at least 1− δ over size-n i.i.d. samples S ∼ Pn1 we have

|QS [L̂n]−QS [L]| ≤
√

KL(QS‖Q0
S)

2n
+
γ

n
+

4

√
1

2
log( 4

δ )

√
γ

n
3
4

+

√√√√ log
(

4
√
n
δ

)
2n

.

Proof Theorem 6 of McSherry and Talwar [2007] gives that the Gibbs distribution Q0
s ∝ e−γL̂(h,s)

with potential satisfying sups,s′ suph∈H L̂s(h) − L̂s′(h) ≤ 1/n for s, s′ ∈ S that differ at most in
one entry, satisfies DP(2γ/n). Combined with Theorem 8, this gives

kl(QS [L̂S ]‖QS [L]) ≤ 1

n

(
KL(QS‖Q0

S) +
2γ2

n
+
√

2log( 4
δ )

γ√
n

+ log
(

4
√
n
δ

))
and applying Pinsker’s inequality 2(p− q)2 ≤ kl(p‖q) we get

|QS [L̂S ]−QS [L]| ≤ 1√
2n

√
KL(QS‖Q0

S) +
2γ2

n
+
√

2log( 4
δ )

γ√
n

+ log
(

4
√
n
δ

)

≤
√

KL(QS‖Q0
S)

2n
+
γ

n
+

4

√
1

2
log( 4

δ )

√
γ

n
3
4

+

√√√√ log
(

4
√
n
δ

)
2n

.

The last inequality is due to the sub-additivity of t 7→
√
t.

While the argument based on d-stability (i.e. Corollary 6) gives a result where the order in γ/n
matches the one in our bound for the empirical Gibbs prior, our analysis offers an alternative proof
technique that might be of independent interest.
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C d-stable data-dependent priors and the max-information lemma

Let π ∈ K(S,H) be a stochastic kernel. Recall that S = Zn is the space of size-n samples. When
we say that π satisfies the DP property with ε > 0 (written DP(ε) for short) we mean that whenever
s and s′ differ only at one element, the corresponding distributions overH satisfy:

dπs
dπs′

≤ eε .

This condition on the Radon-Nikodym derivative is equivalent to the condition that, whenever s and
s′ differ at one entry, the ratio π(s,A)/π(s′, A) is upper bounded by eε, for all sets A ∈ ΣH. Thus,
the property entails stability of the data-dependent distribution πs with respect to small changes in
the composition of the n-tuple s. This definition goes back to the literature on privacy-preserving
methods for data analysis [Dwork et al., 2015b]; however, we are interested in its formal properties
only. It captures a kind of ‘distributional stability’ which we refer to as ‘d-stability’ for short.

As noted before, the main challenge in obtaining PAC-Bayes bounds is in controlling the exponential
moment ξ(Q0) = (Pn ⊗Q0)[ef ] for given Pn ∈M1(S) and Q0 ∈ K(S,H).

In the following we rely on a notion of β-approximate max-information [Dwork et al., 2015a,b],
denoted Iβ∞(X;Y ) for β > 0 and arbitrary random variables X ∈ X and Y ∈ Y . Intuitively, this
intends to measure the worst-case ‘distributional distance’ of the jointly distributed pair (X,Y ) from
the pair (X ′, Y ) with X ′ a copy of X independent from Y . Formally, Iβ∞(X;Y ) is defined as the
least η > 0 such that for every C ∈ ΣX ⊗ ΣY (the product sigma-algebra) we have

P[(X,Y ) ∈ C] ≤ eηP[(X ′, Y ) ∈ C] + β .

Special care is needed in defining Iβ∞(X;ψ(X)), i.e. the ‘distributional distance’ of the pair
(X,ψ(X)) to the independent pair (X ′, ψ(X)). In our context (see below) we need Iβ∞(S;Q0

S).
The next lemma generalizes an idea we learned from Dziugaite and Roy [2018b]:

Lemma 7 (max-information lemma) Fix n ∈ N, Pn ∈ M1(S), and a function f : S × H → R.
Let ζ(n) be a positive sequence (possibly constant). Suppose that for any data-free distribution
Q∗ ∈M1(H), for any kernel Q ∈ K(S,H) and for any δ ∈ (0, 1), with probability of at least 1− δ
over size-n random samples S ∼ Pn the following holds:

QS [fS ] ≤ KL(QS‖Q∗) + log(ζ(n)/δ) . (14)

Then for any kernels Q0, Q ∈ K(S,H), and for any δ ∈ (0, 1), with probability of at least 1 − δ
over size-n random samples S ∼ Pn we have

QS [fS ] ≤ KL(QS‖Q0
S) + log(2ζ(n)/δ) + Iα/2∞ (S;Q0

S) . (15)

This lemma gives a general recipe for converting a PAC-Bayes bound with a fixed ‘data-free’ prior
(i.e. Eq. (14)) into a similar PAC-Bayes bound with a data-dependent prior (Eq. (15)). The choice
of ζ(n) is problem-dependent, but the idea is that if ξ(Q∗) = (Pn⊗Q∗)[ef ] satisfies ξ(Q∗) ≤ ζ(n)
when Q∗ is a data-free distribution, then ζ(n) can be re-used in Eq. (15). For a given Pn and f , the
best choice of ζ(n) would be ζ(n) = infQ∗∈M1(H)

∫ ∫
ef(s,h)Q∗(dh)Pn(ds).

The statement of Lemma 7 is written in the generic framework of Theorem 1. We may specialize it to
Theorem 2 when the function f used in the left hand side of the inequality—and in the exponential
moment ξ(Q∗) = (Pn ⊗ Q∗)[ef ]—has the form of a composition f(s, h) = F (A(s, h)), with
A : S × H → Rk any measurable function, and F : Rk → R any convex function. The literature
uses k = 2 and A = (L(h), L̂(h, s)); and various choices of F lead to various PAC-Bayes bounds.
Notice that, by Jensen’s inequality, F (Qs[As]) ≤ Qs[F (As)] = Qs[fs] for any s.

The following upper bound (see Dwork et al. [2015a, Theorem 20]) on the max-information
Iβ∞(S;Q0

S) is available when the stochastic kernel Q0 satisfies the DP(ε) property:

Iβ∞(S;Q0
S) ≤ nε2

2
+ ε

√
n

2
log(

2

β
) .

Therefore, via the max-information lemma, one may derive PAC-Bayes bounds which are valid for
d-stable data-dependent priors. Specific forms of the upper bound can be obtained when a specific
ζ(n) (i.e. a bound on ξ(Q∗)) is available. For instance, for the PAC-Bayes-kl bound, which uses
F (x, y) = n kl(y‖x), we may take ζ(n) = 2

√
n [Maurer, 2004], and obtain the following:
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Theorem 8 For any n, for any P1 ∈M1(Z), for any Q0 ∈ K(S,H) satisfying DP(ε), for any loss
function with range [0, 1], for any Q ∈ K(S,H), for any δ ∈ (0, 1), with probability at least 1 − δ
over size-n i.i.d. samples S ∼ Pn1 we have

kl(QS [L̂S ]‖QS [L]) ≤
KL(QS‖Q0

S) + log( 4
√
n
δ ) + nε2

2 + ε
√

n
2 log( 4

δ )

n
. (16)

This is Theorem 4.2 of Dziugaite and Roy [2018b]. The proof of this theorem takes as starting
point the PAC-Bayes-kl bound [Seeger, 2002, Langford and Seeger, 2001], which says that when
Q∗ ∈ M1(H) is a data-free distribution over hypotheses, for any Q ∈ K(S,H) and any δ ∈ (0, 1),
with probability at least 1− δ over size-n i.i.d. samples S ∼ Pn1 we have

kl(QS [L̂S ]‖QS [L]) ≤ KL(QS‖Q0
S) + log(ξ(Q∗)/δ)

n
.

Notice that this PAC-Bayes-kl inequality follows from Theorem 2, which in turn follows from Theo-
rem 1(ii), using f(s, h) = F (L(h), L̂(h, s)) withF (x, y) = n kl(y‖x) under the restriction of losses
within the range [0, 1]. Then we may use ξ(Q∗) ≤ 2

√
n since Q∗ is a fixed ‘data-free’ distribution

(cf. Maurer [2004]). Then use Lemma 7, and upper-bound the (α/2)-approximate max-information
as per the inequality of Dwork et al. [2015a, Theorem 20] cited before Theorem 8.

C.1 Proof of the max-information lemma

Let f(s, h) be a data-dependent and hypothesis-dependent function. Recall that s summarizes a
size-n sample. Let Q∗ ∈ M1(H) be a fixed ‘data-free’ distribution over H, and let Q ∈ K(S,H)
be a stochastic kernel. Suppose Eq. (14) is satisfied (this is the assumption required by Lemma 7).
Given δ′ ∈ (0, 1), define the set

E(Q∗) =
{
s ∈ S | Qs[fs] > KL(Qs‖Q∗) + log(ζ(n)/δ′)

}
.

Notice that for a random sample S ∼ Pn we have P[S ∈ E(Q∗)] = Pn(E(Q∗)) ≤ δ′ by Eq. (14).
Now suppose Q0 ∈ K(S,H) is a stochastic kernel, so each random size-n data set S is mapped to
a data-dependent distribution Q0

S overH. Correspondingly, define the set

E(Q0) =
{

(s, s′) ∈ S × S | Qs[fs] > KL(Qs‖Q0
s′) + log(ζ(n)/δ′)

}
.

We are interested in the event that a random sample S ∼ Pn satisfies (S, S) ∈ E(Q0). For fixed
s′ ∈ S, consider the section E(Q0)s′ = {s ∈ S | (s, s′) ∈ E(Q0)}; and notice that (s, s′) ∈ E(Q0)
if and only if s ∈ E(Q0)s′ . For any fixed s′, the random sample satisfies P[S ∈ E(Q0)s′ ] ≤ δ′,
again by Eq. (14). Then if S′ ∼ Pn is an independent copy of S, we have

P[(S, S′) ∈ E(Q0)] = P[S ∈ E(Q0)S′ ] = E[P[S ∈ E(Q0)S′ |S′]] ≤ δ′ .
By the definition of β-approximate max-information [Dwork et al., 2015a] we have

P[(S, S) ∈ E(Q0)] ≤ eI
β
∞(S;Q0

S)P[(S, S′) ∈ E(Q0)] + β ≤ eI
β
∞(S;Q0

S)δ′ + β .

Therefore, given δ ∈ (0, 1), setting β = δ/2 and δ′ = e−I
α/2
∞ (S;Q0

S)δ/2, we get P[S ∈ E(Q0)S ] ≤ δ.
This finishes the proof of the “max-information lemma” (Lemma 7).

Remark. Let Q∗ ∈ M1(H) be a ‘data-free’ distribution, and suppose the exponential moment
ξ(Q∗) =

∫ ∫
ef(s,h)Q∗(dh)Pn(ds) satisfies ξ(Q∗) ≤ ξbd. If a stochastic kernel Q0 ∈ K(S,H)

satisfies DP(ε) for some ε > 0, then in the exponential moment

ξ(Q0) =

∫
S

∫
H
ef(h,s)Q0

s(dh)Pn(ds)

we may change the measure Q0
s to Q0

s′ with any fixed s′ ∈ S, and the Radon-Nikodym derivative
satisfies dQ0

s/dQ
0
s′ ≤ enε, so we have

ξ(Q0) ≤ enε
∫
S

∫
H
ef(h,s)Q0

s′(dh)Pn(ds) ≤ enεξbd

where the integral on the right hand side is upper bounded by ξbd sinceQ0
s′ is now a fixed distribution

(with respect to the variable s of the outer integral). Thus the max-information lemma gives a refined
analysis so that log(ξ(Q0)) is ‘replaced’ with log(2ξbd)+I

δ/2
∞ (S;Q0

S); whereas the naive argument
just described would give log(ξ(Q0)) ≤ log(ξbd) + nε.
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D Proof of the bound for least squares regression

Let us recall the setting. The input space is X = Rd and the label space Y = R. A linear predictor
is of the form hw : Rd → R with hw(x) = w>x for x ∈ Rd, where of course w ∈ Rd. Hence
we may identify hw with w and correspondingly the hypothesis spaceH may be identified with the
weight spaceW = Rd. The size-n random sample is S = ((X1, Y1), . . . , (Xn, Yn)) ∈ (Rd × R)n.
We are interested in the generalization gap ∆S

w = L(w)− L̂S(w), defined for w ∈ Rd, where

L(w) =
1

2
E[(w>X1 − Y1)2] and L̂S(w) =

1

2n

n∑
i=1

(w>Xi − Yi)2

are, respectively, the population and empirical losses under the square loss function. For λ > 0, let
L̂S,λ(w) = L̂S(w) + (λ/2)‖w‖2 be the regularized empirical loss, and ∆S,λ

w = L(w)− L̂S,λ(w).

The population covariance matrix is Σ = E[X1X
>
1 ] ∈ Rd×d and its eigenvalues are λ1 ≥ · · · ≥ λd.

The (regularized) sample covariance matrix is Σ̂λ = (X1X
>
1 + · · · + XnX

>
n )/n + λI for λ > 0,

with eigenvalues λ̂1 ≥ · · · ≥ λ̂d.

By the well-known change-of-measure (Csiszár [1975], Donsker and Varadhan [1975]), for any
(‘prior’) density q0 the following holds:∫

Rd
∆S
w qS(w) dw ≤ KL(qS || q0) + log

∫
Rd
e∆S

w q0(w) dw . (17)

Note that for simplicity we are saying ‘density p(w)’ when in fact what we have in mind is that p
is the Radon-Nikodym derivative of a probability P ∈ M1(Rd) with respect to Lebesgue measure.
i.e. P (A) =

∫
A
p(w) dw for Borel sets A ⊂ Rd.

The main theorem and its proof are as follows. Note that this theorem provides a bound on expected
generalization gap, which holds with probability one.

Theorem 9 For any probability kernel q from S to Rd, for any γ > 0 and λ > maxi{λi− λ̂i}, with
probability one over random samples S,∫

Rd
∆S
w qS(w) dw ≤ min

w∈Rd
∆S,λ
w +

1

γ
KL(qS || q0

γ,λ) +
1

2γ

d∑
i=1

log

(
λ

λ+ λ̂i − λi

)
.

Proof We get the statement by combining Eq. (17) with the analytic form of exponential moment
of γ∆S

w given by Lemma 10 below.

Lemma 10 (exponential moment) Let q0(w) ∝ e−
γλ
2 ‖w‖

2

for γ > 0 and λ > maxi{λi − λ̂i}.
Then, with probability one over random samples S,

log

∫
Rd
eγ∆S

w q0(w) dw = γ min
w∈Rd

∆S,λ
w +

1

2

d∑
i=1

log

(
λ

λ+ λ̂i − λi

)
.

This lemma fills in the main part of the proof of Theorem 9. Notice that this lemma computes explic-
itly the exponential moment of γ∆S

w, without making additional assumptions on the loss function.
The proofs of this lemma and of other results in this section are deferred to Appendix D.1.

A couple of comments about Theorem 9. First, note that the inequality holds almost surely (a.s.) over
samples S which differs from the usual PAC-Bayesian analysis because we did not apply Markov
inequality. However, one can still convert the bound we obtained above to a high-probability bound,
by looking at the concentration of eigenvalues of the sample covariance matrix (which will require
appropriate assumptions on the marginal distribution). Second, we have a new term minw∈Rd ∆S,λ

w
whose range is directly connected to that of the loss function. This term is problem-dependent.
Indeed, the following straightforward proposition lets us understand better its role.
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Proposition 11 (regularized gap) If w? ∈ arg minw∈Rd L(w), so that L(w?) = minw∈Rd L(w),
then with probability one over random samples S we have that

min
w∈Rd

∆S,λ
w ≤ L(w?) .

If maxi(X
>
i w

? − Yi)2 ≤ B a.s., then for any x > 0, with probability at least 1− e−x we have that

min
w∈Rd

∆S,λ
w ≤ B

√
x

2n
.

The first part of Proposition 11 implies that in a noise-free problem the term minw∈Rd ∆S,λ
w will

disappear; while the second part argues that given a distribution-dependent boundedness of the loss
function, the term will concentrate well around zero.

Now we turn our attention to the KL(Posterior‖Prior) term, stated analytically by the following
proposition:

Proposition 12 (KL term) For qS(w) ∝ e−
γ
2 L̂S,α(w) and q0(w) ∝ e−

γλ
2 ‖w‖

2

and any α, λ, γ > 0,

KL(qS || q0) =
1

2

(
log det

(
1

λ
Σ̂α

)
+ tr

(
λΣ̂
−1

α − I
)

+
λγ

n2

n∑
i=1

Y 2
i ‖Xi‖2Σ̂−2

α

)
.

Furthermore, if maxi ‖Xi‖2 ≤ 1 a.s., then

KL(qS || q0) ≤ 1

2

(
d log

(
1 + α

λ

)
+ d

(
λ

λ̂d + α
− 1

)
+
λγ

n2

n∑
i=1

Y 2
i ‖Xi‖2Σ̂−2

α

)
.

Combining the results outlined above yields the following corollary.

Corollary 13 (data-dependent bound) Let ε̂n = maxi{λi − λ̂i}, and choose λ = cε̂n for some
c > 1. Then, with probability one over random samples S,

∫
Rd

∆S
w qS(w) dw ≤ min

w∈Rd
∆S,cε̂n
w +

d

2γ
log

(
1 + α

e(c− 1)ε̂n

)
+

cε̂nd

λ̂d + α

(
1

2γ
+

1

n

n∑
i=1

Y 2
i

)
.

Finally, a quick comment on the free parameter γ > 0 in our bound of Theorem 9. In the standard
PAC-Bayes analysis one would see a trade-off in γ, with a usual near-optimal setting of γ =

√
n

[Shalaeva et al., 2020]. Such trade-off is more subtle in our Theorem 9 since one would need to
ensure that γ−1 KL(qS || q0

γ,λ)→ 0 as γ →∞ for the desired choice of qS .

D.1 Proofs

Proof [Proof of Lemma 10] For convenience we introduce the abbreviations s = E[Y1X1] and its
empirical counterpart Ŝ = (Y1X1 + · · · + YnXn)/n. Also let’s define C = E[Y 2

1 ] − (Y 2
1 + · · · +

Y 2
n )/n. The density is q0(w) = Z−1

0 e−
γλ
2 ‖w‖

2

, with Z0 a normalizing factor. A straightforward
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expression of the integral gives∫
Rd
eγ(L(w)−L̂S(w))q0(w) dw =

1

Z0

∫
Rd
eγ(L(w)−L̂S,λ(w)) dw

=
1

Z0

∫
Rd
eγ(C−

1
2w
>(Σ̂λ−Σ)w−(s−Ŝ)>w) dw (18)

=
(2π)

d
2

Z0

eγ(C+ 1
2 (s−Ŝ)>(Σ̂λ−Σ)−1(s−Ŝ))√
γd det

(
Σ̂λ −Σ

) (19)

=
(2π)

d
2

Z0

eγmin
w∈Rd{L(w)−L̂S,λ(w)}√
γd det

(
Σ̂λ −Σ

) (20)

=

√√√√ λd

det
(
Σ̂λ −Σ

) eγmin
w∈Rd{L(w)−L̂S,λ(w)} (21)

where Eq. (18) is just rewriting things, while in Eq. (19) we assume that λ > maxi{λi − λ̂i}.
Eqs. (19) and (21) come from Gaussian integration, and Eq. (20) is a consequence of:

Proposition 14 Assuming that λ > maxi{λi − λ̂i},

min
w∈Rd

{
L(w)− L̂S,λ(w)

}
= C +

1

2
(s− Ŝ)>(Σ̂λ −Σ)−1(s− Ŝ) .

Finally, taking logarithm of the integral completes the proof of Lemma 10.

Proof [Proof of Proposition 14] Observe that

∇w
(
c− 1

2
w>(Σ̂λ −Σ)w − (Ŝ − s)>w

)
= −(Σ̂λ −Σ)w + (s− Ŝ) .

For λ > maxi{λi − λ̂i} the matrix (Σ̂λ − Σ) is positive definite, and plugging the solution of
∇w = 0, namely ŵ = (Σ̂λ −Σ)−1(s− Ŝ), back into the objective we get

C − 1

2
ŵ>(Σ̂λ −Σ)ŵ + (s− Ŝ)>ŵ = C +

1

2
(s− Ŝ)>(Σ̂λ −Σ)−1(s− Ŝ)

which completes the proof of Proposition 14.

Proof [Proof of Proposition 11] Clearly minw∈Rd ∆S,λ
w ≤ ∆S,λ

w? ≤ L(w?), which proves the first
part of the proposition. For the second part, under the assumption that maxi(X

>
i w

? − Yi)2 ≤ B
a.s., Hoeffding’s inequality gives:

∆S,λ
w ≤ 1

2
E[(X>1 w

? − Y1)2]− 1

2n

n∑
i=1

(X>i w
? − Yi)2 ≤ B

√
x

2n
.

This completes the proof of Proposition 11

Proof [Proof of Proposition 12] Observe that

qS(w) =
e−

γ
2w
>Σ̂αw+γw>Ŝ− γ2 Ȳ

2∫
Rd e

− γ2 u>Σ̂αu+γu>Ŝ− γ2 Ȳ 2
du

=
e−

γ
2w
>Σ̂αw+γw>Ŝ− γ2 Ŝ

>
Σ̂
−1
α Ŝ∫

Rd e
− γ2 u>Σ̂αu+γu>Ŝ− γ2 Ŝ

>
Σ̂
−1
α Ŝ du

=: Gauss(Σ̂
−1

α Ŝ, Σ̂
−1

α ) ∝ e−
γ
2

(
w−Σ̂

−1
α Ŝ

)>
Σ̂α

(
w−Σ̂

−1
α Ŝ

)
,
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where Ŝ = (Y1X1 + · · · + YnXn)/n and Ȳ 2 = (Y 2
1 + · · · + Y 2

n )/n. Recall that analytic form of
KL-divergence between two Gaussians is:

KL
(
Gauss(x1,A1)

∥∥Gauss(x0,A0)
)

=
1

2

(
log

(
det A0

det A1

)
+ tr

(
A−1

0 A1

)
− d+ (x1 − x0)>A−1

0 (x1 − x0)

)
This gives

KL
(
qS || q0

)
=

1

2

(
log det

(
1

λ
Σ̂α

)
+ tr

(
λΣ̂
−1

α − I
)

+ λγ Ŝ
>

Σ̂
−2

α Ŝ

)
This shows the first statement.

The ‘furthermore’ statement is shown using a simple fact that for d × d positive definite matrix A,
we have det(A) ≤ (tr(A)/d)d,

log det

(
1

λ
Σ̂α

)
≤ d log tr

(
1

dλ
Σ̂α

)
≤ d log

(
1 + α

λ

)
where we have assumed that maxi ‖Xi‖2 ≤ 1 a.s. and the fact

tr
(
λΣ̂
−1

α − I
)
≤ d

(
λ

λ̂d + α
− 1

)
.

This completes the proof of Proposition 12.

Proof [Proof of Corollary 13] Theorem 9 combined with Proposition 12 gives us∫
Rd

∆S
w qS(w) dw ≤ min

w∈Rd
∆S,λ
w +

d

2γ
log

(
1 + α

λ

)
+

d

2γ

(
λ

λ̂d + α
− 1

)
+

λ

2n2

n∑
i=1

Y 2
i ‖Xi‖2Σ̂−2

α

+
1

2γ

d∑
i=1

log

(
λ

λ+ λ̂i − λi

)
≤ min
w∈Rd

∆S,cε̂n
w +

d

2γ
log

(
1 + α

cε̂n

)
+

d

2γ

(
cε̂n

λ̂d + α
− 1

)
+

cdε̂n

λ̂d + α

(
1

n

n∑
i=1

Y 2
i

)
+

d

2γ
log

(
c

c− 1

)

≤ min
w∈Rd

∆S,cε̂n
w +

d

2γ
log

(
1 + α

e(c− 1)ε̂n

)
+

cε̂nd

λ̂d + α

(
1

2γ
+

1

n

n∑
i=1

Y 2
i

)
,

where we used the fact that
d∑
i=1

log

(
λ

λ+ λ̂i − λi

)
=

d∑
i=1

log

(
cmaxi{λi − λ̂i}

cmaxi{λi − λ̂i} − (λi − λ̂i)

)
≤ d log

(
c

c− 1

)
and by a simple SVD argument

1

n2

n∑
i=1

Y 2
i ‖Xi‖2Σ̂−2

α

≤ d

n(λ̂d + α)

n∑
i=1

Y 2
i .

This completes the proof of Corollary 13.
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E A simple PAC-Bayes bound with a ‘free range’ loss function

Consider the case that the loss function ` : H × Z → [0,∞) has unbounded range. For any
λ > 0 and h ∈ H fixed, we may upper-bound the exponential moment E[exp{−λnL̂(h, S)}] using
standard techniques under the i.i.d. data-generation model: S = (Z1, . . . , Zn) ∼ Pn1 . Then with
Z ∼ P1 and a few calculations (shown below in Appendix E.1) we obtain:

E[eλn(L(h)−L̂(h,S))] ≤ eλ
2n
2 E[`(h,Z)2] .

Assuming M := suph E[`(h, Z)2] < ∞ (see Holland [2019] whose main result required this),
using the function f(h, s) = λn

(
L(h) − L̂(h, s)

)
− λ2n

2 M , with a fixed ‘data-free’ prior Q0 the
exponential moment ξ = E0[ef(S,H)] (i.e. ξ = Pn1 ⊗ Q0[ef ]) satisfies ξ ≤ 1. This way we obtain
the following PAC-Bayes type of bound under unbounded (‘free range’) losses:

Theorem 15 For any n, for any P1 ∈ M1(Z), for any data-free Q0 ∈ M1(H), for any loss
function ` : H × Z → [0,∞), for any Q ∈ K(S,H), for any λ ∈ (0,∞), for any δ ∈ (0, 1), with
probability at least 1− δ over size-n i.i.d. samples S ∼ Pn1 we have

QS [L] ≤ QS [L̂S ] +
KL(QS‖Q0) + log(1/δ)

nλ
+
λ

2
sup
h

E[`(h, Z)2] . (22)

Essentially, this bound is of the formQS [L]−QS [L̂S ] ≤ B/(nλ)+λM/2. With the optimal choice
of λ we get QS [L]−QS [L̂S ] ≤ 2

√
BM/(2n), which gives a slow convergence rate of O(1/

√
n).

The assumption of finite M is satisfied e.g. when the loss is sub-gaussian or sub-exponential. It
would be interesting to characterize all cases when M < ∞ holds. However, this simple bound
illustrates that PAC-Bayes bounds are possible with unbounded loss functions.

E.1 The calculations to bound the exponential moment

We start by calculating E[exp{−λnL̂(h, S)}] with fixed λ > 0 and h ∈ H. This means that the
expectation is with respect to S = (Z1, . . . , Zn) ∼ Pn1 . By independence, and using the inequality
ex ≤ 1 + x+ x2/2 valid for x ≤ 0, we have

E[exp{−λnL̂(h, S)}] =
∏
i∈[n]

E[exp{−λ`(h, Zi)}]

≤
∏
i∈[n]

E[1− λ`(h, Zi) +
λ2

2
`(h, Zi)

2]

=
∏
i∈[n]

(
1− λE[`(h, Zi)] +

λ2

2
E[`(h, Zi)

2]
)

and then using 1 + x ≤ ex, which is valid for all x, the above is

≤
∏
i∈[n]

exp
{
−λE[`(h, Zi)] +

λ2

2
E[`(h, Zi)

2]
}

= exp
{
−λnL(h) +

λ2n

2
E[`(h, Z)2]

}
.

In the last line we have used the identical distribution of the Zi’s, namely Zi ∼ P1, and a generic
identical copy Z ∼ P1. Then, rearranging, we get as claimed that

E[eλn(L(h)−L̂(h,S))] ≤ eλ
2n
2 E[`(h,Z)2] .

These kinds of calculations are well known, however, we would like to acknowledge the section
‘alternative proofs’ of Thiemann [2016]. Then under the assumption M = suph E[`(h, Z)2] < ∞,
using the function f(h, s) = λn

(
L(h) − L̂(h, s)

)
− λ2n

2 M and a fixed ‘data-free’ prior Q0, the
exponential moment ξ of f under the joint distribution Pn1 ⊗ Q0 (i.e. ξ = Pn1 [Q0[ef ]]) satisfies
ξ = ξswap = Q0[Pn1 [ef ]] (see discussion after Theorem 2 in Section 3), while the above calculations
show that the latter satisfies ξswap ≤ 1.
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