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Abstract

In a social system, the self-interest of agents can be detrimental to the collective
good, sometimes leading to social dilemmas. To resolve such a conflict, a central
designer may intervene by either redesigning the system or incentivizing the agents
to change their behaviors. To be effective, the designer must anticipate how the
agents react to the intervention, which is dictated by their often unknown payoff
functions. Therefore, learning about the agents is a prerequisite for intervention. In
this paper, we provide a unified framework for learning and intervention in games.
We cast the equilibria of games as individual layers and integrate them into an
end-to-end optimization framework. To enable the backward propagation through
the equilibria of games, we propose two approaches, respectively based on explicit
and implicit differentiation. Specifically, we cast the equilibria as the solutions to
variational inequalities (VIs). The explicit approach unrolls the projection method
for solving VIs, while the implicit approach exploits the sensitivity of the solutions
to VIs. At the core of both approaches is the differentiation through a projection
operator. Moreover, we establish the correctness of both approaches and identify
the conditions under which one approach is more desirable than the other. The
analytical results are validated using several real-world problems.

1 Introduction

The history of human societies may be viewed as an evolutionary process through which countless
self-interested individuals learn to cooperate with each other [20]. While human self-interest can
be channeled towards socially desirable ends, interventions—in the form of laws, social norms and
incentives—are often required. Indeed, even the “invisible hand” of Adam Smith would not work
without proper regulations and policing. This process continues, as it uncovers and resolves previously
unknown or non-existent conflicts between self- and collective interest. For example, the potential
conflict between overpopulation and welfare states has been heatedly debated among biologists, social
scientists, philosophers and alike [21, 16]. In economics, externalities (a.k.a. neighboring effects)
lead to market failures because self-interested agents do not bear the cost/benefit of their actions
in its entirety. Lloyd’s common devastated by excessive grazing [34] and Pigou’s road jammed by
selfish drivers [50] are two classical examples. More recently, Braess [10] shows expanding a road
network could worsen traffic congestion. This paradoxical phenomenon, related closely to the price
of anarchy [28], demonstrates vividly how unregulated self-interest may be detrimental to the social
good. In this paper, we develop a general framework aiming to regulate various systems comprised
of self-interested agents.

Game theory is often used to determine the most likely outcomes of a system in which agents pursue
self-interest and interact with each other [27, 18]. Although a game-theoretic model of the real-world
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is a simplification, it can be useful for not only explaining and predicting system outcomes, but also
engineering desired ones [43]. For example, many phenomena in ecosystems can be explained as
the outcome of the population, in the game of survival, adopting an evolutionarily stable strategy
[55]. Stackelberg games [61], which concern the strategic interactions between leaders and followers,
have seen applications in economics [5], national security [51] and environment protection [65].
Congestion game [52], in which the utility of agents depends on a resource whose cost increases with
the number of users, is another example. Many social and engineering systems can be modeled as a
congestion game, with applications ranging from planning transportation infrastructure [6], managing
wireless communication networks [30], to operating ride-hail companies [12].

In a game-theoretic system, we define the central designer as an authority whose action can influence
the outcome of the game. The central designer can intervene in order to guide the self-interested
behavior toward a socially desirable outcome. There are generally two types of interventions: redesign
the system or modify the payoffs of the agents through incentives. Take transportation planning as
example. To alleviate congestion, the owner of the road network (typically the “government”), has
the power to add capacities at selected locations in the network [37, 64]. Alternatively, it may charge
road users a “congestion toll”, in the spirit of Pigou [50] and Vickrey [60], to incentivize them to
change travel behaviors (route, departure time, mode, etc.). In order to intervene effectively, the
central designer must anticipate the reaction of the agents, which is dictated by their often unknown
payoff functions. Thus, an equally important task is to infer, from empirical observations, how the
agents evaluate their payoffs. To this end, the random utility theory [41] is widely used to estimate
behavioral parameters of agents in marketing [40], environmental studies [59] and travel forecasting
[7]. Alternatively, the learning-theoretic approach is increasingly used to learn, among other things,
the optimal strategy of agents [32] or unknown parameters of games [33].

Contribution. This paper provides a unified framework for learning and interventions in games.
It is well known that the equilibria of many games can be formulated as either a complementarity
problem [66] or an optimization problem [45], and both can be interpreted as a variational inequality
(VI) problem [47]. Therefore, we propose to cast the equilibria of games, in the form of VI, as
individual layers in an end-to-end optimization framework. Such a general representation of the
game-theoretic system in an end-to-end framework poses the challenge of performing forward and
backward propagation through the VI layers.

Along the above line, our contributions are as follows. (1) We present a unified optimization model
for learning and interventions in games that can be solved by gradient descent methods. (2) We devise
a Newton’s method for forward propagation over VI layers. Unlike other Newton-type methods for
solving VI, e.g. [8, 56], we directly find the solution via root-finding. (3) We propose two methods
for backward propagation over VI layers based on explicit and implicit differentiation, respectively.
The explicit approach unrolls the projection methods for solving VIs, and the implicit approach
performs differentiation on the fixed-point formulation of VI [26]. The implicit approach is more
efficient than the explicit approach but is applicable only when the VI problem is strongly monotone
locally. In contrast, the explicit approach works as long as the convergence of the projection method
is guaranteed, which only requires monotoncity. (4) We give real-world examples to demonstrate the
potential applications of the proposed framework.

Related Work. Interventions in games can be modeled as mathematical programs with equilibrium
constraints (MPEC), a class of optimization problems constrained by equilibrium conditions, often
represented as a VI problem [35]. As our framework casts the equilibria of games as individual
layers, it may be viewed as a special class of MPEC. Solving MPEC typically requires calculating the
derivatives of the equilibria [19], which is a significant challenge. Another difficulty has to do with
the lack of unique equilibrium, a requirement for differentiability [49]. Besides the MPEC approach,
recent work also casts the intervention in games as a bi-level reinforcement learning (RL) problem,
in which the agents’ decision is modeled as a Markov decision process [67].

Learning payoff parameters in games usually relies on the special structures of games [62, 9]. Ling
et al. [33] studied how to learn a normal form game using a differentiable game solver layer in an
end-to-end framework. The convergence and sensitivity analysis in network games [48] is another
example that enable treating game solvers as individual layers. As VI provides a unified formulation
for various equilibrium problems arising from games, our work can be regarded as a generalization
of these works.
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To inject an appropriate inductive bias into the modeling procedure, recent work shows the possibility
of embedding differentiable optimization problems as layers in an end-to-end framework [1]. To
differentiate through an optimization problem, one could either unroll the numerical computation
[17, 4] or implicitly differentiate the optimality conditions, such as the KKT conditions in quadratic
programs (QP) [3], the Pontryagin minimum principle in optimal control problems [25], and the
Euler-Lagrange equations in least-action problems [36]. As the solution to a VI problem can usually
be characterized as a fixed-point equation via a projection operator, which is equivalent to a QP
problem, our work is built on some results in [3, 1].

Organization. In § 2, we present a unified optimization framework for learning and interventions in
games. § 3 focuses on the VI layer. We first introduce the methods for forward propagation, including
projection methods and a Newton-type method. Then, backward propagation methods based on
explicit and implicit differentiation are proposed, and their analytical properties are discussed. In § 4,
we provide numerical results, inspired by a few real-world applications, that highlight the capabilities
of the proposed framework.

Notation. Given a set of scalars ai or functions fi(·) with i from a certain indicator set, we denote
its vector form as a = (ai)

T and f(·) = (fi(·))T. We define the Euclidean norm of a vector a ∈ Rn
as ‖a‖ and the operator norm of a matrix A ∈ Rn×n induced by Euclidean norm as |||A|||. The inner
product of two vectors a, b ∈ Rn is defined as 〈a, b〉 = aTb. The Jacobian matrix of y ∈ Rm with
respect to x ∈ Rn is denoted as ∂y/∂x ∈ Rm×n.

2 End-to-end design and learning in games

2.1 Design and learning in games

We model a system comprised of self-interested agents using game theory. Consider a game played
by a set of agents N , where each agent i ∈ N selects an action ai ∈ Ai and each player’s payoff is
determined by a function ui : A → R, where A =

∏
i∈N Ai. The outcome of the game is usually

predicted by its Nash equilibrium, where the agents have no incentive to unilaterally deviate from
their current strategies.

In this paper, we formulate the equilibria of games as parametric VI problems defined below.
Definition 1 (Parametric VI problem). Given a set Zλ ⊆ Rn and a function Fλ : Zλ → Rn
parameterized by λ ∈ L ⊆ Rm, a parametric VI problem VI(Fλ,Zλ) is to find z∗ ∈ Zλ such that

〈Fλ(z∗), z − z∗〉 ≥ 0, for all z ∈ Zλ. (1)

The equilibrium strategy z∗ of various games can be reformulated as the solution to a certain
VI(Fλ,Zλ), where Zλ is the strategy set and Fλ is derived from the payoff functions according to
the underlying game structure. For example, when the agent profile N is finite and the action set Ai
is continuous for all i ∈ N , methods for establishing the equivalence between Nash Equilibrium
and VI, as well as the necessary and sufficient conditions, can be found in [47, 53]. If the action set
Ai is finite, the mixed-strategy Nash equilibrium can be formulated as a VI problem in a similar
manner [42]. When the game is placed in a population context, i.e. the agents in N are infinitesimal,
the equilibrium of game is usually called a Wardrop equilibrium, pioneered by Wardrop’s first
principle [63] in the context of road traffic. The equivalence of Wardrop equilibrium and VI was first
established by Dafermos [14]. Below we first give an example of the VI formulation of routing game.
Example 1 (Routing game). Consider a set of agents traveling from source nodes to sink nodes in
a graph with nodes V and edges E . Each agent aims to choose a route to minimize the total cost
incurred. Suppose that xe is the number of agents choosing edge e. The generalized cost on each
edge can be set as

ce,se,me,βe,γ(xe) = te,se(xe) + γme + βe,θe(xe), (2)
where te is the travel time, modeled as a function of xe and the road capacity se; γ is the time value
of money; me is a monetary cost; and βe, parameterized by θe, represents the “hidden” cost that is
difficult to measure (e.g., comfort, safety). Denote X as the set of feasible edge flows satisfying the
flow conservation conditions, then the Wardrop equilibrium is equivalent to a VI problem [14]: find
x∗ ∈ X such that

〈cs,m,θ,γ(x∗), x− x∗〉 ≥ 0, for all x ∈ X . (3)
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From the above discussion we can see that the equilibrium of a game depends on the payoff functions.
Therefore, to induce a target outcome (e.g., one that maximizes “social welfare”) in a game-theoretic
system, a central designer can change the payoff functions either by redesigning system parameters or
directly through incentives. Before that, the central deisgn must first learn how the agents evaluate the
payoff, especially its “hidden” components. To this end, we provide a unified framework for learning
and intervention in games as shown in Figure 1, where the equilibrium layer is cast as a VI problem.

System

Designer

Agents

Payoff
function

Theoretical
prediction

Empirical 
observation

Fitting
error

Social
welfare

Redesign

Preference

Incentive Maximize

Minimize

Equilibrium
layer

Objective of 
intervention

Objective of 
learning

Cast as a VI 
problem

Figure 1: A unified framework for learning and intervention in games.

• The learning mode is a regression problem: the designer determines the unknown parameters
in agents’ payoff functions by minimizing the fitting loss between empirical observations and
theoretical predictions.

• The intervention mode is a central design problem: the designer modifies the payoffs through
incentives or system redesign to induce a target equilibrium.

Note. In many cases, the game designer is expected to design interventions based on learned payoff
functions. However, the learning and intervention functions can also be carried out independently.
Sometimes, the primary interest is to understand agent behaviors, and hence only the learning mode
is needed. Alternatively, when all game inputs are known, the focus would be on intervention.

2.2 End-to-end optimization

Problem formulation. Both the learning and intervention modes can be formulated as an end-to-
end optimization problem given as follows.

min
λ

R̄∗ = R(p̄∗)

s.t. p̄∗ = p(z̄, λ), z̄∗ solves VI(Fλ,Zλ), λ ∈ L.
(4)

In both modes, z̄ represents the equilibrium strategy, while Fλ and Zλ characterize the setup of game
as described in § 2.1. Other variables may have different meanings in the two modes.

• In the learning mode, λ represents unobservable parameters in payoff functions. Variable p̄ is the
predicted equilibrium system state that can be observed empirically, and the objective R̄ is the
fitting loss between p̄ and its observation p̂. The constraint L on λ may be derived from its physical
meaning (e.g. the value of time must be non-negative). If the payoff functions are characterized by
more complicated constructs (e.g. a deep network), the constraint may be unnecessary.

• In the intervention mode, λ represents design parameters. Variable p̄ contains equilibrium system
states that dictate social welfare, i.e. −R̄. The constraint L on λ may be related to the financial
and/or physical resources available to the central designer.

When the two modes are integrated in an application, the learning mode learns λ in the layer
VI(Fλ,Zλ) and shares the learned value with the intervention mode. The intervention mode then
directly/indirectly changes Fλ to induce a target equilibrium. Below we briefly exemplify the learning
and intervention problems in a routing game.

Example 1 (continued). Of the three components in the cost function (2), the monetary cost me is
easy to estimate, and the travel time te can be determined from empirical observations, see e.g. the
Bureau of Public Roads (BPR) function [11]. The hidden cost function βe, as well as the value of
time γ, however, is usually unknown. If the central designer wants to reduce excessive congestion at
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equilibrium, she can either adjust se or change me (e.g., by imposing a toll) for a subset of edges.
However, she must first learn θe and γ in order to correctly anticipate the overall impact of her action
on the generalized cost.

• In the learning mode, decision variables include γ and θe. Denote the equilibrium flow on edge
edge e predicted by (3) as x̄∗e . Suppose that Ê is the set of edges where the flow can be observed.
Then the system states used for fitting are the predicted flow x̄e and the corresponding observed
flow x̂e for e ∈ Ê. The objective can be the squared loss R̄ =

∑
e∈Ê(x̄∗e − x̂e)2.

• In the intervention mode, the decision variables are se and/or me. The social welfare can be
measured by the total travel delay, which is determined by the predicted flow x̄∗e and travel time
te,se(x̄

∗
e) on each edge e. Here, the objective is the total time costs R̄ =

∑
e∈E te,se(x̄

∗
e) · x̄∗e .

Gradient descent method. In this paper, we aim to solve (4) using gradient descent methods.
At the current point λk, in the forward propagation, we need to compute R̄k = L(pkλ), where
pkλ = p(z̄k, λk) and z̄k is the solution to VI(Fλk ,Zλk). While in the backward propagation, we need
to update λk in the opposite direction of the gradient of the objective function, specifically

∂R̄k

∂λk
= ∇R(pkλ) ·

(
∇zp(z̄k, λk) · ∂z̄

k

∂λk
+∇λp(z̄k, λk)

)
. (5)

3 Differentiable VI layer

3.1 Fixed-point formulation of VI

A VI problem can be equivalently formulated as a fixed-point problem via a projection operator [26].

Definition 2 (Projection operator). The projection operator PZ with respect to the Euclidean norm
is defined as

PZ(y) = arg min
y∗∈Z

‖y∗ − y‖. (6)

Proposition 1 (Fixed-point formulation of VI [26]). The point z∗ ∈ Zλ is a solution to VI(Fλ,Zλ)
if and only if for any r > 0, z∗ is a fixed point of the mapping hλ(z) : Zλ → Zλ defined as

hλ(z) = PZλ(z − rF (z, λ)). (7)

Proposition 1 implies that finding a solution to VI(Fλ,Zλ) is equivalent to finding a fixed point of
hλ(z). The projection operator PZλ(y) is denoted as gλ(y) hereafter in this paper and the scalar r is
omitted in gλ(y) for simplicity.

Based on the fixed-point formulation, the existence and uniqueness conditions of VI(Fλ,Zλ) can be
established under certain monotone conditions of Fλ [22, 38]. See Appendix A for more details. In
the sequel, we make the following assumptions, under which VI(Fλ,Zλ) has at least one solution, as
well as some other properties for further analysis.

Assumption 1. The function Fλ is continuous differentiable and monotone for all λ ∈ L.

Assumption 2. The set Zλ is a bounded polyhedral set for all λ ∈ L.

Assumption 3. The mapping (y, λ) 7→ gλ(y) is continuously differentiable.

3.2 Forward propagation

3.2.1 Projection method

The fixed-point formulation of VI implies that one may iteratively project z to hλ(z) until a fixed
point is found. Such an idea leads to a class of algorithms for solving VI problems, known as the
projection method. A sufficient condition for convergence is established by Dafermos [15].

Proposition 2 (Convergence conditions for the projection method [15]). Starting with z0 ∈ Zλ, the
sequence generated by zk+1 = hλ(zk) converges to VI(Fλ,Zλ) if

|||I − r · ∇zFλ(z)||| < 1, for all z ∈ Zλ. (8)
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If Fλ is strictly monotone, the convergence condition (8) is satisfied as long as r is sufficiently small.
However, when Fλ is monotone but not strictly monotone, such a condition sometimes is not satisfied
for all r > 0. In this case, provided that Fλ is co-coercive with module c on Zλ, the sequence also
globally converges to the solution to VI(Fλ,Zλ) if r < 2c. See [39] for more details. In the sequel,
we also make the following assumption.
Assumption 4. For all λ ∈ L, there exists c > 0 such that the function Fλ is co-coercive with
module c on Ωλ.

Under Assumptions 1 and 4, a sufficiently small r can guarantee convergence for projection methods.

The rate of convergence of the projection method is typically linear [8], while better results can be
obtained if we scale zk at each iteration by a positive definite matrix Gk containing first derivative
information of Fλ(zk) (in which case it may be viewed as a variant of the Newton’s method [8]). In
the latter case, finding a suitable Gk is often a nontrivial task.

3.2.2 Newton’s method

Finding a solution of VI(Fλ,Zλ) is equivalent to finding a root of the following equation

eλ(z) = z − hλ(z) = 0. (9)

Now we are ready to present one of our main contributions, a Newton-type method that solves VI
problem by directly locating the solution through root-finding. Firstly, as both gλ(y) and Fλ(z) are
continuously differentiable per assumption, eλ(z) is also continuously differentiable based on the
chain rule. At the point zk, the Newton direction dk can be found by solving

∇zeλ(zk) · dk = eλ(zk). (10)

Denote yk = zk − rFλ(zk), then

∇zeλ(zk) = I −∇ygλ(yk) ·
(
I − r · ∇zFλ(zk)

)
. (11)

To obtain ∇ygλ(yk), we need to differentiate through the projection operator gλ(y). As Zλ is a
polyhedral set, gλ(y) can be converted into a QP problem:

z∗ = arg min
z

1

2
zT z − yT z

s.t. Aλz ≤ bλ, Mλz = qλ.
(12)

This allows us to utilize the following result established by Amos and Kolter [3].
Proposition 3 (Differentiating through a QP problem [3]). In the QP problem (12), denote ν and
µ ≥ 0 as the dual variables on the equality and the inequality constraints, respectively. Then the
derivatives of the optimal solution z∗, µ∗ and ν∗ satisfy the following linear equations I AT

λ MT
λ

diag(µ)Aλ diag(Aλz
∗ − bλ) 0

Mλ 0 0

[dz∗

dµ∗

dν∗

]
=

 dy − dAT
λµ
∗ − dMT

λ ν
∗

−diag(µ∗) dAλz
∗ + diag(µ∗) dbλ

−dMλz
∗ + dqλ

 . (13)

Based on Proposition 3, we can obtain the Jacobian of z∗ with respect to any parameters. To obtain
∂z∗/∂y, we can substitute dy = I and set other differential terms in the right-hand side to zero. In
this manner, the Newton direction dk can be derived at each iteration. Subsequently, we set

zk+1 = zk − dk, (14)

and move to the next iteration. The following theorem establishes the local convergence of this
iteration.
Theorem 1 (Local convergence of Newton’s method). Suppose that VI(Fλ,Zλ) admits a solution
z̄∗. If∇zeλ(z̄∗) is nonsingular, then there exists a neighborhood B(z̄∗) of z̄∗, such that when starting
from x0 ∈ B(z̄∗), the sequence generated by (14) converges to z̄∗ superlinearly.

Proof. See Appendix B.1 for a detailed proof.

To enable global convergence, we can first employ the projection method to get into the neighbor-
hood of the solution to VI(Fλ,Zλ). See Appendix B.2 for a globally convergent algorithm and
implementation details.
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3.3 Backward propagation

3.3.1 Explicit differentiation method

According to Proposition 2, the convergence of the projection method is guaranteed by a sufficiently
small r. Nevertheless, it is usually unnecessary to predetermine r. Instead, we can dynamically adjust
rk at each iteration k such that rk satisfies the convergence condition (2) when k is sufficiently large.
Then the sequence generated by zk+1 = hλ(zk) with rk converges to the solution to VI(Fλ,Zλ).

F� F� F�

g� g� g�
z0 zk· · ·

· · ·f0

y0 · · ·

fk

zk+1

yk

Figure 2: Explicit method.

F�

g�
z⇤ z⇤

f⇤

y⇤

Figure 3: Implicit method.

The computation graph corresponding to this method is given in Figure 2, where yk = zk − rk · fk
and fk = Fλ(zk). Based on this graph, by viewing the solver of VI(Fλ,Zλ) as a collection of an
infinite number of projection layers, we are ready to present our first method to differentiate through
a VI problem. First, taking the differentials on both sides of zk+1 = hλ(zk) with respect to λ gives

∂zk+1

∂λ
= ∇zhλ(zk) · ∂z

k

∂λ
+∇λhλ(zk), (15)

where
∇zhλ(zk) = ∇ygλ(yk) ·

(
I − rk · ∇zFλ(zk)

)
, (16)

∇λhλ(zk) = ∇λgλ(yk)− rk · ∇ygλ(yk) · ∇λFλ(zk). (17)
Based on the recursive equation (15), the Jacobian matrix ∂z∗/∂λ can be explicitly derived as the
limit of ∂zk/∂λ. At the core of this method is the computation of∇ygλ(yk) and∇λgλ(yk), which
can still be obtained by Proposition 3. In the backward propagation, however, it is not necessary to
explicitly form ∇yhλ(zk) and ∇λhλ(zk). Instead, the Python library cvxpylayers1 can be used to
explicitly build the computation graph with projection (QP) layers and enable backward propagation.
See [1] for more details on the package.

3.3.2 Implicit differentiation method

If Fλ is strictly monotone for all λ ∈ L, then the solution to VI(Fλ,Zλ) is unique. In this case, the
function z∗(λ) is directly defined by the fixed-point equation (9), and thus, implicit differentiation
can be used to derive ∂z∗/∂λ. We first give the sufficient conditions for differentiation.
Proposition 4 (Conditions for differentiation [57]). Suppose that VI(Fλ,Zλ) admits a solution z̄∗
at λ̄. If Fλ(z) is strongly monotone in a neighborhood B(z̄∗) of z̄∗, then in a a neighborhood B(λ̄)
of λ̄, for each λ ∈ B(λ̄), z∗ can uniquely defined from the fixed-point equation z∗ − hλ(z∗) = 0,
and the function z∗(λ) defined in this way is differentiable.

Under the differentiation conditions, we are ready to present our second method to perform backward
propagation through a VI layer.
Proposition 5 (Implicit backward propagation). Under the conditions in Proposition 4, we have

∂z∗

∂λ
= [I −∇zhλ(z∗)]−1 · ∇λhλ(z∗). (18)

If we want to use (18) to compute ∂z∗/∂λ, then we need to differentiate through the mapping
hλ(z∗). The computation graph of this method is shown in Figure 3, where y∗ = z∗ − r · f∗ and
f∗ = Fλ(z∗). As z∗ is already the solution to VI(Fλ,Zλ), r can be any positive value. The Jacobian
matrix ∇zhλ(z∗) and∇λhλ(z∗) can be obtained using the same method as in the explicit method.

1https://github.com/cvxgrp/cvxpylayers
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3.3.3 Discussion

The following theorem establishes the equivalence of the explicit differentiation method and the
implicit differentiation method under the strongly monotone condition of Fλ.

Theorem 2 (Equivalence of the two backward propagation methods). Suppose that VI(Fλ,Zλ)

admits a solution z̄∗ at λ̄. Denoting h(k)λ (·) as the kth composition of hλ(·), if r satisfying the
convergence condition (8) for λ̄, then for each λ in a neighborhood B(λ̄) of λ̄, the function z∞(λ) =

limk→∞ h
(k)
λ (z0) is well-defined and is the solution to VI(Fλ,Zλ). If Fλ(z) is strongly monotone

in a neighborhood B(z̄∗) of z̄∗, the function z∞(λ) is differentiable at λ̄. Moreover, starting from
∂z0(λ̄)/∂λ = 0, the sequence ∂zk(λ̄)/∂λ defined by (15) converges to the Jacobian matrix derived
from the implicit differentiation method.

Proof. See Appendix C for a detailed proof.

Comparison. As shown in Figures 2 and 3, the computation graph of the implicit method has
a more efficient “depth”. Therefore, when Fλ is strongly monotone, the implicit method is more
efficient than the explicit method. However, even though the uniqueness of system-level state (i.e.,
p̄ in the general formulation (4)) can be guaranteed under weak conditions, the agent-level strategy
(i.e., z̄ in (4)) is not necessarily unique. It is well-known that this situation may arise in population
games where Fλ is monotone but not strongly monotone (hence the term I −∇zhλ(z∗) in implicit
differentiation becomes singular). To deal with this problem, Tobin and Friesz [58] proposed to
differentiate by constructing a specific solution that is a nondegenerate extreme point of the solution
set. However, getting such a solution is an extra burden in the context of end-to-end optimization,
because it is not directly available. The explicit method devised in our paper works in a similar
manner by differentiating a specific solution z∗ generated by the projection method. Yet, since finding
z∗ is an integrated part of the solution algorithm, no extra effort is needed.

Extension. The polyhedral assumption on Zλ is sufficient for various equilibrium problems. Never-
theless, the explicit and implicit differentiation methods as well as the Newton’s method can still work
as long as Zλ is convex. In this case, the method proposed in [2, 1] can be used for differentiating
through the projection, which is equivalent to a convex program.

4 Numerical experiments

4.1 Braess’s paradox

Using the network shown in Figure 4, Braess [10] demonstrates that expanding the capacity of
edge 5 would increase the total travel time at the Wardrop’s equilibrium. Assume that the travel
demand from node 1 to 4 is q and the travel time on each edge is given by the BPR function
te(xe) = Te ·

(
1 + 0.15 · (xe/se)4

)
, where Te is the free-flow travel time and se is the edge capacity.

Figure 5 shows the gradient of the total travel time TT =
∑5
e=1 te(x̄e) · x̄e at the equilibrium traffic

assignment x̄e with respect to s5 under different travel demand q, using the implicit, the explicit
and the numerical method, respectively. The three methods produce the same results, confirming
the recent finding [13] that Braess’s paradox exists when travel demand is neither too low (little
congestion) nor too high (too much congestion). For details please refer to Appendix D.1.
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Figure 4: Braess network and its
edge parameters.
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Figure 5: Gradient of total travel time with
respect to the capacity on edge 5.
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4.2 Transportation system operation in a learning-to-design manner

We then test our methods on a linear city model (Figure 6), where each node represents a business or
a residential area. The nodes are linked by roads (driving) and also supported by public transport
services (riding). Citizens travel between nodes everyday and we model the choices of citizens using
the routing game. To consider the choice of modes and routes simultaneously, we split each node into
4 sub-nodes, namely the starting node “s”, the ending node “e”, the driving node “v”, and the riding
node “p”. We model the travel costs on driving and riding edges using function (2) in Example 1 and
a constant cost on starting edges for public transport, e.g. 1s→ 1p, to represent the waiting time.

1s 1v

1p1e

2v 2s

2e2p

driving

riding

start start

end end

1 2 3 4 5

Sub-edges between node1 and 2

Figure 6: A linear city. Figure 7: Training process for learning game parameters

Learning. We assume that each riding edge e has a hidden cost βe,qe,τ (xe) = τ · (xe/qe)2, which
indicates the discomfort caused by crowdedness. We first learn τ , qe and also γ (time value of
money) based on “observed” traffic flows on the driving and riding edges. We randomly generated
N source-sink demand matrices, representing the travel demand in N different periods. We use the
true cost functions to generate observations by finding equilibrium traffic flows, and round them to
the nearest 0.1. The model is trained using the stochastic gradient decent method. Figure 7 shows
the training process under 4 different hyperparameters settings. We report the losses on log scale for
better visualization. For details please refer to Appendix D.2.

Intervention. We further study how to regulate the transportation system based on the learned
cost functions. To encourage transit ridership—widely promoted for sustainability—we consider
imposing a congestion toll on driving edges. Specifically, on each riding edge e, we design the toll πe
to minimize the total travel time, subject to a constraint that bounds the total cost of crowdedness.
We solve the toll optimization problem using the steepest descent method with the Armijo-type line
search method. First, as a benchmark, when the true cost functions are used, the total travel time is
reduced by 10.21% whereas the total crowdeness cost increases by 15% (the preset upper bound).
Then, using the cost functions obtained under one of the the four learning modes (a-d in Figure 7),
we find the optimal design and test its performance. The travel time savings and the extra cost of
crowdedness for the four learning modes are respectively: (a) 11.05%, 16.47%, (b) 25.79%, 54.27%,
(c) 31.38%, 261.48%, (d) 8.38%, 11.95%. For details please refer to Appendix D.2.

5 Summary

Over the past decade, artificial intelligence and machine learning have become an increasingly
prominent toolbox for understanding social systems [31, 23, 44, 67, 54]. Our work adds into this
toolbox a general representation of equilibria of games, and mathematics required to perform forward
and backward propagation through it. We hope this work will draw more attention to further
developments and applications that could contribute to sustainable development of our shared society.

Broader Impact

Our work helps understand and resolve social dilemmas resulting from pervasive conflict between
self- and collective interest in human societies. The potential applications of the proposed modeling
framework range from addressing externality in economic systems to guiding large-scale infrastructure
investment. Planners, regulators, policy makers of various human systems could benefit from the
decision making tools derived from this work.
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A Existence and uniqueness conditions for VI

We first give the definitions of monotonicity, strictly monotonicity and strongly monotonicity.
Definition A.1 (Monotone and strictly monotone). A function F (z) is monotone on Z if

〈F (z1)− F (z2), z1 − z2〉 ≥ 0, for all z1, z2 ∈ Z, (A.1)

and strictly monotone if the inequality above is strict.
Definition A.2 (Strongly monotone). A function F (z) is strongly monotone on Z if for some α > 0,

〈F (z1)− F (z2), z1 − z2〉 ≥ α‖z1 − z2‖2, for all z1, z2 ∈ Z. (A.2)

We then give the definitions of positive semi-definiteness, positive definiteness and strongly positive
definiteness.
Definition A.3 (Positive semi-definite and definite). A square matrix A ∈ Rn×n is positive semi-
definite if

vTAv ≥ 0, for all v ∈ Rn, v 6= 0, (A.3)
and positive definite if the inequality above is strict.
Definition A.4 (Strongly positive definite). A square matrix A ∈ Rn×n is strongly positive definite
if for some α > 0,

vTAv ≥ α‖v‖2, for all v ∈ Rn. (A.4)

The following propositions can be used to check whether a matrix is strongly positive definite.
Proposition A.1. A square matrix A is strongly positive definite if and only if AT + A is positive
definite.

The monotonicity of F (z) is closely related to the positive definiteness of∇F (z) [46].
Proposition A.2. Suppose that F (z) is continuously differentiable on Z and ∇F (z) (need not to be
symmetric) is positive semi-definite (positive definite), then F (z) is monotone (strictly monotone).
Proposition A.3. Suppose that F (z) is continuously differentiable on Z and ∇F (z) is strongly
positive definite, then F (z) is strongly monotone.

Particularly, if∇F (x) is symmetric, then F (x) is strongly monotone if and only if F (x) is strictly
monotone.

Eventually, the following propositions provide conditions under which the existence and uniqueness
of the solution to VI(Fλ,Zλ) are guaranteed [22, 38].
Proposition A.4 (Existence condition). If Fλ is continuous on Zλ and Zλ is compact and convex,
then VI(Fλ,Zλ) admits at least one solution.
Proposition A.5 (Uniqueness condition). If Fλ is strictly monotone on Zλ, then VI(Fλ,Zλ) admits
a unique solution if one exists. If Fλ is strongly monotone, then it always admits one and only one
solution.

B Details of Newton’s method

B.1 Proof of Theorem 1

Proof. As eλ(z) is continuously differentiable and∇zeλ(z̄∗) is nonsingular,∇zeλ(z) is nonsingular
in a neighborhood B1(z̄∗) of z̄∗. Denote Ek = ‖∇zeλ(zk)‖, yk = zk − rFλ(zk), and ȳ =
z̄∗ − rFλ(z̄∗). Starting from z0 ∈ B1(z̄∗), we can recursively get

‖zk+1 − z̄∗‖ = ‖zk −∇zeλ(zk)−1 · eλ(zk)− z̄∗‖
≤ Ek · ‖∇zeλ(zk) · (zk − z∗)− eλ(zk)‖
= Ek · ‖∇zeλ(zk) · (zk − z̄∗)− (eλ(zk)− eλ(z̄∗))‖
= Ek · ‖hλ(zk)− hλ(z̄∗)− (I −∇zeλ(zk)) · (zk − z̄∗)‖
= Ek · ‖gλ(yk)− gλ(ȳ)−∇ygλ(yk) ·

(
I − r · ∇zFλ(zk)

)
· (zk − z̄∗)‖.

(B.1)
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As both gλ(y) and Fλ(z) are continuously differentiable, denoting y = z − rFλ(z), there exists
another neighborhood B2(z̄∗) of z̄∗, such that when z ∈ B2(z̄∗) we have

y − ȳ = z − z̄∗ − r · (Fλ(z)− Fλ(z̄∗))

= (I − r · ∇Fλ(z̄∗)) · (z − z̄∗) + o(‖z − z̄∗‖). (B.2)

Consequently, we have

gλ(y)− gλ(ȳ)−∇ygλ(y)(y − ȳ) = o(‖y − ȳ‖) = o(‖z − z̄∗‖). (B.3)

Continuing from (B.1), we have

‖zk+1−z̄∗‖ ≤ o(zk − z̄∗) + Ek · ‖∇ygλ(yk) ·
(
yk − ȳ − (I − r · ∇zFλ(zk)) · (zk − z̄∗)

)
‖

≤ o(‖zk − z̄∗‖) + r · Ek · ‖∇ygλ(yk)‖ · ‖Fλ(zk)− Fλ(z̄∗)−∇zFλ(zk) · (zk − z̄∗)‖
= o(‖zk − z̄∗‖) + r · Ek · ‖∇ygλ(yk)‖ · o(‖zk − z̄∗‖) = o(‖zk − z̄∗‖).

(B.4)

Therefore, starting from z0 ∈ B1(z̄∗) ∩ B2(z̄∗), the sequence converges to z̄∗ superlinearly.

B.2 Implementation details

To enable global convergence, we first use the projection method to find a point within a sufficiently
small neighborhood of the solution to VI(Fλ,Zλ) and then use the Newton’s method to find the
solution. Denote G(z) as the gap (or merit) function to VI(Fλ,Zλ), e.g. [29], a globally convergent
method for solving VI(Fλ,Zλ) is given in Algorithm 1.

Algorithm 1 Projection-Newton method for solving VI(Fλ,Zλ).

Input: Initial point z0 and scalar r0, tolerance value ε0, ε1, δ0, and δ1, control parameters 0 < α0 < 1 and
α1 > 1

1: Set k = 0 and m0 =∞.
2: while mk < ε0 do
3: Set zk+1 = gλ(z

k − rkF (zk)) and mk+1 = G(zk+1).
4: Set rk+1 = α0r

k if mk+1/mk ≥ 1− δ1, and rk+1 = rk, otherwise. Set k = k + 1.
5: end while
6: while mk < ε1 do
7: Compute Hk = ∇zeλ(zk) using (11) with rk. If Hk is singular, find ηk > 0 such that Hk + ηkI is

non-singular. Solve (Hk + ηkI) · dk = eλ(z
k) and set zk+1 = zk − dk and mk+1 = G(zk+1).

8: Set rk+1 = α1r
k if mk+1/mk ≥ 1− δ2, and set rk+1 = rk, otherwise. Set k = k + 1.

9: end while

Under Assumptions 1 and 4, a sufficiently small r can guarantee convergence for projection methods.
Therefore, we dynamically reduce r at each iteration in the projection phase, if the optimality gap
does not decrease after the projection. In the Newton’s phase, for all positive r, the solution to
VI(Fλ,Zλ) satisfies the fixed-point equation (9). Therefore, theoretically, any r > 0 can be used
to derive the Newton’s direction. In practice, we find that a relatively larger r can lead to a faster
convergence speed. Therefore, we dynamically increase r when the convergence speed, measured by
the decrease of optimality gap after each iteration, is sufficiently small. Meanwhile, if∇zeλ(zk) is
singular, we modify ∇zeλ(zk) by adding a correction matrix ηkI to prevent divergence.

B.3 Additional experiments

We test Algorithm 1 on finding Wardrop’s equilibrium. Before the experiments, we first provide some
supplementary details of the VI problem given in Example 1. In the graph, denoteW ⊆ V × V as
the set of source-sink pairs and K as the set of paths. Suppose that each w ∈ W is associated with
qw infinitesimal agents. Denote fk as the number of agents choosing path k ∈ K. Let M be the
path-demand incidence matrix and ∆ be the path-edge incidence matrix. Then the feasible region
of path flow f and edge flow x are F = {f : f ≥ 0,Mf = q} and X = {x : x = ∆f, f ∈ F},
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respectively. The Wardrop’s equilibrium can be written into the edge-based formulation as in Example
1: find x∗ ∈ X such that

〈c(x∗), x− x∗〉 ≥ 0, for all x ∈ X , (B.5)

or equivalently, the path-based formulation: find f∗ ∈ F such that〈
∆Tc(∆f∗), f − f∗

〉
≥ 0, for all f ∈ F . (B.6)

Here the parameters in c(x) are omitted for simplicity. We test the algorithms on a two-loop city
network as shown in Figure B.1. All edges in the network support the driving mode, while the inner
loop and the outer loop of the city are also supported by public transport services. We use the same
method as in § 4.2 to model the mode and route choices together (spliting each node into 4 sub-nodes).
The cost function ce(x) on each edge has the following form

ce(x) =

{
Te

(
1 +

(
xe
se

)2
))

+ γme + τ
(

1 +
(
xe
qe

)2
))

, for driving and riding edges,

we, for starting edges.
(B.7)

We set γ = 1 and τ = 1; the value of parameters are given in Table B.1. The travel demands are
generated from independent and identically distributed uniform U(5, 10) distributions. We compare
the convergence speed of three methods for finding equilibrium: the gradient-projection (GP) method
[24], the projection-Newton (PN) method and the projection method.

• GP method. The GP method is a specially designed method that is widely used to find Wardrop’s
equilibrium. See [24] for more details.

• PN method (Algorithm 1). We implement the PN method on the path-based formulation (B.6)
instead of the edge-based formulation (B.5) to improve the efficiency. We set ε0 = 103, ε1 = 10−3,
δ0 = 10−3, δ1 = 0.2, α0 = 0.8, α1 = 2, and start from r0 = 0.5. The Jacobian matrix is derived
using the cvxpylayers package in Python at each iteration.

• Projection method. We set ε0 = 10−3 and other parameters same as the projection phase in the PN
method.

The initial point f0 is derived from the all-or-nothing assignment, i.e. all the agents choose the shortest
paths according to the costs ce(0) for all e. For the path set K, it is inefficient and also unnecessary
to include all the paths at the beginning. Therefore, the path set K is augmented at each iteration
to include the current shortest paths. The gap function for f is set as G(f) =

〈
c(∆f),∆f̄ −∆f

〉
,

where f̄ is derived from the assignment assuming that all of the agents choose the shortest paths
based on the edge costs at f . We stop the computation after 150 iterations. We test the algorithms
under four demand levels (1x, 2x, 3x, and 4x) and the convergence processes are shown in Figure
B.2. We see that the PN method is faster than the others. Noted that the GP method is a specialized
method for finding Wardrop’s equilibrium while the PN method is a general method for solving VIs,
this result is a powerful evidence that our Newton’s method, directly locating the solution through
root-finding, is an efficient method for solving VIs.

4 3

1 2

8 7

5 6

Figure B.1: A two-loop city network. Figure B.2: Convergence process.

16



Mode Edge se Te me we qe

Driving

v-v (inner loop) 10 0.833 0.167 - ∞
v-v (outer loop) 12 2.000 0.400 - ∞

v-v (radial edges) 15 0.700 0.140 - ∞
s-v - - - 0 -

Riding

p-p (inner loop) ∞ 0.917 0.023 - 20
p-p (ourer loop) ∞ 2.200 0.055 - 25

s-p (from inner loop) - - - 1 -
s-p (from outer loop) - - - 3 -

Table B.1: Edge parameters of the two-loop city network.

C Proof of Theorem 2

Proof. For each λ, the function defined as the limiting point of the projection method is

z∞(λ) = lim
k→∞

zk(λ) = lim
k→∞

h
(k)
λ (z0). (C.1)

As Fλ(z) is continuously differentiable and r satisfies the convergence condition (8) for λ̄, there
exists a neighborhood B1(λ̄) of λ̄ such that

|||I − r · ∇zFλ(z)||| < 1, for all z ∈ Zλ, and λ ∈ B1(λ̄). (C.2)

According to Proposition 2, for all λ ∈ B(λ̄), the sequence zk(λ) converges to a point z∞(λ) which
is the solution to VI(Fλ,Zλ). Therefore, the function (C.1) is well defined. If Fλ(z) is strongly
monotone, then there exists another neighborhood B2(λ̄) of λ̄ such that for all λ ∈ B2(λ̄), the solution
to VI(Fλ,Zλ) is unique. Then based on Proposition 4, z∞(λ) is differentiable in B1(λ̄) ∩ B2(λ̄).
For all z ∈ Zλ and λ = λ̄, the operator norm of∇zhλ(z) satisfies

|||∇zhλ(z)||| ≤ |||∇ygλ(y)||| · |||I − r · ∇zFλ(z)||| ≤ |||I − r · ∇zFλ(z)||| < 1, (C.3)

where the second inequality holds because gλ is an Euclidean projection and hence the singular value
of∇ygλ(y) can only be 1 or 0. The convergence of ∂z̄k(λ̄)/∂λ is then guaranteed by the contraction
mapping theorem. As we assume that both Fλ(z) and gλ(y) are continuously differentiable, so is
hλ(z). As a result, both∇zhλ(z) and∇λhλ(z) are continuous. Hence in the recursive equation (15),
set λ = λ̄ and let k →∞, we get

∂z∞(λ̄)

∂λ
= ∇zhλ(z∞(λ̄)) · ∂z

∞(λ̄)

∂λ
+∇λhλ(z∞(λ̄)). (C.4)

Therefore, we have (
I −∇zhλ(z∞(λ̄)

)
· ∂z

∞(λ̄)

∂λ
= ∇λhλ(z∞(λ̄)). (C.5)

Eventually, based on Proposition 5, the sequence ∂z̄k(λ̄)/∂λ converges to ∂z∞(λ̄)/∂λ, which equals
the Jacobian matrix derived from the implicit differentiation (18).

D Experimental settings

D.1 Braess paradox

In this experiment, we test the accuracy of differentiating through a VI problem by quantifying the
Braess paradox. We test both the explicit method and the implicit method, and compare the results
with the numerical differentiation.

• Explicit method. We implement the projection method (equivalently, the projection phase of
Algorithm 1) on the path-based formulation (B.6) to find equilibrium. In the forward propagation,
we set ε0 = 10−4, δ0 = 10−3, α0 = 0.8, and start from r0 = 0.5. We directly build the
computation graph using the cvxpylayers package.
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• Implicit method. We use the same equilibrium solution as in the explicit method. Different
from using the path-based formulation (B.6) in the forward propagation, we implement implicit
differentiation on the edge-based formulation (B.5). We also use the cvxpylayers package to
compute the Jacobian matrices.

• Numerical differentiation. We disturb the capacity by +5% and use finite-difference method to
compute the gradient.

D.2 Transportation system operation

In this experiment, we test the performance of our framework on the operation of a transportation
system. The cost function has the same form as (B.7), and the parameters are given in Table D.1.
Meanwhile, we set γ = 1 and τ = 1.

Mode Edge se Te me we qe

Driving
v-v 10 1.0 0.25 - ∞
s-v - - - 0 -

Riding

p-p (left to right) ∞ 1.1 0.05 - 18
p-p (right to left) ∞ 1.1 0.05 - 22

s-p - - - 1 -

Table D.1: Edge parameters of the linear city network.

Learning. The number of periods is set as N = 8. In each period, the travel demands pair are
generated from independent and identically distributed uniform U(5, 10) distributions. We use the
first 6 periods for training and the last 2 periods for testing. We use the objective function given in
the learning mode of Example 1, assuming that the number of agents (flow) on the driving and riding
edges can be observed.

In the forward propagation, we use Algorithm 1 to find equilibrium. We set ε0 = 1 and ε1 = 10−3;
other parameters are the same as in Appendix B.3. In the backward propagation, we use the implicit
method on the edge-based formulation (B.5). We consider two types of parameters initialization
strategies: 1© high riding costs; and 2© low riding costs. For 1©, we set γ0 = 0.2, τ0 = 1.5, and
q0e = 10 for all riding edges. For 2©, we set γ0 = 1.5, τ0 = 0.2, and q0e = 30. The learning rate
for γ and qe are set as 10−4, and we consider two learning rates for γ: i© 10−3, and ii© 10−4. The
4 hyperparameters settings in Figure 7 are set as (a): 1© + i©; (b) 1© + ii©; (c) 2© + i©; (d) 2© + ii©.
The learned value of parameters are given in Table D.2.

γ τ

qe

1-2 2-1 2-3 3-2 3-4 4-3 4-5 5-4

(a) 0.914 1.012 17.761 21.928 18.396 22.421 17.971 22.010 18.692 22.825
(b) 0.293 0.957 18.611 23.379 18.495 22.624 17.906 22.027 19.695 24.364
(c) 0.014 1.164 23.097 28.021 20.201 25.167 20.402 24.831 21.447 27.551
(d) 1.250 1.289 20.828 24.863 19.798 24.397 20.577 24.869 19.193 23.681

Table D.2: Learned value of parameters.

According to Figure 7, (a) produces the smallest fitting loss. Based on Table D.2, the learned values
in (a) are also the closest to the true values.

Intervention. In the forward and backward propagation, we use the same methods as in the learning
mode. Based on the learned cost functions in (a), the intervention mode produces similar results
compared with the benchmark. The learned cost functions can also be used for other interventions,
ranging from network expansions to public transport service pricing and headway design.
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