
A Technical Proofs

A.1 Proof of Proposition 1

Proof of Proposition 1. Recall that h denotes the vanilla activations of the network, those we obtain
with no noise injection. Let us not inject noise in the final, predictive, layer of our network such that
the noise on this layer is accumulated from the noising of previous layers.

We denote Ek the noise accumulated at layer k from GNIs in previous layers, and potential GNIs at
layer k itself. We denote EL,i the i

th element of the noise at layer L, the layer to which we do not
add noise. This can be defined as a Taylor expansion around the accumulated noise at the previous
layer L� 1:
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where we use ↵L as a multi-index over derivatives.

Generally if we noise all layers up to the penultimate layer of index L � 1 we can define the accu-
mulated noise at layer k, Ek recursively because Gaussian have finite moments:
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where E0 = ✏0 is the base case.

A.2 Proof of Theorem 1

Proof of Theorem1. Let us first consider the Taylor series expansion of the loss function with the
accumulated noise defined in Proposition 1. Denoting ✏ = [✏L�1, . . . , ✏0] we have:
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Note that the dot product with the i
th element of the final layer noise EL,i can be written as
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where the dots here denote the accumulated noise term on layer L � 1 before we add the Gaussian
noise ✏L�1. When looking at all elements of E↵

L, not just the ith element, note that this is essentially
the Taylor series expansion of L around the series expansion of hL around ✏L�1. We know that the
product of the Taylor series of a composed function f � g with the Taylor series of g is simply the
Taylor series of f around x (Constantine and Savits, 1996). This can be deduced from the slightly
opaque Faà di Bruno’s formula, which states that for multivariate derivatives of a composition of
functions f : Rm

! R and g : Rd
! Rm and a multi-index ↵ (Constantine and Savits, 1996)
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where ps(�,↵) = {(k1, . . . , ks); (l1, . . . , ls) : |ki| > 0, 0 � l1 · · · � ls,
Ps

i=1 ki =
�
Ps

i=1 |ki|li = ↵ , where � denotes a partial order.
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Applying this recursively to each layer k, we obtain that,
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Here C(✏,x,y) represents cross-interactions between the noise at each layer k ✏k and the noise
injections at preceding layers with index less than k. We can further simplify the added term to the
loss,
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The second equality comes from the fact that odd-numbered moments of ✏k, will be 0 and that
L(x,y) = L(hL(x),y). The final equality comes from the moments of a mean 0 Gaussian, where
j takes the values of the multi-index. Note that
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Though these equalities can already offer insight into the regularising mechanisms of GNIs, they
are not easy to work with and will often be computationally intractable. We focus on the first set of
terms here where each |↵k| = 1, which we denote R(x,✓)
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The last approximation corresponds to the Gauss-Newton approximation of second-order deriva-
tives of composed functions where we’ve discarded the second set of terms of the form
DL(hL)(x)

�
D

2
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�
. We will include these terms in our remainder term C. For com-

pactness of notation, we denote each layer’s Jacobian as Jk 2 RdL⇥dk . Each entry of Jk is a partial
derivative of f✓

k,i, the function from layer k to the i
th network output, i = 1...dL.
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Again, for simplicity of notation J
↵k
k selects the column indexed by |↵k| = 1. Also note that the

sum over |↵k| = 1 effectively indexes over the diagonal of the Hessian of the Loss with respect to
the L

th layer activations. We denote this Hessian as HL(x,y) 2 RdL⇥dL .
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This gives us that
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For notational simplicity we include the terms that R does not capture into the remainder
E✏ [C((x,y); ✏)]. We take expectations over the batch and have:
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This concludes the proof.

A.3 Proof of Theorem 2

Proof of Theorem 2. Because f 2 W
1,2
µ (Rd) we know that by definition, for |↵| = 1:
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where F is the Fourier transform of f , i2 = �1, and !jF(!) is simply the Fourier transform of the
derivative indexed by ↵. M(!, j) is given by
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where P is the Fourier transform of the probability measure µ, !jF(!) is as before, and * denotes
the convolution operator. Substituting G(!, j) = !jF(!) we obtain:
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This concludes the proof.
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A.4 Regularisation in Regression Models and Autoencoders

In the case of regression the most commonly used loss is the mean-square error.
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This added term corresponds to the trace of the covariance matrix of the outputs hL given an input
hk. As such we are penalising the sum of output variances of the approximator; we are penalising
the sensitivity of outputs to perturbations in layer k (Webb, 1994; Bishop, 1995).

For ReLU-like activations (ELU, Softplus ...) , because our functions are at most linear, we can
bound our regularisers using the Jacobian of an equivalent linear network:
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Where Jlinear
k (x) is the gradient evaluated with no non-linearities in our network. This upper bound

is reminiscent of rank � k ridge regression, but here we penalise each sub-network in our network
(Kunin et al., 2019). Also note that the regression setting is directly translatable to Auto-Encoders,
where the labels are the input data.

A.5 Regularisation in Classifiers

In the case of classification, we consider the cross-entropy loss. Recall that we consider our network
outputs hL to be the pre-softmax of logits of the final layer L. We denote p(x) = softmax(hL(x)).
The loss is thus:
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where c indexes over the M possible classes of the classification problem. The hessian HL in this
case is easy to compute and has the form:
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As Wei et al. (2020), Sagun et al. (2018), and LeCun et al. (1998) show, this Hessian is PSD, meaning
that Tr(JkHLJ
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k) will be positive, fulfilling the criteria for a valid regulariser.
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diag(HL(x))| is the row vector of the diagonal of HL(x). The first equality is due to the fact
that HL is symmetric and is due to the commutative properties of the trace operator. The final
equality is simply the decomposition of the sum of the matrix product into diagonal and off-diagonal
elements. For shallow networks, the off-diagonal elements of JkJ

|
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k (Poole et al., 2016; Hauser and Ray, 2017; Farquhar et al., 2020; Aleksziev,
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smaller networks. Ignoring these off-diagonal terms, we obtain an added positive term:
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For ReLU-like activations (ELU, Softplus ...), because our functions are at most linear, we can
bound our regularisers using the Jacobian of an equivalent linear network:
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(a) SVHN MLP, k=0 (b) SVHN MLP, k=1 (c) SVHN MLP, k=2

(d) CIFAR10 CONV, k=0 (e) CIFAR10 CONV, k=1 (f) CIFAR10 CONV, k=2

Figure A.1: Samples of heatmaps of 10 by 10 matrices J
|
kJk (k indexing over layers) for 2-layer

MLPs and convolutional networks (CONV) trained to convergence (with no regularisation) on the
SVHN and CIFAR10 classification datasets, each with 10 classes. We can clearly see that the diag-
onal elements of these matrices dominate in all examples, though less so for the data layer.
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B Tikhonov Regularisation

Note that because we are penalising the terms of the Sobolev norm associated with the first order
derivatives, this constitutes a form of Tikhonov regularisation. Tikhonov regularisation involves
adding some regulariser to the loss function, which encodes a notion of ‘smoothness’ of a function
f (Bishop, 1995). As such, by design, regularisers of this form have been shown to have beneficial
regularisation properties when used in the training objective of neural networks by smoothing the
loss landscape (Girosi and Poggio, 1990; Burger and Neubauer, 2003). If we have a loss of the form
L(B;✓), the Tikhonov regularised loss becomes:

L(B;✓) + �kf
✓
k
2
H

(17)
where f✓ is the function with parameters ✓ which we are learning and k·kH is the norm or semi-norm
in the Hilbert space H and � is a (multidimensional) penalty which penalises elements of kf✓

k
2
H

unequally, or is data-dependent (Tikhonov, 1977; Bishop, 1995). In our case H is the Hilbert-
Sobolev space W

1,2
µ (Rd) with norm dictated by Equation (7). R(·) penalises the function’s semi-

norm in this space.

C Measuring Calibration

A neural network classifier gives a prediction ŷ(x) with confidence p̂(x) (the probability attributed
to that prediction) for a datapoint x. Perfect calibration consists of being as likely to be correct as
you are confident:

p(ŷ = y|p̂ = r) = r, 8r 2 [0, 1] (18)
To see how closely a model approaches perfect calibration, we plot reliability diagrams (Guo et al.,
2017; Niculescu-Mizil and Caruana, 2005), which show the accuracy of a model as a function of its
confidence over M bins Bm.
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X
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X

i2Bm
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We also calculate the Expected Calibration Error (ECE) Naeini et al. (2015), the mean difference
between the confidence and accuracy over bins:

ECE =
MX

m=1

|Bm|

N
|acc(Bm)� conf(Bm)| (21)

However, note that ECE only measures calibration, not refinement. For example, if we have a bal-
anced test set one can trivially obtain ECE ⇡ 0 by sampling predictions from a uniform distribution
over classes while having very low accuracy.

D Classification Margins

Typically, models with larger classification margins are less sensitive to input perturbations (Sokolić
et al., 2017; Jakubovitz and Giryes, 2018; Cohen et al., 2019; Liu et al., 2019; Li et al., 2018).
Such margins are the distance in data-space between a point x and a classifier’s decision boundary.
Larger margins mean that a classifier associates a larger region centered on a point x to the same
class. Intuitively this means that noise added to x is still likely to fall within this region, leaving
the classifier prediction unchanged. Sokolić et al. (2017) and Jakubovitz and Giryes (2018) define a
classification margin M that is the radius of the largest metric ball centered on a point x to which a
classifier assigns y, the true label.

Proposition 1 (Jakubovitz and Giryes (2018)). Consider a classifier that outputs a correct predic-
tion for the true class A associated with a point x. Then the first order approximation for the l2-norm
of the classification margin M , which is the minimal perturbation necessary to fool a classifier, is
lower bounded by:

M(x) �
(hA

L(x)� h
B
L (x))

p
2kJ0(x))|F

. (22)
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(a) J0 CIFAR (b) J0 SVHN

Figure D.2: Here we show distribution plots of J0 for 2-layer MLPs trained on CIFAR10 (a) and
SVHN (b) for models trained with no noise (Baseline), models trained with noise on their inputs
(GNI Input), models trained with noise on all their layers (GNI All Layers). Noising all layers
induces a larger penalisation on the norm of J0, seen clearly here by the shrinkage to 0 of J0 for
models trained in this manner.

We have h
A
L(x) � h

B
L (x), where h

A
L(x) is the L

th layer activation (pre-softmax) associated with
the true class A, and h

B
L (x) is the second largest Lth layer activation.

Networks that have lower-frequency spectrums and consequently have smaller norms of Jacobians
(as established in Section 4 ), will have larger classification margins and will be less sensitive to
perturbations. This explains the empirical observations of Rahaman et al. (2019) which showed that
functions biased towards lower frequencies are more robust to input perturbations.

What does this entail for GNIs applied to each layer of a network ? We can view the penalisation
of the norms of the Jacobians, induced by GNIs for each layer k, as an unpweighted penalisation of
kJ0(x)kF . By the chain rule J0 can be expressed in terms of any of the other network Jacobians
J0(x) = Jk(x)

@hk
x 8k 2 [0 . . . L]. We can write kJ0(x)kF = kJk(x)

@hk
x kF  kJk(x)kF k

@hk
x kF .

Minimising kJ0(x)kF is equivalent to minimising kJk(x)kF and k
@hk
x kF , and upweighted penal-

isations of kJk(x)kF should translate into a shrinkage of kJ0(x)kF . As such, noising each layer
should induce a smaller kJ0(x)kF , and larger classification margins than solely noising data. We
support this empirically in Figure D.2.

In Figure F.6 we confirm that these larger classification translate into a lessened sensitvity to
noise.

E Model Capacity

Intuitively one can view lower frequency functions as being ‘less complex’, and less likely to overfit.
This can be visualised in Figure 4. A measure of model complexity is given by ‘capacity’ measures.
If we have a model class H, then the capacity assigns a non-negative number to each hypothesis in
the model class M : {H,Dtrain} ! R+, where Dtrain is the training set and a lower capacity is
an indicator of better model generalisation (Neyshabur et al., 2017). Generally, deeper and narrower
networks induce large capacity models that are likely to overfit and generalise poorly (Zhang et al.,
2017). The network Jacobian’s spectral norm and Frobenius norm are good approximators of model
capacity and are clearly linked to R (Guo et al., 2017; Neyshabur et al., 2017, 2015).

The Frobenius norm of the network Jacobian corresponds to a norm in Sobolev space which is a
measure of a network’s high-frequency components in the Fourier domain. From this we offer the
first theoretical results on why norms of the Jacobian are a good measure of model capacity: as low-
frequency functions correspond to smoother functions that are less prone to overfitting, a smaller
norm of the Jacobian is thus a measure of a smoother ‘less complex’ model.
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F Additional Results

(a) BHP MLP Loss

Figure F.3: In Figure (a) we show the test set loss for the regression dataset Boston House Prices
(BHP) for 4-layer ELU MLPs trained with R(·) and GNIs for �2 = 0.1. We compare to a non-
noised baseline (Baseline). Exp Reg captures much of the effect of noise injections. The test set
loss is quasi-identical between Exp Reg and Noise runs which clearly differentiate themselves from
Baseline runs.

(a) SVHN MLP, �2 = 0.1 (b) BHP MLP �2 = 0.1

Figure F.4: Here we use small variance noise injections and show that the R(·) (Exp Reg) in equation
(11) and (14), induces the same trajectory through the loss landscape as GNIs (Noise). We show
the trace of the Hessian of neural weights (Hi,j = @L

@wi@wj
) for a smaller 2-layer 32 unit MLP

trained on the classification datasets CIFAR10 (a), and SVHN (b), and the regression dataset Boston
House Prices (BHP) (c). In all experiments we compare to a non-noised baseline (Baseline). Tr(H),
which approximates the trajectory of the model weights through the loss landscape, is quasi identical
for Exp Reg and Noise and is clearly distinct from Baseline, supporting the fact that the explicit
regularisers we have derived are valid. As expected the explicit regulariser and the noised models
have smoother trajectories (lower trace) through the loss landscape, except for CIFAR10.
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(a) ELU non-linearities, �2 = 0.1

(b) ReLU non-linearities, �2 = 0.1

Figure F.5: Illustration of the loss induced by the R(·) for classification detailed in equation (14) for
convolutional and MLP architectures, and for ReLU and ELU non-linearities. The loss trajectory is
quasi-identical to models trained with GNIs and the trajectories are clearly distinct from baselines
(Baseline), supporting the fact that the explicit regularisers we have derived are valid.
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(a) CIFAR (b) SVHN

Figure F.6: In (a) and (b) a model’s sensitivity to noise by adding noise of variance ↵
2 to data and

measuring the resulting model accuracy given this corrupted test data. We show this for 2-layer
MLPs trained on CIFAR10 (a) and SVHN (b) for models trained with no noise (Baseline), models
trained with noise on their inputs (GNI Input), models trained with noise on all their layers (GNI
All Layers), and models trained with the R(·) for classification. Noise added during training has
variance �

2 = 0.1 and confidence intervals are the standard deviation over batches of size 1024.
Models trained with noise on all layers, and those trained with R(·), have the slowest decay of
performance as ↵ increases, confirming that such models have larger classification margins.
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(a) CIFAR10 MLP, � = 0.1 (b) CIFAR10 MLP, � = 0.1

(c) SVHN MLP, � = 0.1 (d) SVHN MLP, � = 0.1

(e) CIFAR10 CONV, � = 0.1 (f) CIFAR10 CONV, � = 0.1

(g) SVHN CONV, � = 0.1 (h) SVHN CONV, � = 0.1

Figure F.7: Illustration of how Gaussian noise (Noise) additions improve calibration relative to mod-
els trained without noise injections (Baselines) and how R(·) (Exp Reg) also captures some of this
improvement in calibration. We include results for MLPs and convolutional networks (CONV) with
ELU activations on SVHN and CIFAR10 image datasets. On the left hand side we plot reliability di-
agrams (Guo et al., 2017; Niculescu-Mizil and Caruana, 2005), which show the accuracy of a model
as a function of its confidence over M bins Bm. Models that are perfectly calibrated have their ac-
curacy in a bin match their predicted confidence: this is the dotted line appearing in figures. We also
calculate the Expected Calibration Error (ECE) which measures a model’s distance to this ideal (see
Appendix C for a full description of ECE) (Naeini et al., 2015). Clearly, Noise and Exp Reg models
are better calibrated with a lower ECE relative to baselines. This can also be appraised visually in
the reliability diagram. The right hand side supports these results. We show density plots of the
entropy of model predictions. One-hot, highly confident, predictions induce a peak around 0, which
is very prominent in baselines. Both Noise and Exp Reg models smear out predictions, as seen by
the greater entropy, meaning that they are more likely to output lower-probability predictions.
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G Network Hyperparameters

All networks were trained using stochastic gradient descent with a learning rate of 0.001 and a batch
size of 512.

All MLP networks, unless specified otherwise, are 2 hidden layer networks with 512 units per
layer.

All convolutional (CONV) networks are 2 hidden layer networks. The first layer has 32 filters, a
kernel size of 4, and a stride length of 2. The second layer has 128 filters, a kernel size of 4, and a
stride length of 2. The final output layer is a dense layer.
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