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10.1 Proof of Lemma 2

Proof. We wish to show Auj = λjuj . If the theorem is true, then λjuj,i = λj
1

λj
n−i = 1

λ
n−(i+1)
j

=

uj,i+1. Recall the state update of the controllable LDS, which shifts n− 1 entries and computes a
dot product in the last entry:

Auj =


uj,2

...
uj,n−1

−
∑
i ai−1uj,i

 =


λjuj,1

...
λjuj,n

−
∑
i ai−1/λj

n−i


It suffices to show:

−
∑
i

ai−1/λ
n−i
j = λjuj,n = λj i.e.

∑
1≤i≤n

ai−1

λ
n−(i−1)
j

= −1 (7)

It is well known that the characteristic polynomial ofA is p(t) = a0+a1t+a2t
2+. . .+an−1t

n−1+tn.
By definition, its roots (those t where p(t) = 0) are the eigenvalues of A.
So each λj satisfies:

0 = a0 + a1λj + a2λj
2 + . . .+ an−1λj

n−1 + λj
n = λj

n

1 +
∑

1≤i≤n

ai−1

λ
n−(i−1)
j


Either we have a null eigenvalue λj = 0, or we have the desired equation (7).

10.2 Proof of Lemma 3

Proof. Let vi be the ith row of U−1. The dual basis of U is (U−1)T , i.e. uTi vi = 1 and for all
j 6= i, uTi vj = 0. Since B′ is the conjugate of the nth column of U−1, it is determined by the nth
coordinates of the vi. We derive these by employing the adjugate technique of Denton et al. [2019].
Recall the determinant det(A) =

∏
i λi is the product of the eigenvalues. Also recall the following

general definition of the adjugate matrix, when A is diagonalizable but not necessarily Hermitian:

adj(A)i,j =

n∑
k=1

∏
l 6=k

λl

uk,iv̄k,j

For any k, replace A by λkλIn −A. This causes all but one of the summands to vanish, yielding the
following simplication:

adj(λkI −A)i,j =

∏
l 6=k

(λk − λl)

uk,iv̄k,j

Setting i = 1 and j = n, and substituting the previously derived entries of uk:

adj(λkI −A)1,n =

∏
l 6=k

(λk − λl)

 1

λn−1
k

v̄k,n (8)

By the Laplace expansion of the adjugate matrix of A, adj(λkI −A)1,n) = (−1)1+ndet(M), where
M is the minor of λkI −A produced by removing its nth row and 1st column. It is straightforward to
show that the only eigenvalue of M is −1 with multiplicity n− 1, and therefore det(M) = (−1)n−1.
Therefore adj(λkI − A)1,n = (−1)2n = 1. Combining this with (8) obtains an equality for each
v̄k,n, which matches the desired result.

14



10.3 Proof of Proposition 3

Proposition 3 is an easy corollary of the following proposition, which involves MISO LDS rather
than MIMO LDS.
Proposition 6. Let x1, . . . , xT be any sequence of d-dimensional inputs, and let y1, . . . , yT be the
corresponding outputs of a reachable MISO LDS with parameters (A,B,C,D). For each j ∈ [r], let
gj be a d-dimensional standard normal vector, x[j]

t = gTj xt be a projected sequence of scalar inputs,

and (A,Bgj , C,D) be the parameters of a SISO LDS producing outputs y[j]
t . Let ŷt = 1

r

∑r
j=1 y

[j]
t

be the average output. For each t ≤ T , E(yt − ŷt)2 = 2 ||Zt||2F /r, where Zt is defined below in (9).
Furthermore, the SISO LDS are almost surely reachable, and share the same canonical form matrix.

Proof. While proving this result, let us take D = 0 and s0 = 0 for notational simplicity. (These are
just constant terms which do not affect the result.) From the convolution representation (1) and the
random construction of the SISO LDS, we find that the approximation is unbiased:

E ŷt = E
1

r

∑
j

t−1∑
τ=1

CAτBgjg
T
j xτ =

t−1∑
τ=1

CAτB

(
1

r
Egjg

T
j

)
xt−τ = yt

Therefore the mean squared error is just the variance:

E (yt − ŷt)2 = E ((E ŷt)− ŷt)2 = V(ŷt)

By the independence of the gj , and the cyclic property and linearity of trace, we reduce to the variance
of a quadratic in normal variables:

V(ŷt) =V

t−1∑
τ=1

tr(CAτB

1

r

r∑
j=1

gjg
T
j

xt−τ )


=

1

r2

r∑
j=1

V

(
t−1∑
τ=1

tr(gTj xt−τCA
τBgj)

)

=
1

r2

r∑
j=1

V

(
gTj gj

t−1∑
τ=1

CAτBxt−τ

)

=
1

r2

r∑
j=1

V

(
gTj

t−1∑
τ=1

xt−τCA
τB︸ ︷︷ ︸

Zt

gj

)
(9)

The inner quadratic is not changed by replacing Zt, which is asymmetric, with Z̄t = 1
2 (Zt + ZTt ),

which is symmetric, diagonalizable, and shares the same eigenvalues ν1, . . . , νd. gj retains its
distribution under the rotation U that diagonalizes Z̄t. We find the variance is just the squared
Frobenius norm of Zt:

V
(
gTj Z̄tg

T
j

)
=V

(
gTj U

T diag(ν)Ugj
)

=V

(
d∑
i=1

g2
j,iνi

)
= 2

d∑
i=1

ν2
i = 2 ||Zt||2F

Now we verify that the SISO LDS are almost surely reachable, assuming the MISO LDS is reachable.
By Lemma 1, we must show that if [γI −A;B] has full rank for all γ ∈ C, then [γI −A;Bgj ] also
does, almost surely. This holds because gj has density with respect to Lebesgue measure.

To conclude the proof of Proposition 6, denote the MIMO LDS matrices above as (Ã, B̃). When
projected to SIMO LDS (Ã, B̃gj), their canonical forms (Aj , B) are obtained via Ãj = T −1

j ATj . Let
vi and λi be an eigenvector and corresponding eigenvalue of Ã: Ãvi = λivi. Then AjTjvi = λiTjvi,
so the Aj share the same eigenvalues as Ã. Since Aj are companion matrices of the same form (2),
this means they are actually the same matrix A.
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10.4 Proof of Proposition 4

The following proposition implies Proposition 4.
Proposition 7. Let n be divisible by d. Let A ∈ Rn×n and B ∈ Rn×d be full rank. Let (A,B)
form a reachable MIMO LDS. Choose any ε > 0 and any (Schatten) matrix norm ||·||. There is a
δ > 0 such that the following holds. Let G be an n× n matrix of normal variables of mean zero and
variance δ, and Ã = A+G. Then, with nonzero probability,

∣∣∣∣∣∣A− Ã∣∣∣∣∣∣ ≤ ε and the controllability

indices of (Ã, B) are all equal to n/d.

Proof. Clearly ||G|| ≤ ε with nonzero probability. The controllability indices are equal if the first n
rows of the controllability matrix (4) are linearly independent. Thus, we must show that the following
n× n matrix has full rank:

C:,:n = [B, (A+G)B, (A+G)2B, . . . , (A+G)n/d−1B]

The first d columns are linearly independent by assumption. In the remaining columns, since G
is normal — and therefore has density with respect to Lebesgue measure — linear independence
follows from a standard argument. C:,:n is full rank unless its determinant is zero. The determinant
is a polynomial p : Rn2 → R in the (flattened) entries of C:,:n. For any such polynomial p, the set
p = 0 has Lebesgue measure zero.

10.5 Approximation of Nonlinear Systems by Time-Varying LDS

Tomás-Rodríguez and Banks [2010] describe a method of approximating continuous-time dynamical
systems by linear, time-varying ones. We briefly review their method, showing how it gives rise
to a multiplicative variant of LDStack. Consider the following nonlinear, discrete-time dynamical
system: ht+1 = ρ(Aht) +Bxt. Bxt is usually inside the nonlinearity ρ, but we keep it separate for
reasons that will be discussed below. ρ must be continuously differentiable. Furthermore, in order for
the approximation scheme to be numerically stable, ρ must also be analytically “nice”, as described
below. We use the inverse square root activation ρ(a) = a/

√
1 + a2 as a running example.

We begin by viewing the RNN as an Euler discretization of a continuous-time dynamical system (e.g.
Tallec and Ollivier [2018]). Using the Taylor expansion h(t+ εt) ≈ h(t) + εt · ḣ(t), and taking a
step size of ε = 1, we obtain the following nonlinear differential equation: ḣ = ρ(Ah)− h+ Bx.
(We elide the dependence on t to simplify notation). The first step is to convert the dynamical system
to state-dependent coefficient (SDC) form: ḣ = A(h)h − h + Bx. Here, the nonlinear update is
factorized to resemble an LDS. SDC form does not allow A to depend on x, which is why Bxt was
kept outside of ρ(·). The SDC factorization can be derived in a straightforward manner.
Lemma 4. The following is a valid SDC factorization when ρ ∈ C1 and ρ(0) = 0. [Cimen, 2010]

A(h) =

∫ 1

0

dρ(Ah)

dh

∣∣∣∣
h=λh

dλ

We call ρ “nice” if the above factorization is numerically stable and can be analytically derived. For
our example ρ, a brief calculation shows the SDC form is:

ḣ = diag(1/
√

1 + (Ah)2)A︸ ︷︷ ︸
A(h)

h− h+Bx

Note that A(h)h is a multiplicative, entrywise correction of Ah based on its deviation from ρ(Ah).
Under weak conditions on A, the SDC-form nonlinear system can be approximated by a sequence of
linear, time-varying systems.
Theorem 1 (Informal). Let A be locally Lipschitz. Consider this sequence of time-varying LDS:

ḣ(0) =A(h0)h(0) − h(0) +Bx h
(0)
0 = h0

ḣ(i) =A(h(i−1))h(i) − h(i) +Bx h
(i)
0 = h0

As i→∞, the solution of h(i) converges to the solution of h. [Tomás-Rodríguez and Banks, 2010]
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Figure 7: Additive and multiplicative approximations of a nonlinear RNN (black). The latter converge
more quickly than the former, at least when the same matrix A is shared among the nonlinear RNN
and the approximating LDS.

The nonlinear RNN approximation in Definition 2 is just a discretization of Theorem 1.
Definition 2 (Nonlinear RNN Approximation). Let ρ be a continuously differentiable activation
function with ρ(0) = 0. For t ∈ [T ], let ht+1 = ρ(Aht) + Bxt be the n-dimensional states of an
RNN with parameters (A,B). Let A : Rn → Rn×n, as given by (4), be locally Lipschitz. This is a
stack of time-varying LDS whose depth is indexed by i:

h
(0)
t+1 =A(h0)h

(0)
t +Bxt h

(0)
0 = h0

h
(i)
t+1 =A(h

(i−1)
t )h

(i)
t +Bxt h

(i)
0 = h0

Our additive variant is more algorithmically convenient, whereas the multiplicative variant is superior
for approximation theory. Multiplicative corrections interfere with diagonalization, which is crucial
for our algorithms. However, as illustrated in Figure 7, additive corrections can produce oscillations
which lead to slower convergence. Note that this occurs when the LDS matrix A matches that of the
nonlinear RNN - a choice made for analytic simplicity, when A is known. At relatively small depths
∆, it may be possible to achieve better approximation with a different LDS matrix A∆. In a practical
learning setting, A∆ is learned directly, without any reference to the unknown A.
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10.5.1 Another Eigenvalue Parameterization

A problem with the standard (α, β) parameterization of λ is that the number of real and complex
eigenvalues is hardcoded. Two real eigenvalues cannot “cross over” to being complex conjugate
pairs, and vice versa. To remedy this, we might consider independently parameterizing the real and
imaginary parts of λ with 2n reals. Unfortunately, this does not constrain the complex numbers to
be conjugate pairs, so then λ1, . . . , λn are not necessarily the eigenvalues of a real matrix A. The
following “hinge” parameterization, defined in terms of two real numbers (α, ω), avoids both of these
issues. Let h(a) = max(0, a) be a ReLU. Consider these values:

α+ h(−ω)i and α+ h(ω)− h(−ω)i

If ω > 0, then the values simplify to α and α+ ω, which are real. If ω < 0, they simplify to α± ωi,
which are complex conjugate pairs. The values are distinct when ω 6= 0.

10.6 Additional Experiment Details

In all the experiments, we used Adamax [Kingma and Ba, 2014] as the optimizer for LDS and
LDStack. In some situations, we observed this choice substantially improved the rate of convergence.
We used Adam as the optimizer for the LSTM and simple RNN. Abbreviate the learning rate and
batch size as η and B, respectively. For the copy memory problem, η = 0.01, B = 256. For the
runtime comparison, n = 32 and B = 4. For sequential permuted MNIST, B = 128. LDS used
η = 0.0003, and the hinge parameterization described in Section 10.5.1. LSTM and simple RNN
used η = 0.01. In the adding problem, B = 32 there were 100 steps per epoch. LDStack used
η = 0.003 and the hinge parameterization. We observed faster convergence with a smaller n = 32
model LDStack than with a larger n = 64 one. LSTM and simple RNN used η = 0.01.
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