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1 Encoding an autonomous dynamical system

In the main text, we considered a case where a neural network encodes a scalar input signal x(t) in
its dynamics. This simple example corresponds to the circuit acting as an autoencoder. The model
is instructive, and allows us to rigorously study the effects of noise, weight disorder, and delays
on the coding performance. In the simple case of an autoencoder, the desired output is explicitly
provided to the network through the feedforward inputs. In a more general setting, the desired
output of the network may be a complex spatiotemporal transformation of its input. The input-output
transformation reflects the processing executed by the neural circuit, the details of which depends
on the specific computation implemented. In this section, we show that the mechanism by which
strong synaptic balance enables high-fidelity computations is general, and does not depend on origins
of the signal. More precisely, we will show that the network can encode a linear dynamical system
and that the resulting circuit equations obey similar balance rules as studied in the main text. Our
assumption here is that the computed task can be written in terms of an autonomous linear dynamical
system. Below we will also argue that this can be extended to other, nonlinear autonomous dynamical
systems.
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Our derivations follow closely those first suggested by [1] for spiking networks with integrate-and-fire
dynamics. Here, we generalize the derivation to rate-based networks with arbitrary local nonlinear
transfer functions. We explicitly show that the same ideas introduced in the theory of efficient coding
in spiking neural networks [1, 2] apply to continuous firing-rate models. Furthermore, we emphasize
that the crucial component allowing the network to encode an arbitrary linear dynamical system is a
decoder that introduces an additional time scale.

1.1 Latent dynamical system

Consider again a network of N nonlinear neurons. The output of each neuron is given by a nonlinear
transformation φ of its input. We wish to implement the arbitrary linear dynamics for the latent vector
x(t) ∈ RM ,

τxẋ(t) = Ax(t) + x0(t). (S1)
Here, x0(t) ∈ RM is the input, e.g., from external stimuli, A is an arbitrary state transition matrix,
and τx is the timescale. We assume that N �M ; this is a fundamental assumption and it is needed
in order to obtain the statistical benefits of distributed coding. We refer to x(t) as the latent variable
as it is not explicitly provided to the network, and its state is updated internally in the network.

The time scale of the dynamics τx can be very different than the microscopic timescale of the
membrane potential, τ . In general, we expect the dynamical time scale of interest to be much longer
than membrane potential τx � τ ; the choice of slow dynamics is equivalent to the adiabatic limit used
in the main text. We also note that inputs of arbitrary dimensionality M ′ can be fed into dynamics of
this form, simply by multiplying by an M ×M ′ input matrix to correct the dimension.

As in the main text, a linear readout provides an estimator for the encoded variable x̂(t). Unlike
the autoencoder model, the estimate is of the latent variable x(t), and not of the direct input to the
network x0(t). Importantly, to realize a dynamical system, we need to introduce a timescale relevant
for the encoded system τx. This timescale can be introduced through the readout,

τr ṙ(t) = −r(t) + φ(h(t)). (S2)

Here r(t) is a smoothed version of the activity φ(h(t)) with a linear low-pass filter. The slower
dynamics of the readout provides the network with the necessary memory to implement the dynamics
at slow time scales, even when the microscopic dynamics is fast and τ � τx. For brevity of our
derivations, we let the readout time scale be τr = τx. In general, the readout and dynamics can have
different time constants. However, if the readout is too slow it will not capture the high frequencies
in the dynamics. On the other hand, if the readout timescale is too fast it will not have the necessary
memory to implement slow dynamics. Thus, the readout timescale needs to comparable to that of
the latent dynamics. Any finite differences can be incorporated into the circuit equations. For an
autoencoder, which has no latent dynamics, there is no need for introducing a slow timescale in the
decoder. In this case we take the limit τr → 0 leading to the simple relation r(t) = φ(h(t)) used in
the main text.

The estimator x̂(t) of the latent state x(t) is obtained by a linear projection of the decoder rates r(t)
onto the M -dimensional space of the latent dynamics

x̂(t) = Wr(t) =
1

N

M∑
α=1

wT
αr(t), (S3)

Here, wα ∈ RN are the linear readout vectors, or coding directions. Each element in wα is drawn
i.i.d. from the same distribution P(w). The coding directions are approximately orthogonal in the
thermodynamic (large-N ) limit, and the overlap between two different vectors is

∑
i wαiwβi

=

O(1/
√
N) for α 6= β. The distribution is normalized so that wT

αwα = N . It follows that in the large
N limit WTW = I, where here I is the M ×M identity matrix. Together, the readout vectors span
the M dimensional subspace of the latent dynamics.

Following the paradigm of predictive coding [3], we want the internal state of the network to represent
the error in estimation. The error vector, or deviation of the current estimate from the target latent
state is x(t)− x̂(t). We thus define internal state variables, that we identify as the membrane potential
of the neurons, which are equal to the projection of the error into the N -dimensional neural space

h(t) = b
[
WT (x(t)− x̂(t))

]
. (S4)
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Here, we have introduced an gain factor b ∈ R, that defines the scale of the membrane potentials
relative to the real readout error. We will soon identify this factor as the degree of balance in the
network. We would like the dynamics of the network to have a stable attractor around h = 0. The
outputs of the neurons are a nonlinear transformations of the membrane potentials, so the output of
neuron i is given by φ(hi(t)).

In the analysis of the autoencoder in the main text, the dynamical equations of the membrane
potentials h(t) were given a-priori by a the canonical circuit equations [4]. Here, on the other hand,
the temporal evolution of h(t) is not independent, and is tied to the dynamics of the signal x(t) and
of the readout x̂(t) = Wr(t). To see how the membrane potentials evolve with time, we take a
temporal derivative in both sides of (S4), which yields

ḣ(t) = b
[
WT (ẋ(t)− ˙̂x(t))

]
= b

[
WT

(
1

τx
Ax(t) +

1

τx
x0(t)−W ṙ(t)

)]
= b

[
WT

(
1

τx
AWr(t) +

1

τx
x0(t) +

1

τx
Wr(t)− 1

τx
Wφ (h(t))

)]
In the third step above we have used an approximation x ≈ x̂(t); this approximation is valid as long
as the readout error is small, and it introduces an error of O(1/

√
N) relative to the other O(1) terms.

Rearranging the terms, and absorbing the time constant τx within the free parameter b we can write
rewrite the dynamics as

ḣ(t) = b
[
WTx0(t)−WTWφ (h(t)) + Ωr(t)

]
. (S5)

The first term is the input projected through feedforward weights. The second term is the inhibitory
feedback implementing the error correction as we have seen in the main text. The last term is a
recurrent term with weights given by Ω ≡ WT (A + I)W , where I is the N ×M identity matrix.
Importantly, this feedback term is proportional to the decoder rates r(t), and not the output of the
neurons φ(h). This is the term that implements the dynamics of x(t). It can be readily understood as
it is the only term that contains the dynamic transfer matrix A and the additional time constant, which
is implicit inside the filtered readout r(t). In [1] they refer to these synapses as slow synapses, as they
inherit the slow dynamics of the readout r(t). In general, this term is a temporal filter of the neural
outputs, that introduces a longer time scale required to implement the encoded dynamical system.

Finally, to arrive at the full circuit equations analogous to (1) in the main text, we introduce membrane
leak, weight disorder, added Gaussian noise, and delays:

τ ḣi(t) = −hi(t) +
∑
j

Jijφ(hj(t− d)) + Ii(x0(t)) + bΩr(t) + σξi(t), (S6)

where

Jij = gJij −
b

N

M∑
α=1

wαiwαj , and Ii(x0(t)) = b

M∑
α=1

wαix0α(t). (S7)

Once again, we have absorbed a factor of N within the arbitrary control factor b. The delays, noise,
weight disorder, and leak are not part of the derivation, but can be seen as external constraints on the
network. With the addition of the noise and disorder, we can naturally see the role of balance in the
dynamics. It sets the effective scale of the error relative to the other driving forces in the network,
which are the noise σ, and the emergent fluctuations due to the disorder, which are proportional to g.
The mean-field derivation in the main text shows how the magnitude of b affects the different sources
of fluctuations in the network.

A noticeable difference from the mean-field equations for the autoencoder, is the added term
bΩr(t),that in general changes the result of the mean-field derivation. However, in the limit where
the latent dynamics is much slower than the membrane time constant, and both τx, τr � τ , then the
fluctuations in the decoder rates δr(t) = r(t) − 〈r〉 are small and do not contribute to the overall
fluctuations δu(t) in (8). On the other hand, the contribution of the mean rates bΩ〈r〉 will affect the
bias in general.
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We note that the linear dynamics can be generalized to nonlinear dynamics, by explicitly introducing
nonlinearity within the readout (S2), and adapting the recurrent weights Ω accordingly. Similar ideas
have been previously introduced in [5].

Finally, to get the autoencoder network studied in the main text, we can choose A = −I , yielding
x(t) = x0. With this choice of A, Ω = 0, and the “slow” recurrent connectivity term in Equation (S6)
drops out, leading to the circuit equations introduced in (1), only for M -dimensional signals instead
of a scalar input. In the following section, we derive the full mean-field theory for an autoencoder for
an input signal of M dimensions, where 1 < M � N .

2 Mean field theory for multidimensional stimuli

In section (3) of the main text, we calculate the variance of fluctuations in a scalar readout; here
we generalize the calculation of variance to multidimensional stimuli by continuing from Equations
(S6) and (S7). We will consider the more simple case of a network with no weight disorder and no
delay, g = d = 0. Futhremore, as in the main text we consider an autoencoder without internal signal
dynamics, i.e., A = −I and Ω = 0.

We define the readout in the direction α = 1, . . . ,M as

x̂α(t) =
1

N
wT
αr(t). (S8)

The dynamical fluctuations in the readout are given by

δx̂α(t) = x̂α(t)− 〈x̂α〉. (S9)

The readout error is determined by the bias and the variance of the readout. Below we show that the
fluctuations in the readout δx̂(t) in each direction α = 1, . . . ,M are independent and so the total
error can be written as

ε =

√√√√ M∑
α

(xα − 〈x̂α〉)2 +

M∑
α

〈δx̂2α〉, (S10)

where the first term in the square root is the contribution of the bias, and the second term is the
contribution of the variance of dynamical fluctuations.

2.1 First-order mean field theory for the bias

Following the same mean-field analysis as in the main text, we decompose the membrane voltage
vector h into two contributions

h(t) =

M∑
α=1

h‖α(t) + h⊥(t). (S11)

Here h
‖
α = Pαh and h⊥ = (I −

∑M
α=1 Pα)h are the projections of the membrane potential

vector onto the subspace spanned by {wα} and to the orthogonal subspace respectively. Pα =
1
Nwαw

T
α is the orthogonal projection operator. Importantly, the readout vectors wα are approximately

orthogonal in the large N limit, enabling this decomposition. Thus h
‖
α(t) = uα(t)wα where

uα(t) ≡ 1
N

∑N
i=1 wαihi(t). The two dynamical equations (4) in the main paper generalize to M

equations for the projections of the membrane potentials onto the subspace spanned by the readout
vectors

τ u̇α(t) = −uα(t) + b [xα − x̂α(t)] + σξ‖α(t), (S12)

and for the fluctuations in the orthogonal subspace

τ ḣ⊥i (t) = −h⊥i (t) + σξ⊥i (t). (S13)

The noise terms ξ‖α = 1
N

∑N
i=1 wαiξi reflect the projection of the single-neuron independent noise

terms into the α readout direction, and ξ⊥i is the independent noise in neuron i in the orthogonal
subspace. Since M � N , we can write, as in the main text, 〈(ξ⊥i )2〉 = σ2 and (ξ

‖
α)2 = σ2

N .
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Additionally, since the coding directions wα are approximately orthogonal, the ξ‖α are independent
and 〈ξ‖αξ‖β〉 = 0 for every pair α 6= β.

The membrane potentials in the subspace orthogonal to all the coding directions, h⊥(t) follow a
simple OU process, and the variance of their fluctuations is given by 〈(h⊥i )2〉 = σ2

2τ . Since the
fluctuations in all readout directions δuα(t) are small in the large N limit, we can expand the activity
of each neuron to linear order in these fluctuations

φ(hi(t)) = φ

 M∑
β=1

wβi〈uβ〉+ h⊥i (t)

+ φ′

 M∑
β=1

wβi〈uβ〉+ h⊥i (t)

 M∑
β=1

wβiδuβ(t). (S14)

The decoder x̂α(t) = N−1
∑
i wαiφ(hi(t)) then reads

x̂α(t) =
1

N

N∑
i=1

wαiφ

 M∑
β=1

wβi〈uβ〉+ h⊥i (t)


+

1

N

N∑
i=1

wαiφ
′

 M∑
β=1

wβi〈uβ〉+ h⊥i (t)

 M∑
β=1

wβiδuβ(t). (S15)

Mirroring the derivation in the main paper, we take a temporal average of the decoder, and use
〈x̂α〉 = xα − 〈uα〉/b , to obtain a set of M self-consistent equations for the order parameters 〈uα〉,

xα −
〈uα〉
b

=

∫
Dz

M∏
β=1

(dwβP(wβ))wαφ

 M∑
β=1

wβ〈uβ〉+
σ√
2τ
z

 . (S16)

These equations can be solved numerically to give the stationary solutions for 〈uα〉. In the main text
we highlight an intuitive graphical solution. While the basic idea is similar in the multidimensional
setting, the graphical solution is less intuitive since the LHS of (S16) is a nonlinear integral equation
involving all of the order parameters 〈uα〉.
In the mean-field solution the bias is the Euclidean distance between 〈x̂〉 and x, given by

εbias =
1

b

√√√√ M∑
α

〈uα〉2. (S17)

The bias uα(x, σ)/b is a function of the noise and the inputs xα in all directions α = 1, . . . ,M .
This is a deterministic function that can be inverted by, for example, training of an efferent readout
which can eliminate the error due to bias. In the next section, we calculate the error due to dynamical
fluctuations in the different coding directions. These depend on the noise and chaos in the network
and are not easily removed by a static readout.

2.2 Mean-field theory for the second order statistics of the fluctuations

We now turn to study the fluctuations around the static first-order mean-field solution. By removing
the time average from the expansion in (S15), we identify the fluctuations in the readout as

δx̂α(t) =
1

N

N∑
i=1

wαiφ
′

 M∑
β=1

wβi〈uβ〉+ h⊥i (t)

 M∑
β=1

wβiδuβ(t). (S18)

As we have noted above, the coding directions are all random and 1
N

∑
i wαiwβi = δαβ . As a result

the fluctuations δuα(t) in different directions decouple and follow the linear dynamics

τδu̇α(t) = −δuα(t)− b〈φ′〉αδuα(t) + σξ‖α(t). (S19)
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Here, the average 〈φ′〉 is performed the statistics of the stationary solution calculated above, and
depends in the means 〈uα〉 in all M directions,

〈φ′〉α =

∫
Dz

M∏
β=1

(dwβ P(wβ))w2
αφ
′

 M∑
β=1

wβ〈uβ〉+
σ√
2τ
z

 . (S20)

Since fluctuations decouple, we can solve the equation in each direction α independently, and the
fluctuations in each direction are given by

〈(δuα(t))2〉 =
σ2

2τN(1 + b〈φ′〉α)
, and 〈(δx̂α(t))2〉 =

〈φ′〉2ασ2

2τN(1 + b〈φ′〉α)
. (S21)

Finally, since the fluctuations are orthogonal and independent, the total contribution of the fluctuations
to the readout error is given by

√
∆, where ∆ is variance of the decoder across all readout directions

∆ =

M∑
α

〈(δx̂α(t))2〉. (S22)

3 Dynamic mean-field theory for balanced networks with weight disorder

In section 4 of the main text we study the effect of weight disorder and deterministic chaos on the
error, and show how balance suppress the fluctuations at the readout. Here, we present with more
details the mean-field solutions for chaotic networks with synaptic balance, and the approximations
we introduced in order to study the effects of the balance on the dynamics. For simplicity, we derive
the solutions here assuming a scalar input signal, as introduced in the main text. Furthermore, for
notational brevity we set the membrane time constant to be τ = 1.

First, we note that the first-order mean-field solution for the bias (5) is unaffected by the dynamics of
the noise, and is similar whether the fluctuations of the membrane potential arise from deterministic
chaos or from additive Gaussian noise. However, the mean-field solution requires averaging over the
membrane potential fluctuations in the directions orthogonal to the readout, which in general may be
different in the case of deterministic chaos. In the case of additive Gaussian noise, we have shown
that the temporal average of the fluctuations are 〈δ(h⊥i )2〉 = σ2/2 for all i. When the fluctuations are
the result of deterministic chaos, the variance 〈(h⊥i )2〉 is found self consistently via Dynamic Mean
Field Theory (DMFT) [6]. In the following section, we highlight the main ideas in deriving DMFT
for the emergent fluctuations in the membrane potential.

3.1 Dynamic mean-field solution for the fluctuations in the orthogonal subspace

We now turn to compute the statistics of the fluctuations of a random network in its chaotic phase,
when the variance of the weight distribution is above the critical transition point g > gc. The dynamic
mean field theory for a chaotic neural network was first introduced by [6] and re-derived later by
[7, 8, 9, 10, 11, 12]. The connectivity in the subspace orthogonal to the readout direction is randomly
distributed, thus the properties of the fluctuations in this subspace, δh⊥(t), are equivalent to previous
studies of random neural networks. We bring the highlights here, and refer the reader to [7] for a
more detailed account of the derivation.

We define the autocorrelation function of the chaotic fluctuations as

∆⊥(s) ≡ 1

N

∑
i

〈
δh⊥i (t) δh⊥i (t+ s)

〉
(S23)

where, as before, δh⊥(t) = (I−P)δh(t). The variance of the fluctuations is given by the equal-time
autocorrelation ∆⊥(0). In DMFT, the autocorrelation is obtained by properly averaging over the
dynamic equation for the fluctuations δh⊥i (t), given by the equation in the RHS of (4). The result, is
a second-order differential equation for ∆⊥(s) given by(

1− ∂2

∂s2

)
∆⊥(s) = g2q(s). (S24)
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Here on the LHS we have a second-order differential operator acting on the autocorrelations of the
membrane potential. On the RHS, we have the autocorrelation function of the fluctuations in the
firing rates of the neurons φi(t) ≡ φ(hi(t)), is given by

q(s) =
1

N

∑
i

〈δφi(t)δφi(t+ s)〉 . (S25)

Here δφi(t) = φi(t) − 〈φi〉 are the temporal fluctuations in the output of neuron i about its mean
firing rate 〈φi〉. The mean autocorrelation of the firing rates q(s) is given by taking a statistical
average over the weight disorder in the system, and can be written as

q(s) =

∫
Dz

(∫
Dyφ(

√
∆⊥(0)−∆⊥(s)y +

√
∆⊥(s)z

)2

. (S26)

Plugging (S26) into (S24) we get a self-consistent integro-differential equation for ∆⊥(t). The
boundary conditions for this equation are given by ∆̇⊥(s) = 0 and ∆̇⊥(∞) = 0, corresponding to the
smoothness of the autocorrelation at s = 0 and the conditions for the existence of a chaotic solution at
s =∞ respectively. The solution can be found by numerically evaluating the second order differential
equation [7]. The variance of the fluctuations in the orthogonal subspace N−1

∑
i〈δh⊥2i 〉 = ∆⊥(0)

is used in the static solutions 〈φ〉 and 〈φ′〉 above.

3.2 Dynamic mean-field for the fluctuations in the readout direction

The dynamics of the fluctuations in the direction of the readout is given by

τδu̇(t) = −βδu(t) + gη‖(t), (S27)

where β ≡ 1 + b〈φ′〉. Here, the noise term η‖(t) reflects the projection of the recurrent feedback J φ
with random connectivity J onto the coding direction w. The mean of the recurrent noise η‖(t) is
given by

〈η‖(t)〉 =
1

N

∑
ij

wiJij〈φ(hi(t))〉 =
aJ√
N
〈φ〉, (S28)

where aJ ∼ N (0, 1) is a random number drawn from the standard normal distribution. The
random number depends on the particular realization of J and readout vector w, and does not
vanish in the large N limit. Requiring detailed-balance in the disordered connectivity, i.e., the
constraint

∑
j Jij = 0, ∀i can remove this bias term. Without detailed-balanced weights, the

realization-specific temporal mean needs be incorporated within the mean-field equation for u, and
will generally add to the bias error. We note that the expected aJ across different readout directions
is zero. As we argued before, the static bias can be removed by an efferent readout. However, in
the case of weight disorder, the bias term is random and depends on the actual realization of J , and
there is no analytical solution for the bias. Nevertheless, the static bias can be easily removed by
training the linear readout. The bias correction to the mean-field is needed even for the dynamical
phase below the chaotic transition, g < gc.

For networks in the chaotic phase, we must also consider the temporal fluctuations. The autocorrela-
tion of the noise term in (S27) is given by

〈δη‖(t)δη‖(t′)〉 =
1

N2

∑
ijkl

wiwjJikJjl〈δφk(t)δφl(t
′)〉 =

1

N
q(t− t′) +O(1/N2) (S29)

where q(t − t′) is the mean autocorrelation of the outputs given in (S26), which can be found
self-consistently as highlighted above. Unlike the mean, it is self-averaging, and does not depend on
the specific realization of J in the large-N limit.

To find an expression for the autocorrelation function

∆(s) = 〈δu(t)δu(t+ s)〉, (S30)
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we follow the same logic as when deriving Dynamic Mean-Field Theory for the fluctuations ∆⊥(s)
above [7]. First, we take the Fourier transform of the dynamical equations (S27) for the fluctuations
in the readout direction δu(t):

(−iω − 1− β)δũ(ω) = gη‖(ω). (S31)

Next, we multiply the expression by its complex conjugate and take another Fourier transformation
back to the temporal representation. Replacing the variance of η‖〉 with the variance of the recurrent
connectivity (S29) we obtain

(
(1 + b〈φ′〉)2 − ∂2

∂s2

)
∆(s) = g2q(s). (S32)

The boundary conditions on the second-order differential equation are, as above in equation (S24), are
∆̇(0) = ∆̇(∞) = 0. The full solution for ∆(s) can be evaluated numerically using the solution for
q(s) describes in the previous section. However, to get further insight into how the solution behaves
with b, we would like to derive an analytical expression. In the following section, we approximate the
chaotic autocorrelation function with a more simple model with a colored Gaussian noise term that
permits analytical treatment.

3.3 Approximating the chaotic fluctuations with temporally colored Gaussian noise

The exact temporal correlation function of the chaotic fluctuations is complicated, and depends on
the details of the problem, such as the nonlinearity, sources of noise and the external input [7, 8].
However, it has some common characteristics: (1) it is a symmetric function q(s) = q(−s); this is
due to time reversal symmetry in the system. (2) It is an exponentially decaying function; this is
because the chaotic dynamics is characterized by a positive Lyapunov exponent [13]. (3) The decay
time is of the order of the membrane potential, which is the only time scale in the network. The last
point is true away from the critical transition point g = gc, where critical slowing down can result in
long-range temporal correlations [7]. The exact shape of the autocorrelation however, depends on
the details of the problem. For example it may be convex or concave, depending on external noise
sources [8].

While the detailed function is not analytically tractable in many cases, we can replace the chaotic
fluctuations with a more simple noise model that captures the important aspects of the chaotic fluctua-
tions, namely, symmetric and exponentially decaying with time constant similar to the membrane
time constant. We write the dynamics of the fluctuations in the direction of the readout in (S27) as

τ ˙δu(t) = −βδu(t) + gζ(t), (S33)

where β = 1 + b〈φ′〉. Here, we have replaced the chaotic fluctuations in the coding direction, ηg(t)
with correlated Gaussian noise ζ(t) with zero mean and autocorrelation function given by

〈ζ(t)ζ(t+ s)〉 =
1

N
exp

(
−|s|

2τ

)
. (S34)

This noise can be easily realized with a filtered white Gaussian noise

τ ζ̇(t) = −ζ(t) +
1√
N
ζ ′(t), (S35)

where 〈ζ ′(t)ζ ′(t′)〉 = δ(t− t′). For brevity of notation, in the following we will set membrane time
constant τ = 1.

In (S33) we have a stochastic ODE with a corresponding to a particle undergoing gradient descent
in a deterministic quadratic potential, but driven by colored noise. If at time t0 the location of the
particle is known, then the variance in the location of the particle at time t is given by [14]

α(t0, t) = 2

∫ t′

t

ds exp[−2β(t0 − s)]
∫ s

t0

drC(s− r) exp[−β(s− r)]. (S36)
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Here C(s− r) is the autocorrelation function of the colored Gaussian driving noise, and is given by
C(s− r) = 1

N exp[−(s− r)/2] for s > r. We thus obtain

α(t0, t) =
2

N

∫ t

t0

ds exp[−2β(t− s)]
∫ s

t0

dr exp[−(β +
1

2
)(s− r)]

=
2

N(β + 1
2 )

∫ t

t0

ds exp[−2β(t− s)]
(

1− exp[−(β +
1

2
)(s− t0)]

)
=

exp[−2βt]

N(β + 1
2 )

∫ t

t0

ds

(
exp[2βs)]− exp[(β +

1

2
)t0] exp[(β − 1

2
)s]

)
. (S37)

If the balance is strong, we can write β = b〈φ′〉 � 1. This small approximation allows us to simplify
the above expression by ignoring O(1) corrections to β, and write

α(t0, t) =
exp[−2βt]

Nβ

∫ t

t0

ds (exp[2βs)]− exp[βt0] exp[βs])

=
exp[−2βt]

Nβ2

(
1

2

(
e2βt − e2βt0

)
− eβt0

(
eβt − eβt0

))
=

1

Nβ2

(
1

2

(
1− e−2β(t−t0)

)
− eβt0

(
e−βt − eβt0−2βt

))
=

1

2Nβ2

((
1− e−2β(t−t0)

)
− 2

(
e−β(t−t0) − e−2β(t−t0)

))
. (S38)

As mentioned above, if we interpret the ODE as the motion of a particle in a quadratic potential
driven by colored noise, then α(t0, t) denotes the variance in the location of the particle at time t, if
the location is known at time t0. In that case the variance in the location of the particle at the steady
state is given by setting t0 = 0 and t =∞, yielding

α(0,∞) =
1

N2β2
=

1

2Nb̃2
=

1

2N〈φ′〉2b2
. (S39)

Here we have again used b̃� 1 so β = 1 + 〈φ′〉b ≈ 〈φ′〉b.
Using the result for the variance at the steady state, we obtain an expression for the fluctuations in
δu(t)

〈δu2〉 ≈ g2

2b̃2N
. (S40)

Finally, the fluctuations of the readout x̂(t) are given by

〈δx̂2〉 ≈ 〈φ
′〉2g2

2b̃2N
. (S41)

The average over the steady state 〈φ′〉 is solved using the mean-field equations, using the variance
∆⊥(0) found above using dynamic mean-field theory.

4 Delays, noise and resonance

In this section, we study the response of a balanced network with delayed feedback to an external
white noise. We begin by considering the characteristic equation of the delayed ODE in (10) in the
absence of noise,

G(z) = zτ + 1 + b̃e−zD = 0. (S42)

The real and imaginary parts of the complex number z = γ + iω represent the exponential growth
and oscillations of the solution ansatz. As discussed in the main text, below the critical balance b̃c, all
solutions to this equation have negative real part γ < 0. In this regime the dynamics is stable and the
fluctuations decay to zero rapidly.
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In the presence of noise, the system is constantly driven. The autocorrelation function of the
fluctuations in this state is defined as ∆(s) = 〈δu(t) δu(t+ s)〉. To study the response of of δu(t) to
the external noise, we look at the Fourier components of the autocorrelation function

∆̂(ω) =
1

2π

∫
ds eiωs∆(s). (S43)

In the model driven by white noise, the integrated power across all frequencies is σ2/2N . The power
at a specific frequency ω is given by

∆̂(ω) =
σ2

2NG(iω)G∗(iω)
=

σ2

2N(iωτ + 1 + b̃e−iωD)(−iωτ + 1 + b̃eiωD)
. (S44)

Using the characteristic equation we know that G(ωc) = 0 when the balance is b̃ = b̃c. Plugging this
equality into (S44), we obtain an expression for the response of the network at the resonant frequency
ωc,

∆̂(ωc) =
σ2

2N(b̃c − b̃)2
. (S45)

We approximate the total contribution to the fluctuations as the sum of fluctuations in the absence of
delay plus the contribution of the resonance in ωc, yielding

∆̂(ω) =
σ2

2N

(
1

(1− b̃c)2 + ω2
+

1

(b̃c − b̃)2 + (ω − ωc)2

)
. (S46)

Finally, using the Wiener–Khinchin theorem we can find the total variance of the fluctuations, which
is given by

∆ =

∫
dω∆̂(ω). (S47)

Plugging (S46) in (S47) and integrating, we arrive at eq. (12).

Finally, we note that for the chaotic network, the derivation would be similar, only the variance
of the white noise σ2/N is replaced with q̂(ω)/N , which is the Fourier representation of the rate
autocorrelation in (S26) . Since q(s) is exponentially decaying, we have q̂(ω) � 1 for ω � 1/τ .
In the case of small delays d � τ the the noise at the critical frequency q̂(ωc) � 1 and thus the
resonant effects in this case are negligible.
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